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Introduction

When I was 16 I had a Saturday job as a shelf-stacker at a local supermar-
ket. One day, during a tea break, a co-worker asked me what I did the rest 
of the week. I explained that I had just done O Levels and was going on to 
do A Levels. I told him how many and in which subjects. He then asked 
me about my career aspirations (not his exact words). I explained that I 
wanted to become an engineer. His aghast response was: ‘What! With all 
those qualifi cations?’

Engineers suffer from a lack of public perception of what their profes-
sion entails – many people think we spend our days in the suburbs, mend-
ing washing machines and televisions. Architects are more fortunate in 
this respect – the public have a better grasp of their profession: ‘They de-
sign buildings, don’t they?’

Public perceptions aside, careers in both civil engineering and archi-
tecture can be extremely rewarding. There are few other careers where 
individuals can be truly creative, often on a massive scale. The civil engi-
neering profession offers a variety of working environments and a large 
number of specialisms within civil engineering. Civil engineers have op-
portunities to work all over the world, on projects large and small, and 
could come into contact with a wide variety of people, from the lowest 
worker on a construction site to government offi cials and heads of state.

At the start of the 21st century there is a huge demand for civil engi-
neers and many young people (and some not so young!) are realising that 
this is a profession well worth entering.

Traditionally, students embarking on university courses in civil engi-
neering would have A Levels in subjects such as mathematics, physics and 
chemistry. However, for a variety of reasons, many of today’s potential 
students have A Levels (or similar) in non-numerate and non-scientifi c 
subjects. Moreover, a sizeable number of ‘mature’ people are entering the 
profession following a fi rst career in something completely different. As 
a university admissions tutor, I speak to such people every day. It is pos-
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x  Introduction

sible, depending on the specialism eventually chosen, to enjoy a successful 
career in civil engineering without an in-depth mathematical knowledge. 
However, it is extremely diffi cult to obtain a degree or HND in civil engi-
neering without some mathematical profi ciency.

Turning to architects – these are creative people! Every building they 
design has a structure, without which the building would not stand up. 
Architects, like civil engineers, have to understand the mechanisms which 
lead to successful structures.

This book is about Structures. Structures is a subject studied as part of 
all civil engineering degree, HND and OND courses, as well as architec-
ture degree courses, and also on some degree courses in related subjects 
(e.g. quantity surveying, building surveying, construction management 
and architecture).

The purpose of this book
I have taught Structures to undergraduate civil engineers and architects 
for the past 12 years. During that time I have noticed that many students 
fi nd the basic concept of structures diffi cult to grasp and apply.

This book aims to do the following:

• to explain structural concepts clearly, using analogies and examples to 
illustrate the points;

• to express the mathematical aspects of the subject in a straightforward 
manner that can be understood by mathematically weak students and 
placed in context with the concepts involved;

• to maintain reader interest by incorporating into the text real-life ex-
amples and case histories to underline the relevance of the material 
that the student is learning.

This book presumes no previous knowledge of structures on the part of 
the reader. It does, however, presume that the reader has a good general 
education and a mathematical ability up to at least GCSE standard.

The intended readership
This book is aimed at:

• National Certifi cate (ONC), National Diploma (OND), Higher Na-
tional Certifi cate (HNC), Higher National Diploma (HND) or fi rst-
year degree (BSc, BEng or MEng) students on a civil engineering (or 
similar) course, who will study a module called Structures, Structural 
Mechanics, Mechanics or Structural Analysis;

• students on a BA degree course in Architecture.

The following will also fi nd this book useful:

• students on courses in subjects related to civil engineering and archi-
tecture – e.g. Quantity Surveying, Building Surveying, Construction 
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Introduction  xi

Management or Architectural Technology – who have to do a Struc-
tures module as part of their studies;

• those studying Technology at GCE A Level, GNVQ or AVCE;

• people working in the construction industry in any capacity.

The following will fi nd the book a useful revision tool:

• a second (or subsequent) year student on a Civil Engineering or Archi-
tecture degree;

• a professional in the civil engineering or building industry, and prac-
tising architects.

A word about computers
Computer packages are available for every specialism and structural engi-
neering is no exception. Certainly, some of the problems in this book could 
be solved more quickly using computer software. However, I do not men-
tion specifi c computer packages in this book and where I mention comput-
ers at all, it is in general terms. There are two reasons for this.

(1) The purpose of this book is to acquaint the reader with the basic prin-
ciples of structures. Whereas a computer is a useful tool for solving 
specifi c problems, it is no substitute for a thorough grounding in the 
basics of the subject.

(2) Computer software is being improved and updated all the time. The 
most popular and up-to-date computer package for structural engi-
neering as I write these words may be dated (at best) or obsolete (at 
worst) by the time you read this. If you are interested in the latest soft-
ware, look at specialist computer magazines or articles and advertise-
ments in the civil and structural engineering and architecture press, 
or if you are a student, consult your lecturers.

I have set my students assignments where they have to solve a structural 
problem by hand then check their results by analysing the same problem 
using appropriate computer software. If the answers obtained by the two 
approaches differ, it is always instructive to fi nd out whether the error is 
in the student’s hand calculations (most frequently the case) or in the com-
puter analysis (occurs less frequently, but does happen sometimes when 
the student has input incorrect or incomplete data – the old ‘rubbish in, 
rubbish out’!).

The website
You will fi nd worked solutions to some of the problems in this book at a web-
site maintained by the publishers: www.blackwellpublishing.com/garrison. 
In addition, all readers can contact me via the website – your suggestions, 
comments and criticisms are welcome.
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xii  Introduction

An overview of this book
If you are a student studying a module called Structures, Structural Me-
chanics or similar, the chapter headings in this book will tie in – more or 
less – with the lecture topics presented by your lecturer or tutor. I suggest 
you read each chapter of this book soon after the relevant lecture or class 
to reinforce your knowledge and skills in the topic concerned. I advise all 
readers to have a pen and paper beside them to jot down notes as they go 
through the book – particularly the numerical examples. In my experience, 
this greatly aids understanding.

• Chapters 1–5 introduce the fundamental concepts, terms and language 
of structures.

• Chapters 6–10 build on the basic concepts and show how they can be 
used, mathematically, to solve simple structural problems.

• Chapter 11 deals with the very important concept of stability and 
discusses how to ensure structures are stable – and recognise when 
they’re not!

• Chapters 12–15 deal with the analysis of pin-jointed frames, a topic 
that some students fi nd diffi cult.

• Chapter 16 covers shear force and bending moment diagrams – an ex-
tremely important topic.

• Chapters 17–20 deal with stress in its various guises.

• Structural materials are dealt with more fully in other texts, but Chap-
ter 21 provides an introduction to this topic.

• Chapter 22 introduces structural design, which, again, is dealt with 
more fully in other texts.

• Chapters 23 and 24 deal, respectively, with the conceptual design of 
structures and the calculation of loads and will be of particular inter-
est to students of architecture.

How to use this book
It is not necessary for all readers to read this book from cover to cover. 
However, the book has been designed to follow the subject matter in the 
order usually adopted by teachers and lecturers teaching Structures to 
students on degree and HND courses in Civil Engineering. If you are a 
student on such a course, I suggest you read the book in stages in parallel 
with your lectures.

• All readers should read Chapters 1–5 as these lay down the funda-
mentals of the subject.

• Civil engineering students should read all chapters in the book, with 
the possible exception of Chapters 14 and 15 if these topics are not 
taught on your course.

• Students of architecture should concentrate on Chapters 1–9 and 21–
24, but read certain other chapters as directed by your tutor.
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Introduction  xiii

Let’s keep it simple

James Dyson, the inventor of the dual cyclone vacuum cleaner that bears 
his name, discusses one of its design features – the transparent plastic 
cylinder within which the rubbish collects – in his autobiography:

‘A journalist who came to interview me once asked, “The area where 
the dirt collects is transparent, thus parading all our detritus on the 
outside, and turning the classic design inside out. Is this some post-
modernist nod to the architectural style pioneered by Richard Rodgers 
at the Pompidou Centre, where the air-conditioning and escalators, the 
very guts, are made into a self-referential design feature?”

‘“No,” I replied. “It’s so you can see when it’s full.”’
(From Against the Odds by James Dyson and Giles Coren (Texere 

2001))
It is my aim to keep this book as simple, straightforward and jargon-

free as possible.

Worked solutions to the tutorial questions can be found at:
www.blackwellpublishing.com/garrison
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 1What is structural engineering?

Introduction
In this chapter you, the reader, are introduced to structures. We will dis-
cuss what a structure actually is. The professional concerned with struc-
tures is the structural engineer. We will look at the role of the structural 
engineer in the context of other construction professionals. We will also 
examine the structural requirements of a building and will review the var-
ious individual parts of a structure and the way they interrelate. Finally 
you will receive some direction on how to use this book depending on the 
course you are studying or the nature of your interest in structures.

Structures in the context of everyday life

There is a new confi dence evident in major British cities. Redundant Vic-
torian industrial structures are being converted to luxury apartments. 
Tired old 1960s shopping centres are being razed to the ground, and at-
tractive and contemporary replacements are appearing. Public housing 
estates built over 40 years ago are being demolished and replaced with 
more suitable housing. Social shifts are occurring: young professional 
people are starting to live in city centres and new services such as cafés, 
bars and restaurants are springing up to serve them. All these new uses 
require new buildings or converted old buildings. Every building has 
to have a structure. In some of these new buildings the structure will 
be ‘extrovert’ – in other words the structural frame of the building will 
be clearly visible to passers-by. In many others, the structure will be 
concealed. But, whether seen or not, the structure is an essential part of 
any building. Without it, there would be no building.

1405120533_4_001.indd   11405120533_4_001.indd   1 07/02/2005   17:04:5007/02/2005   17:04:50



2  Basic Structures for Engineers and Architects

What is a structure?
The structure of a building (or other object) is the part which is respon-
sible for maintaining the shape of the building under the infl uence of the 
forces, loads and other environmental factors to which it is subjected. It 
is important that the structure as a whole (or any part of it) does not fall 
down, break or deform to an unacceptable degree when subjected to such 
forces or loads.

The study of structures involves the analysis of the forces and stresses 
occurring within a structure and the design of suitable components to 
cater for such forces and stresses.

As an analogy, consider the human body. Your body comprises a skel-
eton of 206 bones which constitutes the structure of your body. If any of 
those bones were to break, or if any of the joints between those bones were 
to disconnect or seize up, your injured body would ‘fail’ structurally (and 
cause you a great deal of pain!).

Examples of structural components (or ‘members’, as structural engi-
neers call them) include:

• steel beams, columns, roof trusses and space frames;

• reinforced concrete beams, columns, slabs, retaining walls and foun-
dations;

• timber joists, columns, glulam beams and roof trusses;

• masonry walls and columns.

Figure 1.1 shows the Lower Manhattan skyline in New York, one of the 
greatest concentrations of high-rise buildings in the world. Space limita-

Fig. 1.1 Lower Manhattan skyline, New York City.
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What is structural engineering?  3

tions on the island meant building construction had to proceed upwards 
rather than outwards, and the presence of solid rock made foundations for 
these soaring structures feasible.

What is an engineer?
As I mentioned in the introduction, the general public are poorly informed 
about what an engineer is and what he or she does. ‘Engineer’ is not the 
correct word for the man (or woman) who comes round to repair your ail-
ing tumble drier or offi ce photocopier – nor does it have much to do with 
engines! In fact, the word ‘engineer’ comes from the French word ingénieur, 
which refers to someone who uses his ingenuity to solve problems. An 
engineer, therefore, is a problem-solver.

When we buy a product – for example, a bottle-opener, a bicycle or a 
loaf of bread – we are really buying a solution to a problem. For instance, 
you would buy a car not because you wish to have a tonne of metal parked 
outside your house but rather because of the service it can offer you: a car 
solves a transportation problem. You could probably think of numerous 
other examples, such as:

• A can of baked beans solves a hunger problem.

• Scaffolding solves an access problem.

• Furniture polish solves a cleaning problem.

• A house or fl at solves an accommodation problem.

• A university course solves an education problem.

A structural engineer solves the problem of ensuring that a building – or 
other structure – is adequate (in terms of strength, stability, cost, etc.) for 
its intended use. We shall expand on this later in the chapter. A structural 
engineer does not usually work alone: he is part of a team of professionals, 
as we shall see.

The structural engineer in the context of related professions
If I were to ask you to name some of the professionals involved in the de-
sign of buildings, the list you would come up with would probably include 
the following:

• the architect;

• the structural engineer;

• the quantity surveyor.

Of course, this is not an exhaustive list. There are many other professionals 
involved in building design (for example, building surveyors and project 
managers) and many more trades and professions involved in the actual 
construction of buildings, but for simplicity we will confi ne our discussion 
to the three named above.

The architect is responsible for the design of a building with particular 
regard to its appearance and environmental qualities such as light levels 
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4  Basic Structures for Engineers and Architects

and noise insulation. His starting point is the client’s brief. (The client usu-
ally represents the person or organisation that is paying for the work to be 
done.)

The structural engineer is responsible for ensuring that the building 
can safely withstand all the forces to which it is likely to be subjected, and 
that it will not defl ect or crack unduly in use.

The quantity surveyor is responsible for measuring and pricing the work 
to be undertaken – and for keeping track of costs as the work proceeds.

So, in short:

(1) The architect makes sure the building looks good.
(2) The (structural) engineer ensures it will stand up.
(3) The quantity surveyor ensures its construction is economical.

Of course, these are simplistic defi nitions, but they’ll do for our purposes.
Now I’m not an architect and I’m not a quantity surveyor. (My father 

is, but he’s not writing this book.) However, I am a structural engineer 
and this book is about structural engineering, so in the remainder of this 
chapter we’re going to explore the role of the structural engineer in a bit 
more detail.

Structural understanding
The basic function of a structure is to transmit loads from the position of 
application of the load to the point of support and thus to the foundations 
in the ground. (We’ll be looking at the meaning of the word ‘load’ more 
fully in Chapter 5, but for the time being consider a load as being any force 
acting externally on a structure.)

Any structure must satisfy the following criteria:

(1) Aesthetics (it must look nice).
(2) Economy (it mustn’t cost more than the client can afford – and less if 

possible).
(3) Ease of maintenance.
(4) Durability. This means that the materials used must be resistant to 

corrosion, spalling (pieces falling off), chemical attack, rot or insect 
attack.

(5) Fire resistance. While few materials can completely resist the effects 
of fi re, it is important for a building to resist fi re long enough for its 
occupants to be safely evacuated.

In order to ensure that a structure behaves in this way, we need to develop 
an understanding and awareness of how the structure works.

Safety and serviceability
There are two main requirements of any structure: it must be safe and it 
must be serviceable. ‘Safe’ means that the structure should not collapse 
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What is structural engineering?  5

– either in whole or in part. ‘Serviceable’ means that the structure should 
not deform unduly under the effects of defl ection, cracking or vibration.

Let’s discuss these two points in more detail.

Safety

A structure must carry the expected loads without collapsing as a whole 
and without any part of it collapsing. Safety in this respect depends on 
two factors:

(1) The loading the structure is designed to carry has been correctly as-
sessed.

(2) The strength of the materials used in the structure has not deterio-
rated.

From this it is evident that we need to know how to determine the load 
on any part of a structure. We will learn how to do this later in the book. 
Furthermore, we also know that materials deteriorate in time if not prop-
erly maintained: steel corrodes, concrete may spall or suffer carbonation, 
timber will rot. The structural engineer must consider this when design-
ing any particular building.

Serviceability

A structure must be designed in such a way that it doesn’t defl ect or crack 
unduly in use. It is diffi cult or impossible to completely eliminate these 
things – the important thing is that the defl ection and cracking are kept 
within certain limits. It must also be ensured that vibration does not have 
an adverse effect on the structure – this is particularly important in parts 
of buildings containing plant or machinery.

If, when you walk across the fl oor of a building, you feel the fl oor defl ect 
or ‘give’ underneath your feet, it may lead you to be concerned about the 
integrity of the structure. Excessive defl ection does not necessarily mean 
that the fl oor is about to collapse, but because it may lead to such concerns, 
defl ection must be ‘controlled’; in other words, it must be kept within cer-
tain limits. To take another example, if a lintel above a doorway defl ects 
too much, it may cause warping of the door frame below it and, conse-
quently, the door itself may not open or close properly.

Cracking is ugly and may or may not be indicative of a structural prob-
lem. But it may, in itself, lead to problems. For example, if cracking occurs 
on the outside face of a reinforced concrete wall then rain may penetrate 
and cause corrosion of the steel reinforcement within the concrete.

The composition of a building structure
A building structure contains various elements, the adequacy of each of 
which is the responsibility of the structural engineer. In this section we 
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6  Basic Structures for Engineers and Architects

briefl y consider the form and function of each. These elements will be con-
sidered in more detail in Chapter 3.

A roof protects people and equipment in a building from weather. An 
example of a roof structure is shown in Fig. 1.2.

If you plan on buying a house in the United Kingdom, be wary of buy-
ing one which has a fl at roof. Some roofi ng systems used for waterproof-
ing fl at roofs deteriorate over time, leading to leaking and potentially 
expensive repairs. The same warning applies to fl at-roofed additions to 
houses, such as porches or extensions.

