OUR PHYSICS NATION, CAFE, NAVER, COM/WOONGSCIENCE

자기장 (magnetic field)

자기력 (magnetic force)

자석이 쇠붙이나 다른 자석에 미치는 힘으로, 인력과 척력이 있다.

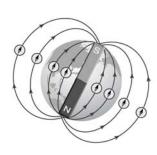
자기장 (magnetic field)

자석 주위나 전류가 흐르는 도선 주위에 형성되는 자기력 이 작용하는 공간

→ 자기장의 방향: 자기장 내의 어느 한 점에서 자기장의 방향은 그 점에 놓은 자석의 N극이 받는 힘의 방 향으로 정한다.

자기력선 (lines of magnetic force)

자기장의 모양을 나타내는 선

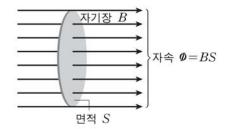


[자석주위의 자기장]

★ 자석은 N, S 분리가 불가능! (작은 자석의 집합)

자기력선의 특징

- ① 자기력선은 자석 내부를 지나 N국에서 나와 S국으로 들어 가는 끊어지지 않는 폐곡선을 이룬다.
 - * 자석내부에서는 $S \rightarrow N$
- ② 자기력선은 서로 만나거나 끊어지지 않는다.
- ③ 자기력선의 임의의 한 점에서 그은 접선의 방향은 그 곳에 서의 자기장의 방향이다.
- ④ 자기력선이 밀집한 곳일수록 자기장의 세기가 강하다.


← 지구자기장

북극이 자석의 S 극! 남극이 자석의 N극!

자기장의 세기

자속(자기력선속, ϕ) (magnetic flux)

자기장에 수직한 면적을 지나는 자기력선의 총수 (단위: Wb 웨버)

자속밀도(자기장의 세기) (magnetic flux density)

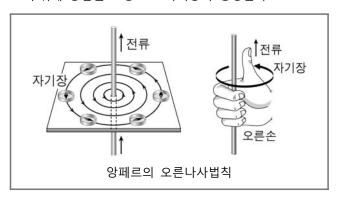
자기력선의 밀도는 자기장에 수직인 단위 면적을 지나는 자기력선의 총 수로 나타낸다. 자기장에 수직한 면적 S를 지나는 자기력선의 총수를 ϕ 라 할때, 자속 밀도(자기장의 세기) B는 다음과 같다.

$$B = \frac{\phi}{S} = \frac{F}{Il}$$
 (단위 : T 테슬라)

 $(1 T = 1 Wb/m^2 = 1 N/A \cdot m)$

Nikola Tesia 1856.7.9~1943.1.7, 크로아티아(국적:미국)

미국의 전기공학자. 미국의 에디슨 회사에서 수년간 발전기와 전동기를 연구하였으며, 테슬라연구소를 설립하고, 최초의 교류유도전동기와테슬라 변압기 등을 만들었다. 자기력선속밀도의 단위인 테슬라는 그의 이름에서 딴 것이다.

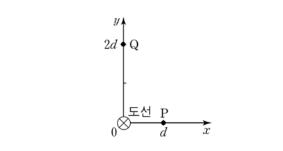

Wilhelm Eduard Weber 1804.10.24~1891.6.23, 독일

독일 비텐베르크 출생의 독일의 물리학자로 전 기역학에서 탁월한 연구성과를 거두었다. 여러 개의 전자기현상에 관한 법칙을 하나로 통일하 여 기초방정식을 세웠는데 이것이 베버의 법칙 이다. 이외에도 많은 전자기학 분야에서 업적을 남겼다.

OUR PHYSICS NATION, CAFE.NAVER.COM/WOONGSCIENCE

직선 전류에 의한 자기장

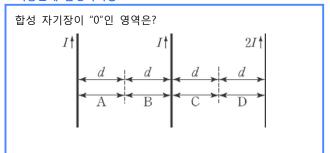
자기장의 모양과 방향: 직선 도선에 전류가 흐르면 그주위에 동심원 모양으로 자기장이 형성된다.



② 자기장의 세기

자기장의 세기 B는 전류의 세기 I 에 비례하고, 도선으로 부터의 수직 거리 r 에 반비례한다.