Walls can have one or more of several functions. The most obvious one 
is loadbearing – in other words, supporting any walls, fl oors or roofs above 
it. But not all walls are loadbearing. Other functions of a wall include the 
following:

• partitioning, or dividing, rooms within a building – and thus defi ning 
their shape and extent;

• weatherproofi ng;

• thermal insulation – keeping heat in (or out);

• noise insulation – keeping noise out (or in);

• fi re resistance;

• security and privacy;

• resisting lateral (horizontal) loads such as those due to retained earth, 
wind or water.

Fig. 1.2 Roof structure of Quartier 206 shopping mall, Berlin.

1405120533_4_001.indd   61405120533_4_001.indd   6 07/02/2005   17:04:5407/02/2005   17:04:54



What is structural engineering?  7

Consider the wall closest to you as you read these words. Is it likely to be 
loadbearing? What other functions does the wall perform?

A fl oor provides support for the occupants, furniture and equipment in 
a building. Floors on an upper level of a building are always suspended, 
which means that they span between supporting walls or beams. Ground 
fl oor slabs may sit directly on the ground beneath.

Staircases provide for vertical movement between different levels in a 
building. Figure 1.3 shows a concrete staircase in a multi-storey building. 
Unusually, the staircase is fully visible from outside the building. How is 
this staircase supported structurally?

Foundations represent the interface between the building’s structure 
and the ground beneath it. A foundation transmits all the loads from a 
building into the ground in such a way that settlement (particularly un-
even settlement) of the building is limited and failure of the underlying 
soil is avoided.

Fig. 1.3 A very visible staircase. How is it supported?
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8  Basic Structures for Engineers and Architects

On a small sandy island in the Caribbean, a low-rise hotel was being 
constructed as part of a larger leisure resort. The contractor for the hotel 
(a somewhat maverick individual) thought he could save money by not 
constructing foundations. He might have got away with it were it not for 
an alert supervising engineer, who spotted that the blockwork walls did 
not appear to be founded on anything more rigid than sand.

A furious argument ensued between the design team and the con-
tractor, who not only readily admitted that no foundations had been 
built but also asserted that, in his opinion, none was required. In a de-
veloped country the contractor would have been dismissed instantly 
and probably prosecuted, but things were a little more free and easy in 
this corner of the Caribbean.

But nature exacted its own retribution. That night, a tropical storm 
blew up, the sea washed over the island … and the partly-built structure 
was entirely washed away.

In a building it is frequently necessary to support fl oors or walls without 
any interruption or division of the space below. In this case, a horizontal 
element called a beam will be used. A beam transmits the loads it supports 
to columns or walls at the beam’s ends.

A column is a vertical loadbearing element which usually supports 
beams and/or other columns above. Laymen often call them pillars or 
poles or posts. Individual elements of a structure, such as beams or col-
umns, are often referred to as members.

Figure 1.4 shows a conventional building enclosed in a glazed outer 
structure. The two structures are, apparently, completely independent of 
each other.

A few words for students on architecture courses
If you are studying architecture, you may be wondering why you need to 
study structures at all. It is not the purpose of this book to make you a fully 
qualifi ed structural engineer. However, as an architect, it is important that 
you understand the principles of structural behaviour. Moreover, with 
some basic training there is no reason why architects cannot design simple 
structural members (e.g. timber joists supporting fl oors) themselves. On 
larger projects architects work in inter-disciplinary teams which usually 
include structural engineers. It is therefore important to understand the 
role of the structural engineer and the language and terms that the struc-
tural engineer uses.

How does the study of structures impinge on the training of an architect?

If you are on a degree course in architecture you will have formal lectures 
in structures throughout your course. You will also be assigned projects 
involving the architectural design of buildings to satisfy given require-
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ments. It is essential to realise that all parts of the building need to be 
supported. Always ask yourself the question: ‘How will my building stand 
up?’ Remember – if you have diffi culty in getting your model to stand up, 
it is unlikely that the real thing will stand up either!

Fig. 1.4 A conventional building enclosed in a glazed outer structure.
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 2Learn the language: 
a simple explanation of terms used by 

structural engineers

Introduction
Structural engineers use the following words (amongst others, of course) 
in technical discussions:

• force

• reaction

• stress

• moment.

None of these words is new to you; they are all common English words 
that are used in everyday speech. However, in structural engineering each 
of these words has a particular meaning. In this chapter we shall have a 
brief look at the specifi c meanings of the above words before exploring 
them in more detail in later chapters.

Force

A force is an infl uence on an object (for example, part of a building) that 
may cause movement. For example, the weight of people and furniture 
within a building causes a vertically downwards force on the fl oor, and 
wind blowing against a building causes a horizontal (or near horizontal) 
force on the external wall of the building.

Force is discussed more fully in Chapter 4, together with related terms 
such as mass and weight. Forces are also sometimes referred to as loads 
– the different types of load are reviewed in Chapter 5.

Reaction

If you stand on a fl oor, the weight of your body will produce a downward 
force into the fl oor. The fl oor reacts to this by pushing upwards with a force 
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Learn the language  11

of the same magnitude as the downward force due to your body weight. 
This upward force is called a reaction, as its very presence is a response to 
the downward force of your body. Similarly, a wall or a column supporting 
a beam will produce an upward reaction as a response to the downward 
forces the beam transmits to the wall (or column) and a foundation will 
produce an upward reaction to the downward force in the column or wall 
that the foundation is supporting.

The same is true of horizontal forces and reactions. If you push hori-
zontally against a wall, your body is applying a horizontal force to the wall 
– which the wall will oppose with a horizontal reaction.

The concept of a reaction is discussed in more detail in Chapter 6 and 
you will learn how to calculate reactions in Chapter 9.

Stress

Stress is internal pressure. A heavy vehicle parked on a road is applying 
pressure to the road surface – the heavier the vehicle and the smaller the 
contact area between the vehicle’s tyres and the road, the greater the pres-
sure. As a consequence of this pressure on the road surface, the parts of 
the road below the surface will experience a pressure which, because it is 
within an object (in this case, the road) is termed a stress. Because the ef-
fect of the vehicle’s weight is likely to be spread, or dispersed, as it is trans-
mitted downwards within the road structure, the stress (internal pressure 
at a point) will decrease the further down you go within the road’s con-
struction.

So, stress is internal pressure at a given point within, for example, a 
beam, slab or column. It is likely that the intensity of the stress will vary 
from point to point within the object.

Stress is a very important concept in structural engineering. In Chap-
ters 17–20, you will learn more about how to calculate stresses.

Moment

A moment is a turning effect. When you use a spanner to tighten a nut, me-
chanically wind up a clock or turn the steering wheel on your car, you are 
applying a moment. The concept and calculation of moments is discussed 
in Chapter 8.

The importance of ‘speaking the language’ correctly

A major American bank planned changes to its London headquarters 
building that entailed the removal of substantial internal walls. Al-
though a well-known fi rm of structural engineers was used for the de-
sign, the work itself was entrusted to a fi rm of shopfi tters who clearly 
had no experience whatsoever in this type of work.

The client issued the structural engineer’s drawings to the shopfi t-
ting contractor. In a site meeting, the contractor asked the structural 
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12  Basic Structures for Engineers and Architects

engineer if it would be all right to use steel ‘H’ sections at the points 
where ‘UC’ columns were indicated on the drawings. The structural 
engineer was a little puzzled by this and pointed out that ‘UC’ stands 
for universal column, which are indeed steel ‘H’ sections. The contrac-
tor admitted, a little sheepishly, that he had thought that ‘UC’ stood for 
‘U-shaped channel section’!

The structural engineer was so shaken by this conversation and its 
potential consequences that he strongly advised the client to sack the 
shopfi tters and engage a contractor who knew what he was doing.
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 3How do structures 
(and parts of structures) behave?

Introduction
In this chapter we will discuss how parts of a structure behave when they 
are subjected to forces. We will consider the meanings of the terms com-
pression, tension, bending and shear, with examples of each. Later in the 
chapter we will look at the various elements that make up a structure, and 
at different types of structure.

Compression
Figure 3.1 (a) shows an elevation – that is, a side-on view – of a concrete col-
umn in a building. The column is supporting beams, fl oor slabs and other 

Fig. 3.1 A column in compression.

C

D

C

D

(a) (b)
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14  Basic Structures for Engineers and Architects

columns above and the load, or force, from all of these is acting down-
wards at the top of the column. This load is represented by the downward 
arrow at the top of the column. Intuitively, we know that the column is 
being squashed by this applied load – it is experiencing compression.

As we have seen briefl y in Chapter 2 and will discuss more fully in 
Chapter 6, a downward force must be opposed by an equal upward force 
(or reaction) if the building is stationary – as it should be. This reaction is 
represented by the upward arrow at the bottom of the column in Fig. 3.1 
(a). Now, not only must the rules of equilibrium (total force up = total force 
down) apply for the column as a whole; these rules must apply at any and 
every point within a stationary structure.

Let’s consider what happens at the top of the column – specifi cally, point 
C in Fig. 3.1 (b). The downward force shown in Fig. 3.1 (a) at point C must 
be opposed by an upward force – also at point C. Thus there will be an up-
ward force within the column at this point, as represented by the upward 
broken arrow in Fig. 3.1 (b). Now let’s consider what happens at the very 
bottom of the column – point D in Fig. 3.1 (b). The upward force shown in 
Fig. 3.1 (a) at point D must be opposed by a downward force at the same 
point. This is represented by the downward broken arrow in Fig. 3.1 (b).

Look at the direction of the broken arrows in Fig. 3.1 (b). These arrows 
represent the internal forces in the column. You will notice that they are 
pointing away from each other. This is always the case when a structural 
element is in compression: the arrows used to denote compression point 
away from each other.

Tension
Figure 3.2 shows a heavy metal block suspended from the ceiling of a room 
by a piece of string. The metal block, under the effects of gravity, is pulling 
the string downwards, as represented by the downward arrow. The string 
is thus being stretched and is therefore in tension.

For equilibrium, this downward force must be opposed by an equal 
upward force at the point where the string is fi xed to the ceiling. This op-
posing force is represented by an upward arrow in Fig. 3.2 (a). Note that if 
the ceiling wasn’t strong enough to carry the weight of the metal block, or 
the string was improperly tied to it, the weight would come crashing to the 
ground and there would be no upward force (or reaction) at this point. As 
with the column considered above, the rules of equilibrium (total force up 
= total force down) must apply at any and every point within this system 
if it is stationary.

Let’s consider what happens at the top of the string. The upward force 
shown in Fig. 3.2 (a) at point E must be opposed by a downward force 
– also at this point. Thus there will be a downward force within the string 
at this point, as represented by the downward broken arrow in Fig. 3.2 (b). 
Now let’s consider what happens at the very bottom of the string – at the 
point where the metal block is attached (point F). The downward force 
shown in Fig. 3.2 (a) at point F must be opposed by an upward force at this 
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point. This upward force within the string at this point is represented by 
the upward broken arrow in Fig. 3.2 (b).

Look at the direction of the broken arrows in Fig. 3.2 (b). These arrows 
represent the internal forces in the string. You will notice that they are 
pointing towards each other. This is always the case when a structural ele-
ment is in tension: the arrows used to denote tension point towards each 
other. (An easy way to remember this principle is the letter T, which stands 
for both Towards and Tension.)

The standard arrow notations for members in (a) tension and (b) com-
pression are shown in Fig. 3.3. You should familiarise yourself with them 
as we shall meet them again in later chapters.

Note: Tension and compression are both examples of axial forces – they 
act along the axis (or centre line) of the structural member concerned.

ceiling

heavy
metal
block

E

F

E

F

(a) (b)

Fig. 3.2 A piece of string in tension.

Tension

Compression

Fig. 3.3 Arrow notations for tension and compression.
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16  Basic Structures for Engineers and Architects

Bending
Consider a simply supported beam (that is, a beam that simply rests on 
supports at its two ends) subjected to a central point load. The beam will 
tend to bend, as shown in Fig. 3.4. The extent to which the beam bends will 
depend on four things:

(1) The material from which the beam is made. You would expect a beam 
made of rubber to bend more than a concrete beam of the same dimen-
sions under a given load.

(2) The cross-sectional characteristics of the beam. A large diameter 
wooden tree trunk is more diffi cult to bend than a thin twig spanning 
the same distance.

(3) The span of the beam. Anyone who has ever tried to put up book-
shelves at home will know that the shelves will sag to an unacceptable 
degree if not supported at regular intervals. (The same applies to the 
hanger rail inside a wardrobe. The rail will sag noticeably under the 
weight of all those clothes if it is not supported centrally as well as at 
its ends.)

(4) The load to which the beam is subjected. The greater the load, the 
greater the bending. Your bookshelves will sag to a greater extent 
under the weight of heavy encyclopedias than they would under the 
weight of a few light paperback books.

If you carry on increasing the loading, the beam will eventually break. 
Clearly, the stronger the material, the more diffi cult it is to break. A timber 
ruler is quite easy to break by bending; a steel ruler of similar dimensions 
might bend quite readily but it’s unlikely that you would manage to break 
it with your bare hands!

This is evidently one way in which a beam can fail – through excessive 
bending. Beams must be designed so that they do not fail in this way.

central
point
load

Fig. 3.4 Bending in a beam.
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Shear
Consider two steel plates that overlap each other slightly, with a bolt con-
necting the two plates through the overlapping part, as shown in Fig. 3.5 
(a). Imagine now that a force is applied to the top plate, trying to pull it to 
the left. An equal force is applied to the bottom plate, trying to pull it to 
the right. Let’s now suppose that the leftward force is slowly increased, 
as is the rightward force. (Remember that the two forces must be equal if 
the whole system is to remain stationary.) If the bolt is not as strong as the 
plates, eventually we will reach a point when the bolt will break. After the 
bolt has broken, the top part of it will move off to the left with the top plate 
and the bottom part will move off to the right with the bottom plate.

Let’s examine in detail what happens to the failure surfaces (that is, the 
bottom face of the top part of the bolt and the top face of the bottom part 
of the bolt) immediately after failure. As you can see from the ‘exploded’ 
part of Fig. 3.5 (a), the two failure surfaces are sliding past each other. This 
is characteristic of a shear failure.

We’ll now turn our attention to a timber joist supporting the fi rst fl oor 
of a building, as shown in Fig. 3.5 (b). Let’s imagine that timber joists are 
supported on masonry walls and that the joists themselves support fl oor-
boards, as would be the case in a typical domestic dwelling – such as, 

(a ) Shear in a bolt connecting two plates 

(b) Shear in a timber joist 

heavy
object

Fig. 3.5 The concept of shear.

1405120533_4_003.indd   171405120533_4_003.indd   17 08/02/2005   22:02:4608/02/2005   22:02:46



18  Basic Structures for Engineers and Architects

perhaps, the house you live in. Suppose that the joists are inappropriately 
undersized – in other words, they are not strong enough for the loads they 
are likely to have to support.

Now let’s examine what would happen if a heavy object – for example, 
some large piece of machinery – was placed on the fl oor near its supports, 
as shown in Fig. 3.5 (b). If the heavy object is near the supporting walls, 
the joists may not bend unduly. However, if the object is heavy enough and 
the joists are weak enough, the joist may simply break. This type of failure 
is analogous to the bolt failure discussed above. With reference to Fig. 3.5 
(b), the right-hand part of the beam will move downwards (as it crashes to 
the ground), while the left-hand part of the beam will stay put – in other 
words, it moves upwards relative to the downward-moving right-hand 
part of a beam. So, once again, we get a failure where the two failure sur-
faces are sliding past each other: a shear failure. So a shear failure can be 
thought of as a cutting or slicing action.

So, this is a second way in which a beam can fail – through shear. Beams 
must be designed so that they do not fail in this way. (Incidentally, the 
half-headed arrow notation shown in Fig. 3.5 is the standard symbol used 
to denote shear.)

The consequences of bending and shear failures – and how to design 
against them – will be discussed more fully in Chapter 16.

Structural elements and their behaviour
The various types of structural element that might be found in a build-
ing – or any other – structure were introduced in Chapter 1. Now we’ve 
learned about the concepts of compression, tension, bending and shear, 
we’ll discuss how these different parts of a structure behave under load.

Beams

Beams may be simply-supported, continuous or cantilevered, as illus-
trated in Fig. 3.6. They are subjected to bending and shear under load, and 
the deformations under loading are shown by broken lines.

A simply-supported beam rests on supports, usually located at each end 
of the beam. A continuous beam spans two or more spans in one unbroken 
unit; it may simply rest on its supports, but more usually it is gripped (or 
fi xed) by columns above and below it. A cantilever beam is supported at 
one end only; to avoid collapse, the beam must be continuous over, or rig-
idly fi xed at, this support.

Beams may be of timber, steel or reinforced or prestressed concrete.

Slabs

As with beams, slabs span horizontally between supports and may be sim-
ply supported, continuous or cantilevered. But unlike beams, which are 
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usually narrow compared with their depth, slabs are usually wide and 
relatively shallow and are designed to form fl ooring – see Fig. 3.7.

Slabs may be one-way spanning, which means they are supported by 
walls on opposite sides of the slab, or two-way spanning, which means 
that they are supported by walls on all four sides. This description as-
sumes that a slab is rectangular in plan, as is normally the case. Slabs are 
usually of reinforced concrete and in buildings they are typically 150–300 
millimetres in depth. Larger than normal spans can be achieved by using 
ribbed or waffl e slabs, as shown in Fig. 3.7 (c) and (d). Like beams, slabs 
experience bending.

Columns

Columns (or ‘pillars’ or ‘posts’) are vertical and support axial loads, thus 
they experience compression. If a column is slender or supports a non-
symmetrical arrangement of beams, it will also experience bending, as 
shown by the broken line in Fig. 3.8 (a). Concrete or masonry columns may 
be of square, rectangular, circular or cruciform cross-section, as illustrated 
in Fig. 3.8 (b). Steel columns may be H or hollow section, as illustrated later 
in this chapter.

(a) Simply supported beam   (b) Cantilever beam 

(c) Continuous beam 

beam is hogging (“tries to break its 
back”) over intermediate support 

rigid connection 
at support

Fig. 3.6 Beam types.
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20  Basic Structures for Engineers and Architects

Walls

Like columns, walls are vertical and are primarily subjected to compres-
sion, but they may also experience bending. Walls are usually of masonry 
or reinforced concrete. As well as conventional fl at-faced walls you might 
encounter fi n or diaphragm walls, as shown in Fig. 3.9. Retaining walls hold 
back earth or water and thus are designed to withstand bending caused by 
horizontal forces, as indicated by the broken line in Fig. 3.9 (c).

Foundations

As mentioned in Chapter 1, everything designed by an architect or civil 
or structural engineer must stand on the ground – or at least have some 

(a) One-way spanning slab    (b) Two-way spanning slab 

(c) Ribbed slab     (d) Waffle slab 

plan

section B-B 

B BA A

plan

section A-A 

section C-C 

plan plan

section D-D 

C C D D

Fig. 3.7 Slab types.
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contact with the ground. So foundations are required, whose function is to 
transfer loads from the building safely into the ground. There are various 
types of foundation. A strip foundation provides a continuous support to 
loadbearing external walls. A pad foundation provides a load-spreading 
support to a column. A raft foundation takes up the whole plan area under 
a building and is used in situations where the alternative would be a large 
number of strip and/or pad foundations in a relatively small space. Where 
the ground has low strength and/or the building is very heavy, piled foun-
dations are used. These are columns in the ground which transmit the 

(a) Column behaviour    (b) Column cross sections 

square rectangular 

circular cruciform

Fig. 3.8 Column types.

(b) diaphragm wall 
     (in plan) 

(a) fin wall 
     (in plan) 

(c) retaining wall  
     (in cross-section) 

retained
earth

Fig. 3.9 Wall types.
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22  Basic Structures for Engineers and Architects

building’s loads safely to a stronger stratum. All these foundation types 
are illustrated in Fig. 3.10. 

Foundations of all types are usually of concrete, but occasionally steel 
or timber may be used for piles.

Arches

The main virtue of an arch, from a structural engineering point of view, 
is that it is in compression throughout. This means that materials that are 
weak in tension – for example, masonry – may be used to span considera-
ble distances. Arches transmit large horizontal thrusts into their supports, 
unless horizontal ties are used at the base of the arch. It is to cope with 

strip foundation - plan 

strip foundation - section 

pad foundation - plan 

pad foundation - section 

raft foundation - section piled foundation - section 

Fig. 3.10 Foundation types.
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these horizontal thrusts that fl ying buttresses are provided in medieval 
cathedrals – see Fig. 3.11.

Trusses

A truss is a two- or three-dimensional framework and is designed on the 
basis that each ‘member’ or component of the framework is in either pure 
tension or pure compression and does not experience bending. Trusses are 
often used in pitched roof construction: timber tends to be used for do-
mestic construction and steel caters for the larger roof spans required in 
industrial or commercial buildings. Lattice girders, which are used instead 
of solid deep beams for long spans, work on the same principle – see Fig. 
3.12.

Portal frames

A portal frame is a rigid framework comprising two columns supporting 
rafters. The rafters may be horizontal or, more usually, inclined to support 
a pitched roof. Portal frames are usually of steel but may be of precast 
concrete. They are usually used in large single-storey structures such as 
warehouses or out-of-town retail sheds – see Fig. 3.13.

(a) Conventional arch 

(b) Tied arch 

Fig. 3.11 Arch types.
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24  Basic Structures for Engineers and Architects

Cable stayed and suspension structures

Cable stayed structures are usually bridges but are sometimes used in 
building structures where exceptionally long spans are required. Instead 
of being supported from below by columns or walls, the span is supported 
from above at certain points by cables which pass over supporting vertical 
masts and horizontal outriggers to a point in the ground where they are 
fi rmly anchored. The cables are in tension and must be designed to sustain 
considerable tensile forces – see Fig. 3.14.

Figure 3.15 shows New York’s Brooklyn Bridge. Conceived by John Roe-
bling and completed by his son Washington in 1883, the Brooklyn Bridge 
was the fi rst suspension bridge in the world to use steel for its main cables 

(a) Lattice girder 

(b) Trusses 

Fig. 3.13 Portal frame types.

Fig. 3.12 Truss types.
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and was the longest suspension bridge in the world at the time of its con-
struction. The foundations were excavated from within underwater cais-
sons using compressed air, causing crippling illnesses among the workers, 
including Washington Roebling himself.

Cross-sectional types
There is an infi nite range of cross-sectional shapes available. Standard sec-
tions are illustrated in Fig. 3.16.

• Beams and slabs in timber and concrete are usually rectangular in 
cross-section.

• Concrete columns are usually of circular, square, rectangular or cruci-
form cross-section (see above).

(a) Cable-stayed structure (in cross-section) 

(b) Suspension bridge 

mast

anchorage

out
rigger

cables
(in tension) 

anchorage

main cables 
(in tension)

tower (in 
compression)

Fig. 3.14 Cable stayed and suspension structures.
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• Steel beams are usually of ‘I’ or hollow section.
• Steel columns are usually of ‘H’ or hollow section.
• Prestressed concrete beams are sometimes of ‘T’, ‘U’ or inverted ‘U’ 

section.
• Members of steel trusses are sometimes of channel or angle sections.
• Steel Z purlins (not illustrated) are often used to support steel roofi ng 

or cladding.

Appraisal of existing structures

Steam room indiscretion

One Saturday morning I was relaxing in the steam room at my local fi t-
ness centre after a punishing workout. My companions there were two 
men in their 20s and an older man, possibly mid-40s. All were sat in 
their swimming trunks, happily sweating away.

The two younger men were clearly friends. As I entered the steam 
room, they were in the middle of a conversation about a forthcoming 
party, which went something like this:

MAN 1: Is Craig going?
MAN 2: Yes, I think so.
MAN 1: Oh, good – he’s a real laugh.
MAN 2: Yes – he’s a nutcase. (Pause) Craig was leaving the rugby 

club last Sunday lunchtime after a few drinks when he smashed his car 
up. So he pushed it off the road into a fi eld, covered it with straw, then 
phoned the police and reported it stolen.

Fig. 3.15 Brooklyn Bridge, New York City.
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MAN 1: (After a slight pause) Did he get away with it?
MAN 2: Er – yes, I think so.
The older man, who’d remained silent up to this point, now spoke 

up slowly and deliberately: ‘The thing that you’ve got to remember is 
that when you’re in a steam room, police offi cers are not wearing uni-
forms.’

There was an uncomfortable silence while the signifi cance of this re-
mark sunk in. The police offi cer eventually smoothed things over by 
telling a similar anecdote of his own, after which he left the steam room. 
One of the young men turned to me and his friend and said: ‘Well, that 
could have been a bit unfortunate, couldn’t it!’

‘Yes,’ I replied, ‘I’m CID.’

rectangular box I-section T-section

U-section inverted
U-section

angle
section

channel
section

hollow sections 

Fig. 3.16 Cross-section types.
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The story above has a serious message. People are not always what they 
seem: a near-naked police offi cer looks much the same as anyone else. Sim-
ilarly, structures are not always what they might seem either, although the 
problem here is usually one of too much cladding. In some buildings the 
designers choose to make a feature of the structure; in others, the structure 
is totally concealed.

In your future professional career you may be called upon to carry 
out a structural inspection of an existing building, usually after someone 
else – perhaps a building surveyor – has identifi ed a fault that he suspects 
may be structural in nature. It is not always easy to assess how an existing 
building functions structurally. Certainly, you can pick up clues from the 
age and style of the building, and original drawings of the structure as 
built are very useful – in the unlikely event that they are available.

So, if you have to carry out a structural appraisal of an existing build-
ing, my advice is: tread carefully.

What you should remember from this chapter
The concepts of compression, tension, bending and shear are fundamen-
tal to any study of structural mechanics. The reader should clearly under-
stand the meaning and implications of each. Different elements of a struc-
ture deform in different ways under load. The reader should understand 
and be able to visualise these patterns of structural behaviour, which are 
fundamental to structural design.
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 4Force, mass and weight

Introduction
In this chapter we look at force, mass and weight – their defi nitions, the 
relationships between them, their units of measurement and their practi-
cal application.

Force

We use the term force in everyday life. For example, somebody may force 
you to do something. This means that that person, through their words, 
actions or other behaviour, compels you to take a certain course of action. 
The word force in a technical context is similar: a force is an infl uence, or 
action, on a body or object which causes – or attempts to cause – move-
ment. For example:

• The man shown in Fig. 4.1 is pushing against a wall. In doing so, he is 
applying a horizontal force to that wall – in other words, he is attempt-
ing to push that wall away from him.

• Figure 4.2 shows a man standing on a hard surface. The weight of his 
body is applying a vertical (downwards) force on the fl oor – in other 
words, he is attempting to move the fl oor downwards.

Force is measured in units of Newtons (N) or kiloNewtons (kN) – but more 
of that later.

Mass

Mass is the amount of matter in a body or object. It is measured in units 
of grams (g) or kilograms (kg). Mass should not be confused with weight 
(see below).
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Weight

If you have studied physics, or science generally, you will have come across 
the following equation:

Force = Mass × Acceleration

A much more useful form of this equation to engineers is:

Weight = Mass × Acceleration due to Gravity

If an object is dropped from a great height, it will accelerate – that is, con-
sistently increase in speed – as it heads towards the ground. This accelera-
tion is called the Acceleration due to Gravity and its value on this planet is 
9.81 metres/sec2. This means that a dropped object will fall 9.81 metres in 
the fi rst second, (9.81 + 9.81) = 19.62 metres in the second second and (9.81 
+ 9.81 + 9.81) = 29.43 metres in the third second. The mass of the object is 
irrelevant in this context – a bundle of feathers falls at the same rate as a 
large lump of lead, as they experience the same rate of acceleration.

Fig. 4.1 Man leaning against a wall.
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Looking at the above equation, we see that the relationship between 
mass and weight is governed by the acceleration due to gravity. It suggests 
that an object of a given mass will weigh less on a planet where the gravi-
tational pull is less. If you watch television footage of the Apollo moon 
landings in the late 1960s, you will notice that the astronauts appear to 
be leaping and bounding around on the moon in a manner that would be 
regarded as undignifi ed on earth. This is because although the mass of a 
particular astronaut (that is, the amount of matter in his body) is obviously 
the same on the moon as it is on earth, the gravitational pull (and hence 
acceleration due to gravity) is much less on the moon and therefore the 
astronaut’s weight is much less on the moon than it is on earth.

The relationship between weight and mass
Coming back to earth, if an object of mass 1 kg is subjected to the accelera-
tion due to gravity of 9.81 m/sec2 (which is approximately 10 m/sec2), then 
the above equation tells us that the object’s weight is (1 × 10) = 10 N. Note 

Fig. 4.2 Man standing on a fl oor.
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that weight is a force and is measured in the same units as force: Newtons 
(N) or kiloNewtons (kN). So:

A weight of 10 N is equivalent to a mass of 1 kg

As you are probably aware, the kilo- prefi x means ‘1000 times’, so:

1,000 N = 1 kN

Therefore, if a weight of 10 N is equivalent to a mass of 1 kg, then a weight 
of 1000 N (or 1 kN) is equivalent to a mass of 100 kg.

One further relationship: a weight of 10 kN is known as a tonne (also 
known as a metric tonne).

What do these units signify in everyday terms?

(1) Sugar is sold in your local supermarket in 1 kg bags. If you lift a 1 kg 
bag of sugar, you will get some idea of what a mass of 1 kg (and hence 
a force of 10 N) feels like.

(2) 1 kN is equivalent to 100 kg, which in turn is approximately 220 pounds 
or just under 16 stone – 16 stone is the weight of a reasonably large 
man. If you imagine a large man or woman of your acquaintance, then 
the mass of their body is imposing a 1 kN force downwards.

(3) A small modern car weighs about a tonne (or 10 kN).

To summarise:

• 10 N = 1 kg (a bag of sugar)

• 1000 N = 1 kN (a 16-stone person)

• Therefore: 1 kN = 100 kg

• 1000 kg = 10 kN = 1 tonne (a small car)

Density and unit weight
The density of a material can be calculated as follows:

Density (kg/m3) = 
Mass (kg)

 
Volume (m3)

Unit weight is a similar concept to density. The unit weight is the weight 
of a material per unit volume and is measured in kN/m3. Unit weights of 
some common building materials are given in Appendix 1.

Units generally
You should always be conscious of the units you are using in any structur-
al calculation. Incorrect use and understanding of units can lead to wildly 
inaccurate answers.

The lecturers and tutors who mark and assess your coursework and 
examinations are well aware of the perils of getting the units wrong. Make 
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sure that you express the units in any written work you do. For example, 
the force in a column is not 340, but it might be 340 kN. Omitting units is 
sheer laziness and it may lead the person assessing your work to doubt 
whether you understand what you’re doing and he or she will mark the 
work accordingly.

Relationships with other measuring systems
Although the metric system is now generally used in scientifi c and techni-
cal work in the United Kingdom, you will need to know how to convert 
from the Imperial system of measurement (pounds, feet, inches, etc.). This 
is because, in your future professional career:

(1) You may have to review calculations or drawings made before the 
1960s when the metric system came into use.

(2) You may be working in (or for) a country which doesn’t use the metric 
system.

(3) You may be dealing with a profession that feels more comfortable with 
non-metric units.

For example:

• 1 pound = 0.454 kg

• 1 inch = 25.4 millimetres

For a more comprehensive list of conversions between different systems of 
measurement, see Appendix 2.

What you should remember from this chapter

• Mass is the amount of matter in an object and is measured in grams (g) 
or kilograms (kg).

• Weight is a force and is measured in Newtons (N) or kiloNewtons 
(kN).

• Density is the ratio of mass to volume and is measured in kg/m3.

• Unit weight is the weight of a material per unit volume and is meas-
ured in kN/m3.

• In any calculations in structures the units used should always be ex-
pressed.

Tutorial examples
Answers are given at the end of the chapter.

(1) Calculate the weight, in kN, of each of the following two people:
 (a) A young woman with a mass of 70 kg.
 (b) A middle-aged man with a mass of 95 kg.
 What would be the weights of each of these people on the moon if the 

gravitational acceleration on the moon is one-sixth of that on earth?
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(2) Calculate the mass of a brick of length 215 mm, breadth 102.5 mm and 
height 65 mm if its density is 1800 kg/m3. What would be the weight of 
this brick?

(3) Calculate the weight of a 9 metre long reinforced concrete beam of 
breadth 200 mm and depth 350 mm if the unit weight of reinforced 
concrete is 24 kN/m3.

(4) As we will see in later chapters, the term live load is used to describe 
non-permanent load within a building – that is, those loads due to 
people and furniture. If a university classroom is 12 metres long and 
10 metres wide and is designed to accommodate up to 60 students, 
calculate the live load in the classroom when full. (Note that you will 
have to make an assessment of the weight of an individual student, 
desk and chair.) Compare your answer with the British Standard value 
of live load (3.0 kN/m2) for classrooms.

(5) An international hotel chain plans to upgrade its hotel in a particular 
glamorous and exotic location by installing a rooftop swimming pool 
on top of its existing high-rise bedroom block. The swimming pool 
will be 25 metres long and 10 metres wide and will vary uniformly 
in depth from 1 metre to 2 metres. Calculate the volume of water in 
the pool. If the unit weight of water is 10 kN/m3, calculate the weight 
of water in the pool, in tonnes. If a small modern car weighs 1 tonne, 
calculate the number of cars that would be equivalent, in weight, to 
the water in the proposed swimming pool. If you were appointed as 
structural engineer for the project, what would be your initial advice 
to the architect and client?

(6) You are involved in a housing development project. You measure the 
site on a plan and fi nd that it is rectangular, of length 300 metres and 
width 250 metres. ‘What’s the area in acres?’ the developer asks you. 
What is your reply? (Hint: refer to Appendix 2.)

(7) You were delighted to win the full £1 million prize money during 
your recent appearance on a television quiz programme. However, 
your elation abates somewhat when the programme’s producer in-
forms you that the prize money will be given to you in cash, entirely 
in pound coins. Calculate the mass, weight and volume of 1 million 
pound coins.

  Bearing in mind the sudden interest shown in you by several tab-
loid newspapers, explain how you would transport the cash from the 
television studio to your home 200 miles away.