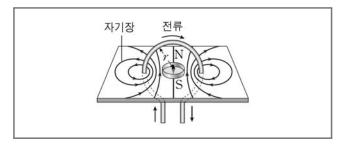
$$B = k \frac{I}{r}$$
 $(k = 2 \times 10^{-7} N/A^2)$


▶ 적용문제 직선도선 주위의 자기장

P에서 자기장의 세기를 B_0 라면 Q에서 자기장의 방향과 세기는?

 $\frac{B_0}{2}$, 오른쪽

▶ 적용문제 합성자기장



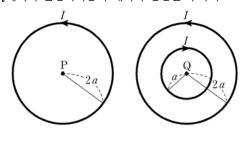
A, C

원형 전류에 의한 자기장

① 자기장의 모양과 방향

원형 도선이 만드는 자기장은 원의 중심에서 원을 뚫고 지나가며, 도선을 중심으로 동심원에 가까운 모양으로 나타난다.

② 자기장의 세기


원의 중심에서의 자기장의 세기 B는 전류의 세기 I에 비례하고 도선의 반지름 r에 반비례한다.

$$B = k' \frac{I}{r}$$
 $(k = 2\pi \times 10^{-7} N/A^2)$

• 원형도선 중심에서의 자기장이 가장 강하다.

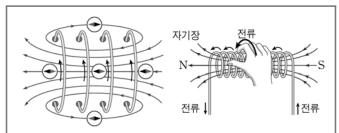
▶ 적용문제 직선도선 주위의 자기장

다음 (가)의 중심 P에서의 자기장의 세기를 B라 하면 (나)의 중심 Q에서의 합성자기장의 세기와 방향을 구하시오.

$$B_{Q} = k' \frac{I}{a} - k' \frac{I}{2a} = k' \frac{I}{2a} = B \ (\otimes)$$

Hans Christian Oersted 1777.8.14~1851.3.9

화학에서 물리로 방향을 바꾸어, 도선 주위에 생기는 자기장에 대한 이론을 정립하였다. 앙 페르, 패러데이, 베버 등이 전자기학을 이루는 초석을 세웠다. 코펜하겐공과대학을 설립, 과학 보급운동에 진력, 지구자기관측소를 설립, 덴마 크 왕립과학협회를 창설, 회장이 되었다


전류의 자기작용

OUR PHYSICS NATION, CAFE, NAVER, COM/WOONGSCIENCE

솔레노이드에 의한 자기장 (solenoid) : 무한코일

자기장의 모양과 방향

솔레노이드 내부 → 내부에 **균일**한 자기장 형성 솔레노이드 외부 → 막대자석과 동일한 자기장

오른손의 네 손가락을 전류의 방향으로 하면 엄지손가락이 가리 키는 방향이 자기장의 방향.

- 엄지손가락쪽이 N ← 중요!!
- 원형도선도 1회 감긴 코일로 볼 수 있다!! ← 역시 중요!! (따라서 단일코일이라고도 부른다.)
- 내부 자기장이 균일하다는 것은 일반물리학 과정에서 Biot-Savart의 법칙으로 증명이 가능하다.

자기장의 세기

솔레노이드 내부의 자기장의 세기 B는 전류의 세기 I에 비례하고 단위 길이당 감은 수 n에 비례한다.

B = k'' nI $(k'' = 4\pi \times 10^{-7} N/A^2)$

★ 솔레노이드의 반지름이 자기장의 세기에 영향을 미치기는 하 나, 무한히 긴 솔레노이드의 경우 그 영향력이 매우 미미하여 솔레노이드의 반지름은 무시한다.

전자석

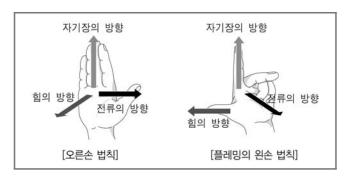
솔레노이드 내부에 철심을 넣고 코일에 전류를 흘려 주면 더욱 강한 자기장을 얻을 수 있는 원리를 이용한 자석

- 코일 내부에 철심이 들어있으면 자기력선 경로의 저항이 낮아 지면서 같은 전류에 대해 더 많은 자기력선이 형성되기 때문에 전자석이 세어진다.
- 또한 철심이 없는 경우에는 코일 내부에서 자기력선이 나란히 뻗어가는 것 외에 코일 사이사이로 새어 나가는 것도 많은데, 철심이 있으면 이런 새어 나가는 것들을 철심 안으로 가두는 역할도 하여 전자석의 힘은 좀 더 세어진다.