  Noting your concerns, the producer offers to pay your prize money 
in £2 coins instead. Calculate the appropriate mass, weight and vol-
ume for this case. Would you accept or decline this offer?

  On your eventual arrival at home with your haul, you decide to 
store the money in a spare bedroom. Assuming conventional timber 
joist fl oor construction, do you think this would pose a structural 
problem and why?
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Tutorial answers

(1) (a) 0.7 kN; (b) 0.95 kN. On moon: (a) 0.117 kN; (b) 0.158 kN.
(2) 2.52 kg; 0.025 kN.
(3) 15.1 kN.
(4) Your answer will probably be in the range 0.5–1.0 kN/m2, depending 

on your assumptions.
(5) 375 m3; 375 tonnes.
(6) 18.5 acres.
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 5Loading – dead or alive

Introduction: what is a load?
As discussed in Chapter 2, a load is a force on a part of a structure. The 
term ‘load’ is frequently used in everyday life. We refer to ‘loading’ a wash-
ing machine when we fi ll it with clothes to be washed. You ‘load up’ your 
car before going on a motoring holiday. The airline industry uses the term 
‘load factors’ when describing how many passengers get on fl ights, and an 
insurance company will ‘load’ your premium (in other words, increase the 
amount you have to pay for your insurance policy) if you give information 
which it feels increases the risk of it having to pay out. In short, you are 
already familiar with the word load and its use in structural engineering 
is, I hope, easy to understand.

In structures, there are the following different types of loading:

• Dead load (or permanent load): as its alternative name of permanent 
load suggests, a dead load is always present. Examples of dead load 
include the loads – or forces – due to the weights of the various ele-
ments of construction, such as fl oors, walls, roofs, cladding and per-
manent partitions. These items – and their weights – are obviously 
always there, 24 hours a day, 365 days a year.

• Live load (or imposed load): live loads are not always present. They 
are produced by the occupancy of the building. Examples of live load 
include people and furniture. Other examples include snow loads on 
roofs. By their very nature, live loads, unlike dead loads, are variable. 
For example, a 300-seat cinema auditorium would be full of people on a 
Saturday evening if a major new blockbuster movie was being shown, 
but it might be only a quarter full on a weekday afternoon. And, of 
course, it would be empty when the cinema is closed. So the live load 
in this cinema auditorium is represented by anything between 0 and 
300 people. A classroom in a college or university is a similar example. 
The classroom might be full of students or empty – or anything in be-

1405120533_4_005.indd   361405120533_4_005.indd   36 08/02/2005   22:27:3708/02/2005   22:27:37



Loading – dead or alive  37

tween. Also, it might be decided to temporarily remove the desks and 
chairs from the classroom – to hold an exhibition there, for example.

  Because of this variability, live loads are treated differently to dead 
loads in structural design.

  A live load does not have to be moving, animate or alive in any 
way. For example, a dead body in a mortuary is a live load because it 
is there only temporarily. A car in a multi-storey car park will be a live 
load whether or not it is moving; again, the assumption is that the car 
is there for only a certain period of time and then it will be removed.

  In short, dead loads are there all the time, live loads are not.

• Wind load (an example of lateral loading): unlike dead and live loads, 
which are usually vertical in direction, wind loads act horizontally or 
at a shallow angle to the horizontal. Wind loads vary across the coun-
try and across the world and their effects vary according to the type of 
physical environment (city centre, suburban, open moorland, etc.) and 
the height of the building. Wind loads can act in any plan direction 
and their intensity can vary continually.

  You can no doubt imagine that the effects of wind loads were par-
ticularly signifi cant in the design of the London Eye and the Millen-
nium Bridge, shown in Figs 5.1 and 5.2 respectively. Built to celebrate 
the millennium, Marks Barfi eld Architects’ London Eye is a steel and 
glass ferris wheel structure resembling a giant bicycle wheel. Many 
structural and logistical problems had to be overcome in its design 
and construction. The Millennium Bridge is a low-slung suspension 
bridge and is infamous for its vibration problems – now solved – when 
it fi rst opened.

Fig. 5.1 London Eye.
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Other loads
Lateral (or horizontal) loads other than wind loads include those due to 
earth pressures (on retaining walls, for example) or water pressures (on 
the side walls of water tanks). Other loads may include those due to earth-
quakes or subsidence.

Why do we differentiate between these types of loading?

Because the various loads described above differ in nature, we have to 
handle them in differing ways when we undertake structural design. For 
example, the total dead load in a given building remains constant unless 
building alterations are carried out, but live load can vary on an hour-by-
hour basis. We will revisit this when we consider the basics of structural 
design in Chapter 22.

Nature of load
As well as considering the different types of loading we have to consider 
the nature of loads. This could be one of three types:

(1) Point load
(2) Uniformly distributed load
(3) Uniformly varying load.

Let’s consider each of these in turn – refer to Fig. 5.3.

Fig. 5.2 Millennium Bridge, London.
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Point load

This is a load that acts at a single point. It is sometimes called a concen-
trated load. An example would be a column supported on a beam. As the 
contact area of the column on the beam would be small, the load is as-
sumed to be concentrated at a point. Point loads are expressed in units of 
kN and are represented by a large arrow in the direction that the load or 
force acts, as shown in Fig. 5.3 (a).

(a) Point Loads 

elevation of column 
supported on beam 

symbolic representation 
of point load 

Fig. 5.3 The nature of loading.

(b) Uniformly distributed loads (UDLs) 

different representations of uniformly-distributed loads on beams 
(UDLs). The symbol shown on the right is used in this book

(c) Uniformly varying loads 

vertical section through 
a retaining wall 

symbolic representation of a 
uniformly varying load on a 
retaining wall 

retained earth 
pushes
horizontally at 
back of wall
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Uniformly distributed load

A uniformly distributed load (often abbreviated to UDL) is a load that 
is evenly spread along a length or across an area. For example, the loads 
supported by a typical beam – the beam’s own weight, the weight of the 
fl oor slab it’s supporting and the live load supported by the fl oor slab – are 
consistent all the way along the beam. UDLs along a beam (or any other 
element that is linear in nature) are expressed in units of kN/m. Similarly, 
the loads supported by a slab will be consistent across the slab and because 
a slab has area rather than linear length, UDLs on a slab are expressed in 
units of kN/m2. There are at least two different symbols used for UDL, as 
shown in Fig. 5.3 (b).

Uniformly varying load

A uniformly varying load is a load that is distributed along the length of a 
linear element such as a beam, but instead of the load being evenly spread 
(as with a UDL) it varies in a linear fashion. A common example of this is 
a retaining wall. A retaining wall is designed to hold back earth, which 
exerts a horizontal force on the back of the retaining wall. The horizontal 
force on the retaining wall becomes greater the further down the wall you 
go. Thus the force will be zero at the top of the retaining wall but will 
increase linearly to a maximum value at the bottom of the wall – see Fig. 
5.3 (c).

Load paths
It is important to be able to identify the paths that loads take through a 
building. As an example, we will consider a typical steel-framed structure, 
which comprises vertical columns arranged on a grid pattern, as shown in 
Fig. 5.4 (a). At each level of the building the columns will support beams, 
which span between the columns. Each beam may support secondary 
beams, which will span between the main (primary) beams. The beams 
will support fl oor slabs, usually of reinforced concrete or a steel/concrete 
composite construction. The fl oor slabs support their own weight and the 
live loads on them. Figure 5.4 (b) shows a typical part of the structural fl oor 
plan. A, C, D and F are columns. The lines AC, AF, DF and CD represent 
primary beams and line BE represents a secondary beam. A concrete fl oor 
slab spans between beams AF and BE. Another concrete fl oor slab spans 
between beams BE and CD.

Assume a heavy piece of equipment is located at point G. Clearly, it is 
supported by the concrete fl oor slab beneath it. The concrete fl oor slab, in 
turn, is supported by beams AF and BE, so it follows that the equipment 
is supported by those beams as well. As point G is closer to BE than AF, it 
can be deduced that beam BE takes a greater share of the equipment load 
than does beam AF.
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Beam BE in turn is supported by primary beams AC and DF. As point G 
is closer to DF than AC, beam DF will support a greater share of the equip-
ment load than beam AC. (We’ll fi nd out how to calculate these ‘shares’ 
when we look at reactions later in the book.)

Columns D and F support the two ends of beam FD. As beam BE sits 
exactly half way along DF, it will infl ict a point load at the midpoint of DF, 
which will be shared equally between the two supporting columns D and 
F. Additionally, column F will support a portion of the equipment load 
transmitted via beam AF. Similarly, columns A and C will also take a share 
of the equipment load, via beam AC. Additionally, column A will support 
a portion of the equipment load transmitted via beam AF.

The broken arrows in Fig. 5.4 (c) indicate the paths taken through the 
structure by the equipment load at point G. The columns will transmit the 
equipment loads – along with all the other loads in the structure, of course 

(a) typical steel framed structure 

(b) part of structural floor plan   (c) load paths added

A B C

DEF

G

A B C

DEF

G

Fig. 5.4 Load paths in a structure.
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– down to the foundations, which will need to be strong enough to safely 
transmit the loads into the ground below.

To simplify the explanation, we’ve considered only the load paths due 
to one particular load. Of course, there are many loads in a building and all 
of them need to be considered in structural analysis and design. We will 
look at some examples of this in Chapter 24.

It’s one thing for a designer to impose a weight limit on a bridge; it’s quite 
another thing to ensure that the weight limit is actually observed.

A marine leisure complex was being constructed on a small tropical 
island adjacent to a glamorous holiday location. A concrete bridge was 
designed to link the island with the mainland. As the bridge would be 
carrying only ‘trams’ (the sort of trolley-like vehicles common in theme 
parks) which would transport visitors to the attraction from the car 
park on the mainland, the bridge was designed for a vehicle weighing 
4 tons.

During construction of the leisure complex itself it was observed that 
25-ton fully laden concrete wagons were crossing the bridge. There were 
no signs indicating a weight limit and there were no physical barriers to 
stop anyone crossing. Fortunately, the bridge was clearly grossly over-
designed and did not fail – or even show any signs of distress – under 
these loads.
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 6Equilibrium – a balanced approach

Introduction
The eminent scientist Isaac Newton (1642–1727) is perhaps best known for 
his three Laws of Motion. If you have studied physics you will have come 
across these before. One of them gives the force = mass × acceleration 
formula mentioned in Chapter 4.

In this chapter we are concerned with Newton’s Third Law of Motion, 
which essentially states:

‘For every action there is an equal and opposite reaction.’

This means that if an object is stationary – as a building, or any part of it, 
usually is – then any force on it must be opposed by another force, equal in 
magnitude but opposite in direction. In other words, a condition of equi-
librium will be established.

Figure 6.1 shows a steel arch bridge, a small-scale version of the Tyne 
Bridge in Newcastle and the Sydney Harbour Bridge in Australia. The 
nature of the forces within arches leads to horizontal outward forces 
being generated at the ends of the arch. For equilibrium to occur, these 
outward thrusts must be opposed by inward (i.e. opposite) forces. These 
inward forces might be in the form of the reaction of a solid abutment to 
the bridge. Alternatively, as we see with this bridge, the road deck acts 
as a horizontal tension member which ties the two ends of the arch to 
each other, thus catering for the outward thrusting forces.
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Vertical equilibrium
Vertical equilibrium dictates that:

Total force upwards = Total force downwards

For example, if a man weighing about 16 stone stands on the fl oor of a 
room, the downward force into the fl oor due to the weight of his body is 1 
kN. Assuming that the fl oor is stationary, it must be pushing up (or react-
ing) with an upward force of 1 kN.

Let’s consider what would happen if the fl oor did not react with the 
same upward force as the downward force encountered. If the fl oor could, 
for some reason, muster an upward force of only, say, 0.5 kN in response 
to the man’s downward force of 1 kN, the fl oor would not be capable of 
supporting the man’s weight. The fl oor would break and the man would 
fall through it. On the other hand, if the fl oor were to react to the man’s 
weight by supplying an upward force of, say, 2 kN, the man would go fl y-
ing through the air like a human cannonball.

In each of the above two cases, we can see that if the upward and down-
ward forces don’t balance, movement occurs (either upward or downward). 
If neither of these things is occurring (in other words, the man is neither 
falling through the fl oor nor shooting through the air), we can conclude 
that, because everything is stationary, the forces are balanced and vertical 
equilibrium is observed.

Fig. 6.1 Steel arch bridge.
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Horizontal equilibrium
This tells us that:

Total force to the left = Total force to the right

Example 1: ‘Tug of war’

As you may know, a tug of war is a physical competition involving two 
teams and a very long piece of rope. The two teams normally comprise 
equal numbers of contestants. Each team distributes itself along one end 
of the rope, as illustrated in Fig. 6.2. The team at the left end of the rope is 
using all its strength to pull the rope (and the opposing team) to the left. 
Similarly, the team at the right end of the rope is using all its strength to 
pull the rope to the right. If there is a river separating the two teams, the 
stronger team will eventually win by pulling the opposing team into the 
river.

A marker fl ag is fi xed to the midpoint of the rope. Suppose you are an 
adjudicator, watching the competition’s progress from a distance. You will 
be watching the marker’s position. If the fl ag starts to move to the left, 
you will interpret this as meaning that the left-hand team is winning. In 
other words, the force to the left is greater than the force to the right. As 
Newton’s Third Law tells us, movement occurs because the two forces are 
unbalanced. Similarly, if the fl ag starts moving to the right, this would in-
dicate that the right-hand team is winning – because the force to the right 
is greater than the force to the left. Again, the two forces are unbalanced, 
causing movement.

However, if the fl ag doesn’t move at all but stays in exactly the same 
position no matter how hard the two teams strain and pull, you would de-
duce that the two teams are evenly matched and neither is winning. In this 
case, the fl ag doesn’t move because the force to the left is exactly the same 
as the force to the right. In other words, if the marker on the rope in a tug 
of war – or any other object – is stationary, then the force to the left and the 
force to the right are the same. So we have horizontal equilibrium.

Fig. 6.2 Tug of war.
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Example 2: The leaner

If you lean against a wall, as shown in Fig. 6.3, your body is applying a 
horizontal force to the wall – to the right in the case shown in Fig. 6.3. The 
wall will react by providing a force (or reaction) to the left, equal in mag-
nitude to the force applied.

If, for some reason, the wall is not able to provide an equal and opposite 
horizontal reaction, it means that either the wall is not strong enough or it’s 
not fi xed properly to the fl oor. In either case the wall will yield and move-
ment will occur.

What we’ve learned about horizontal and vertical equilibrium is sum-
marised in Fig. 6.4. 

The application of equilibrium
As buildings are usually stationary, Newton’s Third Law tells us that the 
forces on a building – or any part of it – must be in equilibrium.

Consider the beam shown in Fig. 6.5. The beam is supported on columns 
at each of its two ends and supports vertical loads F1, F2 and F3 at various 
points along its length. Where there are downward forces, there must be 
opposing upward forces, or reactions. (The term ‘reaction’ was introduced 
in Chapter 2.) Let’s call the reaction at the left-hand end of the beam R1. 
The reaction at the right-hand end of the beam we will call R2. Using our 
knowledge of vertical equilibrium we can say:

Total force up = Total force down

So:

R1 + R2 = F1 + F2 + F3

Fig. 6.3 Pushing against a wall.

Force Reaction
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Now if F1 = 5 kN, F2 = 10 kN and F3 = 15 kN, then:

R1 + R2 = 5 + 10 + 15 kN

So

R1 + R2 = 30 kN

It would be useful to calculate R1 and R2, as they represent the forces in the 
supporting columns. But the equation above doesn’t tell us what R1 is and 
it doesn’t tell us what R2 is; it merely tells us that the sum of the two is 30 
kN. In order to evaluate each of R1 and R2, we need to know more. We will 
continue this theme in Chapter 9.

Total force up =

total force down

Total force to left =

total force to right 

Fig. 6.4 Equilibrium.

F1 F2 F3

R1 R2 

Fig. 6.5 Application of vertical equilibrium.
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The late Yorkshire veterinary surgeon James Herriot describes an 
encounter with a bull in a confi ned space in his book Vet in Harness 
(Michael Joseph, 1974). The bull, which had just received an injection 
from Mr Herriot, decided to lean against the vet, thus sandwiching him 
between its body and a wooden partition. As we know from Chapter 3, 
this action would have put Mr Herriot’s body into compression, held in 
place by opposing reactions from the bull and the wooden partition. As 
he puts it: ‘I was having the life crushed out of me. Pop-eyed, groaning, 
scarcely able to breathe, I struggled with everything I had, but I couldn’t 
move an inch. … I was certain my internal organs were being steadily 
ground to pulp and as I thrashed around in complete panic the huge 
animal leaned even more heavily.

‘I don’t like to think what would have happened if the wood behind 
me had not been old and rotten, but just as I felt my senses leaving me 
there was a cracking and splintering and I fell through into the next 
stall.’

So suddenly – and fortunately for Mr Herriot – the force from the 
bull overcame the wooden partition’s strength and it collapsed. It was 
no longer able to provide a reaction to keep Mr Herriot in compression 
and thus probably saved his life.

What you should remember from this chapter
If any object (for example, a building or part of one) is stationary then it is 
in equilibrium. This means that the forces on it must balance, as follows:

• Total force upwards = Total force downwards

• Total force to the left = Total force to the right
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 7More about forces: 
resultants and components

Introduction
In previous chapters you have learned what a force is. In this chapter we 
will look at how forces – individually or in groups – may be handled. You 
will learn how to combine forces into resultants and how to ‘split’ forces 
into components.

Let’s start by considering an analogy.

The Underground analogy
Imagine that you are in London and are planning a journey on the Under-
ground railway system there. You are at Green Park station and want to 
travel to Oxford Circus. You consult the diagram of lines and stations 
displayed at the station entrance, a representation of the relevant part of 
which is shown in Fig. 7.1. You work out that the quickest way to reach Ox-
ford Circus from Green Park is to travel directly there on the Victoria Line. 
Oxford Circus is only one station from Green Park.

However, as you enter the station, you pass a blackboard on which has 
been written: ‘Victoria Line Closed due to Technical Diffi culties.’ Clearly, 
this news means you must change your travel plans. Assuming that you 
don’t now decide to walk or take a bus or taxi, there are two options avail-
able to you if you wish to reach Oxford Circus as quickly as possible:

(1) Take the Jubilee Line northwards to the next station, Bond Street, 
where you can change onto the eastbound Central Line and travel to 
the next station, Oxford Circus.

(2) Take the Piccadilly Line eastwards to the next station, Piccadilly Cir-
cus, where you can change onto the northbound Bakerloo Line and 
travel to the next station, Oxford Circus.
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50  Basic Structures for Engineers and Architects

Clearly one of these two options will be quicker than the other, depend-
ing on frequency of trains and the ease of transferring between platforms 
at the interchange station. Although it is diffi cult to predict which option 
would deliver you to Oxford Circus more quickly, we can say with confi -
dence that either route will take you – eventually – to Oxford Circus.

If we represent a journey by an arrow in the direction of the journey 
– with the length of the arrow representing the length of the journey – our 
two route options can be illustrated by the two diagrams in Fig. 7.2. In 
each case, the desired direct route (on the temporarily unavailable Victoria 
Line) has been indicated by a broken arrow. As expected, each indirect 
route is longer (in distance) than the direct route between Green Park and 

Green
Park

Oxford
Circus

Piccadilly Line 

Central Line

Ju
bi

le
e 

Li
ne

 

B
ak

er
lo

o 
Li

ne
 

Bond
Street

Piccadilly 
Circus

Victoria
Line

Fig. 7.1 Representation of part of London Underground network.

(a) Option 1     (b) Option 2 
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Oxford
Circus

Oxford
Circus

Piccadilly Line 
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B
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Note: the broken arrows represent the traveller’s 
preferred (but unavailable) route 

Fig. 7.2 Green Park to Oxford Circus: route options.
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Oxford Circus stations, but the end result is the same: in each case, you end 
up at Oxford Circus station.

Whichever option you choose, your starting point is Green Park station 
and your fi nishing point is Oxford Circus station.

We will return to this analogy later in the chapter.

Resolution of forces
We encountered the concept of a force in Chapter 4. As stated there, a 
force is an infl uence or action on a body that causes – or attempts to cause 
– movement. Forces can act in any direction, but the direction in which a 
given force acts is important. You will know from your studies of math-
ematics that something that has both magnitude and direction is called 
a vector quantity. As force has both magnitude and direction, force is an 
example of a vector quantity.

To defi ne a given force fully, we need to state its:

(1) magnitude (for example, 50 kN)
(2) direction, or line of action (for example, vertical)
(3) point of application (for example, 2 metres from the left-hand end of a 

beam).

What happens when several forces act at the same point?

Clearly it is possible that several forces may act at the same point. These 
forces may all be different in magnitude and acting in different directions. 
It would be convenient if we could simplify these forces in such a way that 
they are represented by just one force, acting in a certain direction. This 
one force is called the resultant force.

The ‘Donald and Tristan’ analogy
Consider a trolley standing in the middle of a large room with a highly 
polished wooden fl oor. The trolley is a piece of furniture with wheels or 
castors that make it easy to push it in any direction – rather like the sweet 
trolleys used in expensive restaurants. The room is otherwise empty. Don-
ald enters the room and starts to push the trolley in an easterly direction. 
The trolley moves eastwards, as shown in Fig. 7.3 (a). At that moment, Don-
ald’s friend Tristan enters the room and starts to push the trolley north-
wards, while Donald continues to try to push the trolley eastwards.

As you would expect, under the infl uence of the two friends pushing 
the trolley in different directions, the trolley now moves off in a gener-
ally north-easterly direction. Figure 7.3 (b) indicates this activity, as viewed 
from above (a plan view), with the broken arrow representing the move-
ment of the trolley. But in what direction, exactly, would the trolley move?

Well, it depends on the relative effort Donald and Tristan put into the 
exercise. If Donald puts a lot of energy into his easterly push, while Tristan 
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52  Basic Structures for Engineers and Architects

makes a puny attempt at his northbound shove, the trolley will move off 
in the direction shown by the broken arrow in Fig. 7.3 (c). (The length of 
the arrows represents the magnitude of the forces.) On the other hand, if 
Tristan exerts himself fully with his northerly push and Donald can’t be 
bothered to put much effort into his east-bound push, the trolley will move 
off in the direction shown by the broken arrow in Fig. 7.3 (d). (Again, the 
length of the arrows represents the magnitude of the forces.) In each case 
there are two forces involved: one from Donald, the other from Tristan. As 
we have seen, these two forces are of different magnitudes and act in dif-
ferent directions.

In each of Figs 7.3 (b)–(d) the broken arrow represents the resultant 
force. In each case, the magnitude and direction of this resultant force rep-
resents the combined effect of Donald and Tristan’s pushing. If we knew 
the magnitude of the force (that is, how many kN) that each of the two 
men was putting into the exercise, we could calculate the magnitude – and 
exact direction – of the resultant force.

Of course, we may have more than two forces. Donald and Tristan’s 
mutual friend Tarquin may enter the room and start pushing the trolley 
in a different direction while Donald and Tristan are exerting themselves. 
The trolley would move off in a different direction. Again, the direction of 
movement of the trolley represents the direction of the resultant force.

(a)      (b) 

Donald

Donald

Tr
is

ta
n

Fig. 7.3 Resultants of forces.

Donald

Tr
is

ta
n

Donald

Tr
is

ta
n

(c)      (d) 

1405120533_4_007.indd   521405120533_4_007.indd   52 22/02/2005   15:40:3222/02/2005   15:40:32



More about forces: resultants and components  53

Resultants of forces
The resultant force (let’s call it R) is the single force that would have the 
same effect on an object as a system of two or more forces. Resultants can 
be calculated by simple trigonometry or by graphical methods. Example 
7.1 shows how trigonometry may be used.

Example 7.1

An object is subjected to three forces of different magnitudes, acting in 
different directions, as shown in Fig. 7.4 (a). Using a graphical approach, 
determine the magnitude and direction of the resultant force.

We can consider the forces in any order. We will consider the vertical 
4 kN force fi rst. Using graph paper and choosing a suitable scale (1 cm 
= 1 kN in this case), we will start from a point A. The vertical force can 
be represented by a line vertically upwards from point A, 4 cm long (to 
represent 4 kN). The point we arrive at will be called point B (see Fig. 
7.4 (b)). Next, let’s consider the horizontal 4 kN force, which acts to the 
right. Starting from point B, draw a horizontal line 4 cm long (going to 
the right), representing the horizontal force of 4 kN. The point we arrive 
at will be point C.

4 kN 

4 kN 

3 kN 

45°

4 cm 

A

B

Fig. 7.4 Object subjected to three forces.

(a) Forces on object     (b) Start of force diagram 

4 cm 

A

B

3 cm 

4 cm 

C

D

4 cm 

A

B

3 cm 

4 cm 

C

D

Broken arrow 
represents
resultant force 

(c) Completed force diagram   (d) Force diagram with resultant 
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Finally, let’s consider the 3 kN force, which acts diagonally upwards 
to the left at an angle of 45 degrees. Starting from point C, this force 
will be represented by a line 3 cm long (representing 3 kN) in the ap-
propriate direction. The point we arrive at will be point D (see Fig. 7.4 
(c)). Next, draw a straight line connecting points A and D. This line 
represents the resultant force. Measuring off the diagram (Fig. 7.4 (d)) it 
can be found that the line is 6.41 cm long at an angle to the horizontal 
of 72.9 degrees.

Therefore the resultant force is 6.41 kN, acting at an angle of 72.9 
degrees to the horizontal (upwards and to the right). This is the single 
force that would have the same effect as the original three forces acting 
together.

This problem could alternatively have been approached mathemati-
cally, using Pythagoras’ theorem and basic trigonometry, which are 
summarised in Appendix 3. The mathematical solution to this problem 
is shown in Fig. 7.5.

4

4

3

�(42 + 42) = 5.66 kN 

�(5.662 + 32)
= 6.41 kN

45º
�º

tan � = 3 / 5.66, so � = 27.9º  

� = 45 +27.9 = 72.9º 

�

Fig. 7.5 Mathematical solution to resultants example.

45°

45°
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Further examples

Each of the examples shown in Fig. 7.6 comprises two forces at right angles 
to each other. In each case, the task is to fi nd the magnitude and direc-
tion of the resultant force. This can be calculated either mathematically or 
graphically.

To determine the resultants mathematically you will need to reacquaint 
yourself with the basic mathematics associated with a right-angled trian-
gle, namely Pythagoras’ theorem, and the defi nitions of the trigonometri-
cal functions known as sine, cosine and tangent. Appendix 3 gives you a 
quick refresher on these. To determine the resultants graphically, you need 
to represent the forces by lines on graph paper whose lengths are propor-
tional to the magnitudes of the forces. The lines need to be orientated in 
the same directions as the corresponding forces.

Whichever way you determine the resultant, it doesn’t matter which 
order you consider the forces in; you will still get the same answer – this 
was the point made by the ‘Underground analogy’ earlier in the chapter 
when we saw that there is more than one route from Green Park to Oxford 
Circus. However, you must consider the forces in the ‘nose to tail’ manner 
adopted in the example above (and shown in Fig. 7.4 (c)), otherwise your 
answer for the direction will be wrong. In my experience, by far the most 
common mistake students make when dealing with this sort of problem 
lies in their not redrawing the forces ‘nose to tail’. So make sure that the 
‘nose’ (that is, the arrowed end) of each force is laid adjacent to the ‘tail’ (the 
non-arrowed end) of the next force because ‘nose to nose’ or ‘tail to tail’ 
will give the wrong answer.

Study the worked example given at the top of Fig. 7.6. Note how it has 
been solved, fi rst of all by expressing the forces in a ‘nose to tail’ manner, 
then by calculating the magnitude of the resultant force using Pythagoras’ 
theorem and its direction using trigonometry.

Now attempt the fi ve examples given in Fig. 7.6. Figure 7.7 shows the 
solutions to the examples shown in Fig. 7.6.

If you got the direction of the fi rst two examples wrong, then you 
haven’t been expressing the forces in the ‘nose to tail’ manner required; in 
each case, the problem has to be reconstructed in the manner shown in Fig. 
7.7. If you got the fi rst two examples right but came to a dead halt when you 
reached example number 3, then your mathematical knowledge of right-
angled triangles is probably fi ne but you’ve lost sight of what resultants 
actually are. Remember: to obtain the resultant of two or more forces you 
express the forces (in any order) in a nose to tail fashion, then you draw a 
line linking the tail of the fi rst force with the nose of the fi nal force. In the 
case of example 3, this resultant force turns out to be vertically upwards.

You should have realised that examples 4 and 5 can be simplifi ed. For 
instance, in example 4, the 16 kN force to the right is partially cancelled by 
the 12 kN force to the left, to give an overall force to the right of 4 kN (i.e. 16 
– 12). Similarly, the upward force will be 2 kN (i.e. 10 – 8).

You will fi nd further examples at the end of this chapter.
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Components of forces
Earlier in this chapter we looked at how we could express a number of 
different forces, acting together, at the same point, as a single force – the 
resultant. Now we are going to invert the process by taking a single force 
and breaking it down into two forces which, taken together, have the same 
effect as the original single force.

These two forces are called components. In the same way as a television 
set contains many electrical components, all of which must be present for 
the television to work, so must both of our force components be present to 
correctly represent the original force. A component is the replacement of 
an original force with two forces at right angles to each other (usually one 
horizontal and one vertical).

8 kN 

6 kN 
WORKED
EXAMPLE

8 kN

6 kN

R = �(62 + 82) = 10

� = tan-1(6/8)
   = 36.9º 

R

�

SOLUTION

16 kN 12 kN

8 kN 

10 kN 

4

5

5 kN 5 kN 

16 kN 

1
2 3

3 kN 

4 kN 

1 kN

7 kN 
12 kN 12 kN

45º 45º

Fig. 7.6 Components: examples.
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It can be shown that, for any force F at an angle θ to the horizontal, the 
horizontal component is always F.cos θ and the vertical component is al-
ways F.sin θ (see Fig. 7.8). As a mnemonic, think of ‘sign up’ to represent 
sine being the vertical force.

1. R = �(32 + 42) = 5 kN; � = 53.1º 

2. R = �(12 + 72) = 7.07 kN; � = 81.9º 

3. R = �(122 + 122) = 17 kN; � = 90º (i.e. vertically upwards) 

4. R = �(22 + 42) = 4.47 kN; � = 26.6º 

5. R = 16 kN (by inspection), vertically downwards.

4 kN 

2 kN

4 5

16 kN 

1 2 3

3 kN 

4 kN 

1 kN 

7 kN 

12 kN

12 kN 

45º

45º17 kN

7.07 kN 5 kN 

53.1º
81.9º

4.47 kN 

26.6º

Fig. 7.7 Components: solutions to examples.

�

F. cos �

F.
 s

in
 �

F

Fig. 7.8 Components of forces: general case.
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For each of the three examples given in Fig. 7.9, calculate the magnitude 
and direction of the two components (one horizontal, the other vertical) 
of the force given. In each case, make sure you correctly identify whether 
the horizontal force is to the left or to the right and whether the vertical 
force is upwards or downwards – such things are important! Check your 
answers with the following (where H = horizontal component and V = 
vertical component):

(1) H = 14.cos 45º = 9.9 kN →, V = 14.sin 45º = 9.9 kN ↑.
(2) H = 30.cos 60º = 15 kN ←, V = 30.sin 60º = 26 kN ↑.
(3) H = 60.cos 30º = 52 kN ←, V = 60.sin 30º = 30 kN ↓.
(4) H = 20.cos 25º = 181 kN →, V = 200.sin 25º = 84.5 kN ↓.

We shall see later in this book how useful it is to be able to replace a force 
acting at an angle by two forces: one horizontal and the other vertical.

What you should remember from this chapter

• The resultant of a number of forces acting at a point is the single force 
which has the same effect as the original forces acting together.

• Any force can be split into two components which, acting together, 
have the same effect as the original single force. The two components 
are at right angles to each other and are usually taken as horizontal 
and vertical respectively.

45º

14 kN 

60º

30 kN 

1

2

Fig. 7.9 Components of forces: examples.

30º

60 kN 

25º

200 kN 

3
4
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Tutorial examples
Find the resultant for each of the multi-force examples shown in Fig. 7.10 
and split each of the one-force examples into components.

3 kN 

6 kN 

12 kN 

9 kN

1
2 3

60º 30º

160 kN

120 kN

Fig. 7.10 Resultants and components: tutorial examples.
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1 kN 
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45º
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 8Moments

Introduction
When you use a spanner to tighten or loosen a nut, you are applying a mo-
ment. A moment is a turning effect and is related to the concept of leverage: 
if you use a screwdriver to prise open the lid on a can of paint, or a bottle 
opener to open a bottle of beer, or a crowbar to lift a manhole cover, you are 
applying leverage and hence you are applying a moment.

Designed by British architect Sir Norman Foster, the modern glass dome 
shown in Fig. 8.1 is the historic German parliament building’s crowning 
glory.

Fig. 8.1 Reichstag dome, Berlin.
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What is a moment?
A moment is a turning effect. A moment always acts about a given point 
and is either clockwise or anticlockwise in nature. The moment about a 
point A caused by a particular force F is defi ned as the force F multiplied 
by the perpendicular distance from the force’s line of action to the point.

Units of moment are kN.m or N.mm Note: This follows because a mo-
ment is a force multiplied by a distance, therefore its units are the units of 
force (kN or N) multiplied by distance (m or mm) – hence kN.m or N.mm. 
The units of moment are never kN or kN/m.

In both the cases illustrated in Fig. 8.2, if M is the moment about point 
A, then M = F.x.

Practical examples of moments
See-saw

A see-saw is a piece of equipment often found in children’s playgrounds. It 
comprises a long plank of wood with a seat at each end. The plank of wood 
is supported at its centre point. The support is pivoted, so is free to rotate. 
A child sits on the seat at each end of the see-saw and uses the pivoting 
characteristic of the see-saw to move up and down. A series of modern see-
saws is shown in Fig. 8.3.