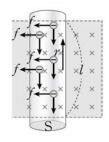
André Marie Ampére 1775.1.20~1836.6.10, 프랑스

물리학자이자 수학자로 고등학교 교사를 거쳐 1809년 파리 대학 교수가 되고, 1814년 과학아 카데미 회원으로 뽑혔으며, 1824년 콜레주 드 프랑스 교수가 되었다. 전자기현상과 전기역학 의 연구에 공헌하였고 앙페르의 법칙을 확립했 다

전류의 자기작용


OUR PHYSICS NATION, CAFE.NAVER.COM/WOONGSCIENCE

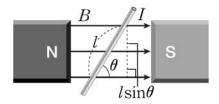
자기장 속에서 전류가 받는 힘


전자기력(electromagnetic force)

자기장 속에 있는 도선에 전류가 흐르면 자석에 의한 자기장과 전류에 의한 자기장이 상호 작용하게 되어 도선이 힘을 받는다. 이와 같이 전류가 자기장으로부터 받는 힘을 전자기력이라 한다.

플레밍의 왼손법칙과 오른손 모형

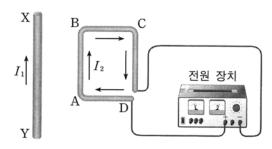
도선 내부의 전자가 받는 힘

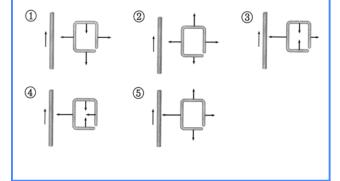

[로렌츠힘]

전자기력의 크기

전류가 흐르는 도선이 자기장과 수직일 때 도선이 받는 전자기력 F는 전류의 세기 I와 자기장의 세기 B에 비례하며, 자기장 속에 있는 도선의 길이 l에 비례

F=BIl


전류의 방향과 자기장의 방향이 이루는 **각도가** θ **일 때**


 $F = BIl \sin\theta$

▶ 적용문제 합성자기장

일정한 전류 I_1 이 흐르는 직선 도선 주위에 직사각형 도선 ABCD를 가져다 놓고, 직사각형 도선에 그림과 같은 방향으로 전류 I_3 를 흐르게 하였다.

직사각형 도선 각 부분이 받는 힘의 방향과 크기를 바르게 나타낸 것은? (단, 화살표의 길이는 크기를 나타낸다.)

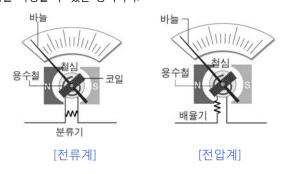
전류의 자기작용

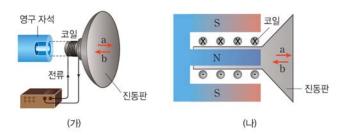
OUR PHYSICS NATION, CAFE.NAVER.COM/WOONGSCIENCE

전자기력의 이용

전동기

자기장 속에서 전류가 받는 힘을 이용 → 역학적인 일


코일이 반바퀴 돌 때마다 전류의 방향이 변하여 코일 은 항상 같은 방향으로 회전할 수 있다.


→ 시계방향으로 회전하게 된다.

전류계와 전압계

자석의 두 극 사이에 자유롭게 회전할 수 있는 코일이 있어서 전류 가 흐르면 전류에 비례하는 회전력이 코일에 생기므로 전류 또는 전압을 측정할 수 있는 장치이다.

스피커

John Ambrose Fleming, 1849.11.29~1945.4.18, 영국

영국의 전기공학자. 전자기학 연구에서 전류 · 자기장 ·도체 운동의 3방향에 관한 법칙(플레 밍의 법칙)으로 유명하다. 1883년 에디슨이 우 연히 발견한 에디슨 효과에서 힌트를 얻어 '진 동 밸브'라고 하는 2극 진공관을 발명하였다.