Imagine two young children sitting at opposite ends of a see-saw, as 
shown in Fig. 8.4 (a). If the two children are of equal weight and sitting 
at equal distances from the see-saw’s pivot point, there will be no move-
ment because the clockwise moment about the pivot due to the child at the 
right-hand end (F.x) is equal to the anticlockwise moment about the pivot 
point due to the child at the left-hand end (F.x). Therefore the two moments 
cancel each other out.

If the child at the left-hand end was replaced by an adult or a much 
larger child, as shown in Fig. 8.4 (b), the child at the right-hand end would 
move rapidly upwards. This is because the (anticlockwise) moment due to 
the larger person at the left-hand end (Large Force × Distance) is greater 
than the (clockwise) moment due to the small child at the right-hand end 
(Small Force × Distance). The overall moment is thus anticlockwise, caus-
ing upward movement of the small child.

A

x

F A

F

x

Fig. 8.2 Moments illustrated.
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(c) See-saw unbalanced by position of load 

Fig. 8.3 See-saws.

Fig. 8.4 Forces on a see-saw.

(b) See-saw unbalanced by load 

xx
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F = large force 
f = small force 
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m = small moment

M m
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(a) Balanced see-saw 
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Let’s return to the original situation, with two young children at oppo-
site ends of the see-saw. But suppose now that the left-hand child moved 
closer to the pivot point, as shown in Fig.8.4 (c). As a result the right-hand 
child would move downwards. This is because the anticlockwise moment 
due to the left-hand child (Force × Small Distance) is smaller than the 
clockwise moment due to the right-hand child (Force × Large Distance). 
The overall movement is thus clockwise, causing downward movement of 
the right-hand child.

Spanners, nuts and bolts

The reader will know from experience that it is much easier to undo a 
seized-up nut or bolt if a long spanner is used rather than a short spanner. 
This is because, although the force used may be the same, the ‘lever arm’ 
distance is longer, thus causing a greater turning effect or moment to be 
applied. Practical problems using ‘leverage’ also illustrate this principle, 
such as the examples of prising open paint cans, beer bottles and manhole 
covers already mentioned.

Numerical problems involving moments
It can be seen from the above that it is important to distinguish between 
clockwise and anticlockwise moments. After all, turning a spanner clock-
wise (tightening a nut) has a very different effect from turning the spanner 
anticlockwise (loosening a nut). In this book:

• clockwise moments are regarded as positive (+)

• anticlockwise moments are regarded as negative (–).

It is, of course, quite possible for a given pivot point to experience several 
moments simultaneously, some of which may be clockwise (+) while oth-
ers may be anticlockwise (–). In these cases, moments must be added alge-
braically to obtain a total (net) moment.

Some simple worked examples of moment calculation

In each of the following examples, involving simple beams, we are going 
to calculate the net moment about point A (remember, clockwise is +, 
 anticlockwise is –).

Example 1 (see Fig. 8.5 (a))
By inspection, the 4 kN force is trying to turn clockwise about A, therefore 
the moment will be positive (+). The 2 metre distance is measured hori-
zontally from the (vertical) line of action of the 4 kN force; in other words, 
the distance given is measured perpendicular (i.e. at right angles or 90 
degrees) to the line of action of the force, as required.

Remember, a moment is a force multiplied by a distance. If we use the 
symbol M to represent moment, then in this case:
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M = + (4 kN × 2 m) = + 8 kN.m

Example 2 (see Fig. 8.5 (b))
This time there are two forces, supplying two moments. A common mis-
take with this example is to assume that since the two forces are in oppo-
site directions (i.e. one upwards, one downwards), the moments must also 
oppose each other. In fact, a closer inspection will reveal that the moments 
about A generated by the two forces are both clockwise (+). So the mo-
ment about A for each force is calculated, and the two added together, as 
follows:

M  = + (5 kN × 3 m) + (4 kN × 2 m)

(a)           (b) 

(c)        (d) 

(e)             (f)      (g) 

A

6 kN

3 m 

4 kN

5 kN 
A

2 m 3 m 

A

7 kN 

4 m 

98 kN 

A

4 kN

2 m 

A

5 kN 

3 m 2 m 2 kN 

A

6 kN

5 
m

 A

3 kN

5 m 

53.1º

Fig. 8.5 Moment worked examples.
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= + 15 kN.m + 8 kN.m
= + 23 kN.m

(If you attempted this example and obtained an answer of + 7 kN.m, you 
fell into the trap mentioned above!)

Example 3 (see Fig. 8.5 (c))
Once again there are two forces, supplying two moments. The 7 kN force 
clearly gives rise to a clockwise moment about A. The 98 kN force, how-
ever, passes straight through the pivot point A; in other words, its line of 
action is zero distance from A. Since a moment is always a force multiplied 
by a distance, if the distance is zero then it follows that the moment must 
be zero (since multiplying any number by zero gives a product of zero). So, 
in this example:

M  = + (7 kN × 4 m) + (98 kN × 0 m)
= + 28 kN.m + 0 kN.m
= + 28 kN.m

The lesson to be learned from this example is: if a force passes through a 
certain point, then the moment of that force about that point is zero.

Example 4 (see Fig. 8.5 (d))
The 6 kN force is turning anticlockwise about A, so the resulting moment 
will be negative (–).

M = –(6 kN × 3 m) = –18 kN.m

Example 5 (see Fig. 8.5 (e))
The 5 kN force is trying to turn clockwise about A, therefore will give rise 
to a clockwise (+) moment. By contrast, the 2 kN force is trying to turn an-
ticlockwise about A, therefore will produce an anticlockwise (–) moment.

M  = +(5 kN × 3 m) – (2 kN × 5 m)
= + 15 kN.m – 10 kN.m
= + 5 kN.m

Example 6 (see Fig. 8.5 (f))
Not all forces are vertical! But the same rules apply.

M = – (6 kN × 5 m) = –30 kN.m

Example 7 (see Fig. 8.5 (g))
This slightly harder example will confuse readers who haven’t yet grasped 
the fact that a moment is a force multiplied by a perpendicular (or ‘lever 
arm’) distance. There are two ways of solving this problem – see Fig. 8.6.

1 By using trigonometry to fi nd the perpendicular distance. Figure 8.6 
(a) will remind you of the defi nitions of sines, cosines and tangents in 
terms of the lengths of the sides of a right-angled triangle. Applying 
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this to the current problem, we fi nd from Fig. 8.6 (b) that the perpen-
dicular distance (x) in this case is 4 metres. So M = + (3 kN × 4 m) = + 
12 kN.m.

2 By resolving the 3 kN force into vertical and horizontal components. 
In Chapter 7 we learned that any force can be expressed as the product 
of two components, one horizontal and one vertical. For any force F 
acting at an angle of θ to the horizontal axis, it can be shown that:

• the horizontal component is always F × cos θ, and

• the vertical component is always F × sin θ (so sin acts upwards: 
‘Sign Up’).

 In this problem the 3 kN force acts at an angle of 53.1 degrees to the 
horizontal. So its vertical component = 3 × sin 53.1° = 2.4 kN ↓

  And its horizontal component = 3 × cos 53.1° = 1.8 kN. ←
  The problem can now be expressed as shown in Fig. 8.6 (c).
  Note that since the 1.8 kN force (extended) passes through point A, 

the moment of that force about point A will be zero.

 M = + (2.4 kN × 5 m) + (1.8 kN × 0)
 = + 12 kN.m

 (Obviously, this is the same answer as that obtained in part (a)!)

�

adjacent (adj) 

op
po

si
te

 (o
pp

) 

hypotenuse (hyp) 

sin � =  opp / hyp 

cos � = adj / hyp 

tan � = opp / adj 

Fig. 8.6 Moments and resolution of forces.

(a)    

5 m 

A

5 m
A

2.4 kN

1.8 kN

3 kN

53.1�

x

(b)              (c) 
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There are some further examples at the end of the chapter for you to try.

Notes on moment calculations

From the above discussion and examples come the following notes and 
observations:

(1) Always consider whether a given moment is clockwise (+) or anti-
clockwise (–).

(2) If a force F passes through a point A, then the moment of force F about 
point A is zero (as illustrated in Example 3 above).

(3) It may be necessary to resolve forces into components in order to cal-
culate moments (as shown in Example 6 above).

Moment equilibrium
Imagine that you are doing some mechanical work on a car and you have 
a spanner fi tted onto a particular bolt in the car’s engine compartment. 
You are trying to tighten the nut and hence you are turning it clockwise. 
In other words, you are applying a clockwise moment. Now imagine that 
a friend (in the loosest possible sense of the word!) has another spanner 
fi tted to the same nut and is turning it anticlockwise. This has the effect of 
loosening the nut.

If the anticlockwise moment that your friend is applying is the same 
as the clockwise moment that you are applying (regardless of the fact that 
the two spanners might be of different lengths), you can imagine that the 
two effects would cancel each other out – in other words, the nut would 
not move. This applies to any object subjected to equal turning moments 
in opposite directions: the object would not move.

So if the total clockwise moment about a point equals the total anti-
clockwise moment about the point, no movement can take place. Converse-
ly, if there is no movement (as is usually the case with a building or any 
part of a building), then clockwise and anticlockwise moments must be 
balanced. This is the principle of moment equilibrium and can be used in 
conjunction with the rules of force equilibrium (discussed earlier) to solve 
structural problems.

To summarise: if any object (such as a building or any point within a 
building) is stationary, the net moment at the point will be zero. In other 
words, clockwise moments about the point will be cancelled out by equal 
and opposite anticlockwise moments.

Equilibrium revisited

As discussed in Chapter 6, if an object, or a point within a structure, is 
stationary, we know that forces must balance, as follows:

Σ V = 0, i.e. Total Upward Force = Total Downward Force (↑ = ↓)
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Σ H = 0, i.e. Total Force to Left = Total Force to Right (← = →)

From our newly acquired knowledge of moments, we can add a third rule 
of equilibrium, as follows:

Σ M = 0, i.e. Total Clockwise Moment = Total Anticlockwise Moment

We can use these three rules of equilibrium to solve structural problems, 
specifi cally the calculation of end reactions, as discussed in the next chap-
ter.

What you should remember from this chapter

• A moment is one of the most important concepts in structural 
 mechanics.

• A moment is a turning effect, either clockwise or anticlockwise, about 
a given point.

• If a force passes through the point about which moments are being 
taken, then the moment of that force about the point concerned is zero. 
(It is very important to remember this concept as it crops up several 
times in the solution of problems later in this book.)

• It may be necessary to resolve forces into components in order to cal-
culate moments.

Tutorial examples
In each of the examples shown in Fig. 8.7, calculate the net moment, in 
kN.m units, about point A.

Tutorial answers

(1) M = +90 kN.m
(2) M = –40 kN.m
(3) M = +50 kN.m
(4) M = +90 kN.m
(5) M = +1 kN.m
(6) M = +63 kN.m
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Fig. 8.7 Moment tutorial examples.
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 9Reactions

Note: the support symbols used in the diagrams in this chapter will be 
explained in Chapter 10.

Introduction
In Chapter 6 we discussed equilibrium. We found out that if a body or ob-
ject of any sort is stationary, then the forces on it balance, as follows:

Total force upwards = Total force downwards

Total force to the left = Total force to the right

This was illustrated in Fig. 6.4.
The concept of a moment, or turning effect, was introduced in Chapter 2 

and discussed more fully in Chapter 8. In this chapter we will fi nd out how 
to use this information to calculate reactions – that is, the upward forces 
that occur at beam supports in response to the forces on the beam.

Moment equilibrium
At the end of Chapter 8 we found that if an object or body is stationary, it 
doesn’t rotate and the total clockwise moment about any point on the ob-
ject is equal to the total anticlockwise moment about the same point. This 
is the third rule of equilibrium and we can add this to the fi rst two that we 
discovered in Chapter 6. The three rules of equilibrium are expressed in 
Fig. 9.1.

Figure 9.2 shows a steel-framed building under construction. Note the 
steel beams, the steel columns and the profi led steel deck fl ooring.
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Total force up =

total force down

Total force to left =

total force to right 

Total clockwise moment = 

total anticlockwise moment

Fig. 9.1 The rules of equilibrium.

Fig. 9.2 Steel-framed building under construction.
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Calculation of reactions
The three rules of equilibrium can be used to calculate reactions. As dis-
cussed in Chapter 2 and again in Chapter 6, a reaction is a force (usually 
upwards) that occurs at a support of a beam or similar structural element. 
A reaction counteracts the (usually downward) forces in the structure to 
maintain equilibrium. It is important to be able to calculate these reac-
tions. If the support is a column, for example, the reaction represents the 
force in the column, which we would need to know in order to design the 
column.

Consider the example shown in Fig. 9.3. The thick horizontal line repre-
sents a beam of span 6 metres which is simply supported at its two ends, 
A and B. The only load on the beam is a point load of 18 kN, which acts 
vertically downwards at a position 4 metres from point A. We are going to 
calculate the reactions RA and RB (that is, the support reactions at points A 
and B respectively).

From vertical equilibrium, which we discussed in Chapter 6, we know 
that:

Total force upwards = Total force downwards

Applying this to the example shown in Fig. 9.3, we can see that:

RA + RB = 18 kN

Of course, this doesn’t tell us the value of RA and it doesn’t tell us the value 
of RB. It merely tells us that the sum of RA and RB is 18 kN. To evaluate RA 
and RB then, we clearly have to do something different.

Let’s use our new-found knowledge of moment equilibrium. We found 
out above that if any structure is stationary, then at any given point in the 
structure:

Total clockwise moment = Total anticlockwise moment

The above applies at any point in a structure. So, taking moments about 
point A:

(18 kN × 4 m) = (RB × 6 m)

A

18 kN 

RA RB

4 m 2 m 

B
C

Fig. 9.3 Calculation of reactions for point loads.
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Therefore RB = 12 kN. Note that there is no moment due to force RA. This 
is because force RA passes straight through the point (A) about which we 
are taking moments.

Similarly, taking moments about point B:

Total clockwise moment = Total anticlockwise moment

(RA × 6 m) = (18 kN × 2 m)

Therefore RA = 6 kN.
As a check, let’s add RA and RB together:

RA + RB = 6 + 12 = 18 kN

which is what we would expect from the fi rst equation above.

A word of warning …

It’s easy to make a mistake and get the two reactions the wrong way round. 
As a check, consider the man standing on a scaffold board supported by 
scaffold poles at each end, as shown in Fig. 9.4. The man is standing closer 
to the left-hand support. Which of the two supports is doing the more work 
in supporting the man’s weight?

Common sense tells us that the left-hand support must be working 
harder to bear the man’s weight, simply because the man is closer to that 
support. In other words, we would expect the left-hand support reaction to 
be the greater of the two.

Looking again at the example shown in Fig. 9.3, the 18 kN loading oc-
curs towards the right-hand end of the beam, so we would expect the right-
hand end reaction (RB) to be greater than the left-hand end reaction (RA). 
And indeed it is.

Fig. 9.4 Man on a scaffold board.
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It’s always a good idea to do this ‘common sense check’ to ensure you’ve 
got the reactions the right way round. To summarise: if the loading on the 
beam is clearly greater at one end of the beam, you would expect the reac-
tion to be greater at that end too.

Calculation of reactions when uniformly distributed loads 
(UDLs) are present

Up till now in this chapter we have looked only at problems with point 
loads and have studiously avoided those with uniformly distributed loads. 
There is a good reason for this: analysis of problems with point loads only 
is much easier and it has been my policy in writing this book – as in life in 
general – to start with the easy things and work up to the harder ones.

In practice, most loads in ‘real’ buildings and other structures are uni-
formly distributed loads – or can be represented as such – so we need to 
know how to calculate end reactions for such cases. The main problem we 
encounter is in taking moments. For point loads it is straightforward – the 
appropriate moment is calculated by multiplying the load (in kN) by the 
distance from it to the point about which we’re taking moments. However, 
with a uniformly distributed load, how do we establish the appropriate 
distance?

Figure 9.5 represents a portion of uniformly distributed load of length x. 
The intensity of the uniformly distributed load is w kN/m. The chain-dot-
ted line in Fig. 9.5 represents the centre line of the uniformly distributed 
load. Let’s suppose we want to calculate the moment of this piece of UDL 
about a point A, which is located a distance a from the centre line of the 
UDL. In this situation, the moment of the UDL about A is the total load 
multiplied by the distance from the centre line of the UDL to the point 
about which we’re taking moments. The total UDL is w × x, the distance 
concerned is x, so:

A
w kN/m 

a

x

Centre line of 
Loaded length

Fig. 9.5 Bending moment calculation for uniformly distributed load (UDL): 
general case.
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moment of UDL about A = wax.

Apply this principle whenever you’re working with uniformly distributed 
loads.

Example involving uniformly distributed loads (UDLs)

Calculate the end reactions for the beam shown in Fig. 9.6. Use the same 
procedure as before.

Vertical equilibrium:

RA + RB = (3 kN/m × 2 m) = 6 kN

Taking moments about A:

(3 kN/m × 2 m) × 1 m = RB × 4 m

Therefore:

RB = 1.5 kN

Taking moments about B:

(3 kN/m × 2 m) × 3 m = RA × 4 m

Therefore:

RA = 4.5 kN

Check:

RA + RB = 4.5 + 1.5 = 6 kN

(as expected from the fi rst equation).

What you should remember from this chapter
The third rule of equilibrium tells us that if an object, or any part of it, is 
stationary, the total clockwise moment about any point within the object is 
the same as the total anticlockwise moment about that point. This rule can 

A

3 kN/m 

RA RB

2 m 2 m 

B
C

Fig. 9.6 Calculation of reactions for uniformly distributed loads.
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be used in conjunction with the fi rst two rules of equilibrium to calculate 
support reactions.

Tutorial examples
Try the examples given in Fig. 9.7. In each case, calculate the reactions at 
the support positions.

Tutorial answers

(a) RA = 75 kN, RB = 45 kN
(b) RA = 7.5 kN, RB = 16.5 kN
(c) RA = 17.5 kN, RB = 22.5 kN
(d) RA = 17.5 kN, RB = 12.5 kN

(a)      (b) 

(c)      (d) 

6 kN 18 kN 

1 m 1 m 2 m

A B

RA RB

40 kN/m 
A B

3 m 1 m

RA RB

30 kN 10 kN

1 m 3 m 2 m

RA RB

A B

RA RB

1 m 1 m 2 m 

20 kN

5 kN/m 

A B

Fig. 9.7 Reactions: further tutorial examples.
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 10Different types of support – 
and what’s a pin?

What is a PIN?
I would be fl attered to think that you are reading this book on a beach, at 
a rural beauty spot or in some other glamorous location. But the chances 
are you are inside a building as you skim through these words – perhaps 
your home, offi ce or college – in which case you will probably be in sight 
of a door. If it’s a conventional door (not a sliding one, for example), it will 
have hinges on it. What are the hinges for? Well, they make it possible for 
you to open the door by rotating it about the vertical axis on which the 
hinges are located.

Figures 10.1 (a) and 10.1 (b) show the plan view of a door, in its shut and 
partially open positions respectively, along with part of the adjoining wall. 
You could approach this door and open it or shut it, partially or totally, at 
will. The hinges make it possible for you to do this by facilitating rotation. 
Had the door been rigidly fi xed to the wall you would not have been able 
to open it at all. One other point to note: although you can open or shut 
the door at will, nothing you do to the door will affect the portion of the 
wall on the other side of the hinges. It remains unmoved. To put it another 
way, the hinges do not transmit rotational movements into the wall. This 
is a particularly important concept and is the basis of the analysis of pin-
jointed frames, which we will investigate in Chapters 12–15.

(a) Closed door    (b) Open door 

Fig. 10.1 A door viewed from above.

1405120533_4_010.indd   771405120533_4_010.indd   77 09/02/2005   17:06:5309/02/2005   17:06:53



78  Basic Structures for Engineers and Architects

The word pin, as used in structural engineering, is analogous to the 
hinge in a door. A pin is indicated symbolically as a small unfi lled circle. 
Consider two steel rods connected by a pin joint, as shown in Fig. 10.2. The 
two rods are initially in line as shown in Fig. 10.2 (a) and the left-hand rod 
is subsequently rotated about 30 degrees anticlockwise, as shown in Fig. 
10.2 (b). The right-hand rod is not affected by this rotational movement of 
the left-hand rod.

A pin, then, has two important characteristics:

(1) A pin permits rotational movement about itself.
(2) A pin cannot transmit turning effects, or moments.

Different types of support
Up till now we’ve been talking about supports (to beams, etc.) and indi-
cating them as upward arrows without giving any thought to the type or 
nature of the support. As we shall see, there are three different types of 
support.

1. Roller supports

Imagine a person on roller skates standing in the middle of a highly pol-
ished fl oor. If you were to approach this person and give him (or her) a 
sharp push from behind (not to be recommended without discussing it 
with them fi rst!), they would move off in the direction you pushed them. 
Because they are on roller skates on a smooth fl oor, there would be mini-
mal friction to resist the person’s slide across the fl oor.

A roller support to part of a structure is analogous to that person on 
roller skates: a roller support is free to move horizontally. Roller supports 
are indicated using the symbol shown in Fig. 10.3 (a). You should recog-
nise that this is purely symbolic and a real roller support will probably not 
resemble this symbol. In practice a roller support might comprise sliding 
rubber bearings, for example, or steel rollers sandwiched between steel 
plates, as shown in Fig. 10.3 (b).

2. Pinned supports

Consider the door hinge analogy discussed above. A pinned support per-
mits rotation but cannot move horizontally or vertically – in exactly the 

(a) two rods in line   (b) left rod rotated 

Fig. 10.2 Steel rods connected by a pin.
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same way as a door hinge provides rotation but cannot itself move from its 
position in any direction.

3. Fixed supports

Form your two hands into fi sts, place them about a foot apart horizontally 
and allow a friend to position a ruler on your two fi sts so that it is spanning 
between them. Your fi sts are safely supporting the ruler at each end. Now 
remove one of the supports by moving your fi st out from underneath the 
ruler. What happens? The ruler drops to the fl oor. Why? You have removed 
one of the supports and the remaining single support is not capable of sup-
porting the ruler on its own – see Figs 10.4 (a) and (b). 

However, if you grip the ruler between your thumb and remaining fi n-
gers at one end only, it can be held horizontally without collapsing. This is 
because the fi rm grip provided by your hand prevents the end of the ruler 
from rotating and thus falling to the fl oor – see Fig. 10.4 (c).

(a) roller symbol    (b) an actual roller support 

Fig. 10.3 Roller support – symbolically and in reality.

Fig. 10.4 What is a fi xed support? (Continued.)

(a) Ruler simply supported on two fi sts

(b) One fi st removed
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In structures, the support equivalent to your gripping hand in the above 
example is called a fi xed support. As with your hand gripping the ruler, a 
fi xed support does not permit rotation.

There are many situations in practice where it is necessary (or at least 
desirable) for a beam or slab to be supported at one end only – for example, 
a balcony. In these situations, the single end support must be a fi xed sup-
port because, as we’ve seen, a fi xed support does not permit rotation and 
hence does not lead to collapse of the structural member concerned – see 
Fig. 10.5. Like a pinned support, a fi xed support cannot move in any direc-
tion from its position. Unlike a pinned support, a fi xed support cannot 
rotate. So a fi xed support is fi xed in every respect.

Now you’ve got a mental picture of each of the three different types of 
support (roller, pinned and fi xed), let’s revisit each of them and take our 
study of them a stage further. We are going to do this in the context of reac-
tions and moments.

Restraints
Let’s consider each of the following as being a restraint:

(1) Vertical reaction
(2) Horizontal reaction
(3) Resisting moment.

(c) Ruler fi rmly gripped at one end

Fig. 10.4 (Continued.)

(a) fixed support symbol  (b) an actual fixed support 

Fig. 10.5 Fixed support – symbolically and in reality.
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Restraints experienced by different types of support

Roller support
Let’s return to our roller skater standing on a highly polished fl oor. As 
the fl oor is supporting him, it must be providing an upward reaction to 
counteract the weight of the skater’s body. However, we’ve already seen 
that if we push our skater, he will move. The rollers on the skates, and the 
frictionless nature of the fl oor, mean that the skater can offer no resistance 
to our push. In other words, the skater can provide no horizontal reac-
tion to our pushing (in contrast to a solid wall, for example, which would 
not move if leaned on and therefore would provide a horizontal reaction). 
There is also nothing to stop the skater from falling over (i.e. rotating).

We can see from the above that a roller support provides one restraint 
only: vertical reaction. (There is no horizontal reaction and no moment.)

Pinned support
As discussed above, a pinned support permits rotation (so there is no re-
sistance to moment), but as it cannot move horizontally or vertically there 
must be both horizontal and vertical reactions present. So, a pinned sup-
port provides two restraints: vertical reaction and horizontal reaction. 
(There is no moment.)

Fixed support
We saw above that a fi xed support is fi xed in every respect: it cannot move 
either horizontally or vertically and it cannot rotate. This means there will 
be both horizontal and vertical reactions and, if it cannot rotate, there must 
be a moment associated with the fi xed support. Incidentally, this moment 
is called a fi xed end moment – see Chapter 8 if you are not clear on this 
point.

So, a fi xed support provides three restraints: vertical reaction, horizon-
tal reaction and moment.

To summarise:

• A roller support provides one restraint: vertical reaction.

• A pinned support provides two restraints: vertical reaction and hori-
zontal reaction.

• A fi xed support provides three restraints: vertical reaction, horizontal 
reaction and moment.

This is illustrated in Fig. 10.6.

Simultaneous equations
Let’s brush up our knowledge of mathematics for a few minutes – specifi -
cally, equations and simultaneous equations.

Answer the following question with a simple Yes or No: can you solve 
the following equation?

x + 6 = 14

1405120533_4_010.indd   811405120533_4_010.indd   81 09/02/2005   17:06:5709/02/2005   17:06:57



82  Basic Structures for Engineers and Architects

Clearly, the answer is Yes. You can solve the above equation very easily 
(x = 8), but why? The reason you can solve the above equation so easily is 
that there is only one unknown (x in this case).

Now consider whether you can solve the following two simultaneous 
equations:

2x + 6y = –22

3x – 4y = 19

Again, it is possible to solve these two equations (although you may need 
to brush up your maths in order to do so!). The solution, incidentally, is 
x = 1, y = –4. Again, why is it possible to solve these equations? The reason 
this time is that, although we have two unknowns (x and y), we have two 
equations.

Now consider whether or not you could solve the following simultane-
ous equations:

4x + 2y –3z = 78

2x – y + z = 34

If you haven’t realised for yourself, I’ll spare you the tedium of trying to 
work it out by telling you that No, you can’t solve the problem in this case. 
The reason is that this time we have three unknowns (x, y and z), but only 
two equations.

We could carry on investigating in this vein for some time and if we 
were to do so we would fi nd out the following:

• If we have the same number of unknowns as we have equations, a 
mathematical problem can be solved.

• But if we have more unknowns than equations, a mathematical prob-
lem cannot be solved.

Relating this to structural analysis, if we look back to the procedure we 
used for calculating reactions in Chapter 9, we’ll see that we were solving 
three equations. These equations were represented by:

(1) Vertical equilibrium (total force up = total force down)
(2) Horizontal equilibrium (total force right = total force left)
(3) Moment equilibrium (total clockwise moment = total anticlockwise 

moment).

(a) roller support  (b) pinned support (c) fixed support 

M

V

H

VV

H

Fig. 10.6 Restraints provided by various support types.
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As we have three equations, we can use them to solve a problem with up 
to three unknowns in it. In this context, an unknown is represented by a 
restraint, as defi ned earlier in this chapter. (Remember, a roller support 
has one restraint, a pinned support has two restraints and a fi xed support 
has three restraints.) So a structural system with up to three restraints is 
solvable – such a system is said to be statically determinate (SD) – while 
a structural system with more than three restraints is not solvable (unless 
we use advanced structural techniques which are well beyond the scope of 
this book) – such a system is said to be statically indeterminate (SI).

So if we inspect a simple structure, examine its support and thence 
count up the number of restraints, we can determine whether the struc-
ture is statically determinate (up to three restraints in total) or statically 
indeterminate (more than three restraints).

Let’s look at the three examples shown in Fig. 10.7.

(a) Example 1 

(b) Example 2 

(c) Example 3 

Fig. 10.7 Statical determinacy.
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Example 1

This beam has a pinned support (two restraints) at its left-hand end and a 
roller support (one restraint) at its right-hand end. So the total number of 
restraints is (2 + 1) = 3, therefore the problem is solvable and is statically 
determinate (SD).

Example 2

This pin-jointed frame has a pinned support (two restraints) at each end. 
So the total number of restraints is (2 + 2) = 4. As 4 is greater than 3, the 
problem is not solvable and is statically indeterminate (SI).

Example 3

This beam has a fi xed support (three restraints) at its left-hand end and a 
roller support (one restraint) at its right-hand end. So the total number of 
restraints is (3 + 1) = 4, therefore, again, the problem is not solvable and is 
statically indeterminate (SI).

What you should remember from this chapter

• Supports to structures are one of three types: roller, pinned or fi xed. 
Each provides a certain degree of restraint to the structure at that 
point.

• Knowing the number of supports a structure has and the nature of 
each support, it can be determined whether the structure is statically 
determinate (SD) or statically indeterminate (SI).

• A statically determinate (SD) structure is one that can be analysed 
using the principles of equilibrium discussed in the earlier chapters of 
this book. A statically indeterminate (SI) structure cannot be analysed 
using such principles.

Figure 10.8 shows an ‘interim’ railway station which was opened in 2004 
to allow for repairs to the original St Pancras station in London. Note 
that the roof and its support structure are completely independent of 
the vertical glazing structure.

Tutorial examples
Determine whether each of the structures given in Fig. 10.9 is statically 
determinate (SD) or statically indeterminate (SI).
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Fig. 10.8 St Pancras ‘interim’ railway station, London.

1

2

3

Fig. 10.9 Statical determinacy – tutorial examples.
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 11A few words about stability

Introduction
It is essential for a structure to be strong enough to be able to carry the 
loads and moments to which it will be subjected. But strength is not suf-
fi cient: the structure must also be stable.

In this chapter we’ll be looking at what constitutes stability in structural 
terms – and how we can determine whether or not a particular structural 
framework is stable. Then we’ll look, in practical terms, at how stability is 
achieved and ensured in buildings.

Stability of structural frameworks
Many buildings and other structures have a structural frame. Steel build-
ings comprise a framework, or skeleton, of steel. If you live in or near a 
large city you will have seen such frameworks being constructed. Many 
bridges also have a steel framework – famous examples include the Tyne 
Bridge in Newcastle upon Tyne and the Sydney Harbour Bridge in Aus-
tralia.

We are going to consider the build-up of a framework from scratch. Our 
framework will consist of metal rods (‘members’) joined together at their 
ends by pins. (The concept of a pin, which is a type of connection that 
facilitates rotation, was discussed in Chapter 10.) Consider two members 
connected by a pin joint, as shown in Fig. 11.1 (a). Is this a stable structure? 
(In other words, is it possible for the two members to move relative to each 
other?) As the pin allows the two members to move relative to one another, 
this is clearly not a stable structure.

Now, let’s add a third member to obtain three members connected by 
pin joints to form a triangle, as shown in Fig. 11.1 (b). Is this a stable struc-
ture? Yes, it is because even though the joints are pinned, movement of the 
three members relative to each other is not possible. So this is a stable, rigid 
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structure. In fact, the triangle is the most basic stable structure, as we will 
mention again in the following discussion.

If we add a fourth member we produce the frame shown in Fig. 11.1 (c). 
Is this a stable structure? No it is not. Even though the triangle within it is 
stable, the ‘spur’ member is free to rotate relative to the triangle, so overall 
this is not a stable structure.

Consider the frame shown in Fig. 11.1 (d), which is achieved by adding 
a fi fth member to the previous frame. This is a stable structure. If you are 
unsure of this, try to determine which individual member(s) within the 
frame can move relative to the rest of the frame. You should see that none 
of them can and therefore this is a stable structure. This is why you often 
see this detail in structural frames as ‘diagonal bracing’, which helps to 
ensure the overall stability of a structure.

(a)      (b) 

(c)      (d) 

(e)      (f) 

Fig. 11.1 Building up a framework.
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Let’s add yet another member to obtain the frame shown in Fig. 11.1 (e). 
Is this a stable structure? No, it is not. In a similar manner to the frame de-
picted in Fig. 11.1 (c), it has a spur member which is free to rotate relative to 
the rest of the structure. Adding a further member we can obtain the frame 
shown in Fig. 11.1 (f) and we will see that this is a rigid, or stable, structure.

We could carry on ad infi nitum in this vein, but I think you can see that 
a certain pattern is emerging. The most basic stable structure is a triangle 
(Fig. 11.1 (b)). We can add two members to a triangle to obtain a ‘new’ tri-
angle. All of the frames that comprise a series of triangles (Figs 11.1 (d) and 
(f)) are stable; the remaining ones, which have spur members, are not.

Let’s now see whether we can devise a means of predicting mathemati-
cally whether a given frame is stable or not. In Table 11.1 each of the six 
frames considered in Fig. 11.1 is assessed. The letter m represents the 
number of members in the frame and j represents the number of joints 
(note that unconnected free ends of members are also considered as joints). 
The column headed ‘Stable structure?’ merely records whether the frame 
is stable (‘Yes’) or not (‘No’).

It can be shown that if m = 2j – 3 then the structure is stable. If that 
equation does not hold, then the structure is not stable. This is borne out 
by Table 11.1: compare the entries in the column headed ‘Stable structure?’ 
with those in the column headed ‘Is m = 2j – 3?’.

Internal stability of framed structures – a summary
(1) A framework which contains exactly the correct number of members 

required to keep it stable is termed a perfect frame. In these cases, m 
= 2j – 3, where m is the number of members in the frame and j is the 
number of joints (including free ends). Frames (b), (d) and (f) in Fig. 
11.1 are examples.

(2) A framework having less than the required number of members is 
unstable and is termed a mechanism. In these cases, m < 2j – 3. Frames 
(a), (c) and (e) in Fig. 11.1 are examples. In each case, one member of the 
frame is free to move relative to the others.

(3) A framework having more than this required number is ‘over-stable’ 
and contains redundant members that could (in theory at least) be re-
moved. Examples follow. In these cases, m > 2j – 3. These frames are 

Table 11.1 Is a structure stable?

 m j Stable structure? 2j – 3 Is m = 2j – 3?

Figure 11.1 (a) 2 3 No 3 No

Figure 11.1 (b) 3 3 Yes 3 Yes

Figure 11.1 (c) 4 4 No 5 No

Figure 11.1 (d) 5 4 Yes 5 Yes

Figure 11.1 (e) 6 5 No 7 No

Figure 11.1 (f) 7 5 Yes 7 Yes
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statically indeterminate (SI). We met this term in Chapter 10 – it means 
that the frames cannot be mathematically analysed without resorting 
to advanced structural techniques.

Examples

For each of the frames shown in Fig. 11.2, use the equation m = 2j – 3 to 
determine whether the frame is (a) a perfect frame (SD), (b) a mechanism 
(Mech) or (c) statically indeterminate (SI). Where the frame is a mecha-
nism, indicate the manner in which the frame could deform. Where the 
frame is statically indeterminate, consider which members could be re-

(a)    (b)    (c) 

(d)     (e)    (f) 

(g)      (h) 

Fig. 11.2 Are these frameworks stable?
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moved without affecting the stability of the structure. The answers are 
given in Table 11.2.

The frames shown in Figs 11.2 (b), (c) and (g) are statically indetermi-
nate. This means they are over-stable and that one or more members may 
be removed without compromising stability. In the case of Fig. 11.2 (b), 
any one member can be removed from the top part of the frame and the 
structure would still be stable. In Fig. 11.2 (c), two members could be re-
moved without compromising stability – but the two members to be re-
moved should be chosen with care. A sensible choice would be to remove 
one diagonal member from each of the two squares. In Fig. 11.2 (g), any one 
member could be removed.

The frames shown in Figs 11.2 (d), (e) and (h) are mechanisms. This 
means that a part of the frame is able to move relative to another part of the 
frame. In Fig. 11.2 (d), the upper triangle is free to rotate about the frame’s 
central pin independently of the lower part of the frame. In Fig. 11.2 (e), the 
square part of the frame is free to deform, or collapse, as we shall see in a 
later example.

The mode of deformation of the frame in Fig. 11.2(h) is less easy to visu-
alise. It is shown in Fig. 11.3.

General cases
Look at frames (a) and (b) in Fig. 11.4. If we apply the m = 2j – 3 formula to 
the standard square depicted in Fig. 11.4 (a), we will fi nd that it is unstable, 
or a mechanism. It can deform in the manner indicated by the broken lines 
in Fig. 11.4 (a). This is why, in ‘real’ structures, diagonal cross-bracing must 
often be provided to ensure stability.

If we look at the frame shown in Fig. 11.4 (b), we see that it is a square 
which is diagonally cross-braced twice. Applying the m = 2j – 3 formula 
we fi nd that it is statically indeterminate, which means that it contains at 
least one redundant member. On further investigation we fi nd that we can 
remove any one of the six members without affecting the stability of the 
structure.

Table 11.2 Stability of frames shown in Fig. 11.2

 m j 2j – 3 Is m = 2j – 3? (or > or <) Stability type

Figure 11.2 (a)  9 6  9 = SD

Figure 11.2 (b) 10 6  9 > SI

Figure 11.2 (c) 11 6  9 > SI

Figure 11.2 (d)  8 6  9 < Mech

Figure 11.2 (e)  6 5  7 < Mech

Figure 11.2 (f)  7 5  7 = SD

Figure 11.2 (g)  6 4  5 > SI

Figure 11.2 (h) 14 9 15 < Mech
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Fig. 11.3 Deformation of frame shown in Fig. 11.2 (h).

(c) Perfect frame, mechanism or over-braced? 

(a) Standard square (unstable)  (b) An over-braced square 

Fig. 11.4 Frame stability – general cases. 
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During the years I’ve been teaching this subject I’ve discovered that cer-
tain students derive a great deal of comfort from being taught a set of rules, 
or a ‘magic formula’, that could be applied to give the correct answer in any 
given situation. There is a tendency for them to regard such things as a 
crutch to be used as a substitute for analytical thought. Such students would 
readily latch on to the m = 2j – 3 formula discussed above as a universal 
panacea for determining the stability (or otherwise) of pin-jointed frames. 
I’ve got bad news for such readers: the above formula doesn’t always work! 
(In fairness I should point out that there are other students who delight in 
fi nding the exception to the rule – and pointing it out to the lecturer.)

Consider the frame shown in Fig. 11.4(c). It contains nine members and 
six joints, so m = 9 and j = 6 and it can thus readily be shown that m = 2j – 3 
in this case, which suggests that the framework is a perfect frame. In fact, 
an inspection of the frame shows that this is not, in fact, the case. The left-
hand part of the frame is an unbraced square, which is a mechanism and 
can deform in the same manner as the frame shown in Fig. 11.4 (a). But the 
right-hand part of the frame has double diagonal cross-bracing, which sug-
gests that it is ‘over-stable’ and contains redundant members in the same 
way as the frame shown in Fig. 11.4 (b). So, part of the frame shown in Fig. 
11.4 (c) is a mechanism and the other part is statically indeterminate, but 
this does not make an overall perfect frame, as predicted by the formula!

The lesson to be learned from this is that the formula m = 2j – 3 should 
be regarded as a guide only – it doesn’t always work. A given frame should 
always be inspected to see whether there are any signs of either (a) mecha-
nism or (b) over-stability.

Frames on supports
Up till now in this chapter we have conveniently ignored the fact that, in 
practice, frames have to be supported. We therefore need to consider the 
effects of supports on the overall stability of frames.

In Chapter 10 we learned about the three different types of support 
(roller, pinned and fi xed). We also saw that:

• a roller support provides one restraint (r = 1);

• a pinned support provides two restraints (r = 2);

• a fi xed support provides three restraints (r = 3).

Reread Chapter 10 if you are unsure about this.
The m = 2j – 3 used above is now modifi ed to m + r = 2j where supports 

are present. As before, m is the number of members and j is the number of 
joints. The letter r represents the total number of restraints (one for each 
roller support, two for each pinned support and three for each fi xed sup-
port).

(1) If m + r = 2j, then the frame is a perfect frame and is statically determi-
nate (SD), which means it can be analysed by the methods outlined in 
the following chapters of this book.
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(2) If m + r < 2j, then the frame is a mechanism – it is unstable and should 
not be used as a structure.

(3) If m + r > 2j, then the frame contains redundant members and is stati-
cally indeterminate (SI), which means it cannot be analysed without 
resorting to advanced methods of structural analysis.

Examples

For each of the frames shown in Fig. 11.5, use the equation m + r = 2j to 
determine whether the frame is (a) statically determinate, (b) a mechanism 
or (c) statically indeterminate. Where the frame is a mechanism, indicate 
the manner in which the frame could deform. Where the frame is statically 
determinate, consider which members could be removed without affecting 
the stability of the structure. The answers are given in Table 11.3.

(a)      (b)    

(c)      (d) 

(e)      (f) 

Fig. 11.5 Are these structures stable?
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The frames shown in Figs 11.5 (b) and (f) are statically indeterminate. 
This means they are over-stable and that one or more members may be 
removed. In the case of Fig. 11.5 (b), one of the diagonal members may be 
removed (but not both of them!) and the structure would still be stable. In 
Fig. 11.5 (f), the ‘lean-to’ diagonal member may be removed without com-
promising stability. The frames shown in Figs 11.5 (c) and (d) are mecha-
nisms. The structure in Fig. 11.5 (c) is obviously unstable, being free to 
rotate about its single central support. In Fig. 11.5 (d), the square part of the 
frame is free to deform in the manner indicated in Fig. 11.4 (a).

Stability of ‘real’ structures
In practice, the stability of a structure is assured in one of three ways:

(1) Shear walls/stiff core.
(2) Cross-bracing.
(3) Rigid joints.

Let’s look at each of these in more detail.

Shear walls/stiff core

This form of stability is usually (but not exclusively) used in concrete 
buildings. Consider the structural plan of an upper fl oor of a typical con-
crete offi ce building, as shown in Fig. 11.6 (a). The structure comprises a 
grid layout of columns, which support beams and slabs at each fl oor level. 
The wind blows horizontally against the building from any direction. It is 
obviously important that the building doesn’t collapse in the manner of a 
‘house of cards’ under the effects of this horizontal wind force. We could 
design each individual column to resist the wind forces, but for various 
reasons this is not the way it is normally done.

Instead, shear walls are used. These walls are designed to be stiff and 
strong enough to resist all the lateral forces on the building. Since most 
buildings have staircases and many have lift shafts, the walls that sur-
round the staircases and lift shafts are often designed and constructed to 

Table 11.3 Stability of structures shown in Fig. 11.5

 
m j 2j r m + r

Is m + r = 2j? 
(or > or <) Stability type

Figure 11.5 (a) 7 5 10 3 10 = SD

Figure 11.5 (b) 9 8 16 8 17 > SI

Figure 11.5 (c) 9 6 12 2 11 < Mech

Figure 11.5 (d) 8 6 12 3 11 < Mech

Figure 11.5 (e) 7 5 10 3 10 = SD

Figure 11.5 (f) 10 7 14 6 16 > SI
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perform this role, as shown in Fig. 11.6 (b). On larger buildings, the shear 
walls may be constructed in such a way as to comprise an inner core to 
the building, which often contains stairwells, lift shafts, toilets and ducts 
for services. The NatWest Tower in London is an example of this form of 
construction.

Cross-bracing

This form of stability is common in steel-framed buildings. Figure 11.7 (a) 
shows the elevation of a three-storey steel-framed building, on which the 
wind is blowing. There is nothing to stop the building tilting over and col-
lapsing in the manner indicated by the broken lines in Fig. 11.7 (a).

One way of ensuring stability is to stop the ‘squares’ in the building 
elevation from becoming trapeziums. Earlier in this chapter we saw that 
(a) a triangle is the most basic stable structure and (b) a diagonal member 
can stop a square from deforming (illustrated in Figs 11.1 (b) and (d) re-

(a) Typical floor plan of reinforced concrete office building 

(b) Same floor plan with shear walls added 

wind

lift
shaft

stair
well

stair
well

Fig. 11.6 Provision of stability using shear walls.
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spectively). So diagonal cross-bracing is used to ensure stability, as shown 
in Fig. 11.7 (b).

Large modern retail ‘sheds’, often occupied by do-it-yourself and elec-
tronics retailers, are found in most large British towns and cities. These are 
usually single-storey steel structures and the structure of the building is 
often visible internally. Next time you visit such a store, have a look at its 
structure. You will notice steel columns at (typically) 5–6-metre intervals 
along the building. If you look at the end bay (i.e. the space between the 
end column and the next one) you may well see a zigzag arrangement of 
diagonal members. They are there for the reason discussed above: to pro-
vide lateral stability to the building as a whole. Figure 11.8 shows quite an 
‘extrovert’ example of diagonal bracing on a new offi ce building; note also 
the steel truss ‘bridge’ above the main entrance.

(a) Section through three-storey steel framed building 

(b) Same section with diagonal bracing added 

wind

Fig. 11.7 Provision of stability using cross-bracing.
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Rigid joints

A third method of providing lateral stability is simply to make the joints 
strong and stiff enough that movement of the beams relative to the col-
umns is not possible. The black blobs in Fig. 11.9 indicate stiff joints that 
stop the action depicted in Fig. 11.7 (a) from happening.

Fig. 11.8 Offi ce building, Euston Road, London.

Fig. 11.9 Provision of stability using rigid joints.
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What you should remember from this chapter

• All structures must be stable, otherwise they may collapse. Being 
strong is not suffi cient.

• A given structural framework may be either unstable, stable or over-
stable. Which of these conditions applies can be determined through a 
combination of inspection and calculation.

• Lateral stability in buildings can be ensured through one of three 
means: shear walls, diagonal bracing or rigid connections.

Tutorial examples
(1) For each of the examples shown in Fig. 11.10, determine whether the 

frame is (a) a perfect frame (SD), (b) unstable (a mechanism) or (c) 
over-stable (containing redundant members). If the framework is un-
stable, state where a member could be added to make it stable. If the 
frame is over-stable, determine which members could be removed and 
the structure would still be stable.

(2) Select a framed structure near where you live. Determine how lateral 
stability is provided to the structure and state the reasons why the de-
signer may have chosen that particular method of ensuring stability.
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Fig. 11.10 Tutorial questions.
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 12Introduction to the analysis of 
pin-jointed frames

Simple beams, lattice girders and trusses
The concept of a beam has been discussed in earlier chapters. We have 
seen that if a simple beam in a building is loaded from above, it will sag, 
as shown in Fig. 12.1. You can readily imagine that the material in the top 
of the beam is being squashed, or compressed. By contrast, the material in 
the bottom of the beam is being stretched – it is in tension.

The amount of downward movement, or defl ection, from the horizontal 
depends in part on the material used – it is obviously a lot easier to bend a 
beam made of rubber than a beam of the same size made of timber!

Another factor that dictates the defl ection of a beam is the shape and 
size of the beam’s cross-section. If we consider a beam of rectangular cross-
section, the shallower the beam is, the easier it is to bend. The reader can 
easily verify this point by gripping a plastic ruler at both ends and trying 
to bend it. If the ruler is orientated with its fl at surface horizontal, it is easy 
to bend in a vertical plane. On the other hand, if the ruler is positioned ‘on 
edge’, it is very diffi cult to bend in a vertical plane, as shown in Fig. 12.2.

We can deduce from this that, all other things being equal, the deeper a 
beam is, the stronger it is. (This principle is demonstrated mathematically 
in Chapter 19.)

compression

tension

Fig. 12.1 Bending of beams.
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Introduction to the analysis of pin-jointed frames  101

The problem is that, while a deep beam may be stronger than a shal-
low beam, it also requires more material. Material costs money! You might 
argue that use of more material is a price worth paying for a stronger 
beam, but there is a way round it. Instead of having a solid deep beam, it 
is possible to achieve the same result by having a framework of members, 
as shown in Fig. 12.3. The top and bottom members (or ‘booms’ as they are 
sometimes called) will be, respectively, in compression and tension, just as 
the top and bottom parts of a solid beam are. Such a framework is called a 
lattice girder or truss – it is usually made of steel but can be made of tim-
ber. You will have seen railway bridges that look like Fig. 12.3.

Other examples are shown in Figs 12.4–12.6. Figure 12.4 shows a mod-
ern lattice footbridge over a river; Fig. 12.5 illustrates a storey-depth lattice 
truss used in a building structure; and Fig. 12.6 shows the roof of a railway 
station where several different steel lattice girders are used for support.

Fig. 12.2 Deeper beams are stronger.

Fig. 12.3 A steel railway bridge.

(a) Ruler fl at: easy to bend

(b) Ruler on edge: hard to bend
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102  Basic Structures for Engineers and Architects

What is a pin-jointed frame?
Frameworks of structural members, such as steel railway bridges or pylons 
(as illustrated in Fig. 12.7), are often analysed as pin-jointed frames. This 
means that the nodes, or joints, between members are regarded as pins, or 

Fig. 12.4 Trussed bridge across River Spree, Berlin.

Fig. 12.5 Truss in façade, Sony Centre, Berlin.
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Fig. 12.6 Roof structure, Manchester Victoria station.

Fig. 12.7 Structural steel frameworks.
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104  Basic Structures for Engineers and Architects

hinges, which, by defi nition, cannot transmit moments from one member 
to another. (See Chapter 10 for an explanation of the concept of a pin.)

It can be shown that the forces in the members of such frameworks are 
purely axial. In other words, the forces in the members act along the line 
of the members, which means that each member experiences one of the 
following:

• pure compression, or

• pure tension, or

• no axial force.

The members of a pin-jointed frame do not experience bending or shear 
forces.

You may question whether it is legitimate to analyse real structures as 
pin-jointed frames. After all, if you inspect the junction of two steel mem-
bers in a railway bridge or electricity pylon you will fi nd that the junction 
is effected using a combination of angle plates, bolts and welds, and may 
be quite complex – so surely it can’t really be regarded as a pin joint?

Quite right – joints in structural frameworks are not usually pin-jointed 
in practice. But we consider the joints as pinned, for the purposes of analy-
sis, for the following two reasons:

(1) If you were to analyse the same structure (a) assuming pin joints, then 
(b) as a rigid-jointed structure, the results would be similar.

(2) It is far easier to analyse the joints as being pins.

It follows therefore that we have to be able to analyse pin-jointed frames.

How are pin-jointed frames analysed?
By the term ‘analysis’ in the context of pin-jointed frames, we mean calcu-
lating:

(1) the force in each member;
(2) whether the force is tensile or compressive.

There are three techniques for doing so:

(1) Method of resolution at joints.
(2) Method of sections.
(3) Graphical  method.

These are discussed in Chapters 13, 14 and 15 respectively.
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 13Method of resolution at joints

Introduction
The method of resolution at joints is the fi rst of three alternative techniques 
for analysing pin-jointed frames. By ‘analysing’ we mean the process of 
calculating the force in each member of the pin-jointed frame and deter-
mining whether each of these forces is in tension or compression.

There are two other techniques:

• method of sections;

• graphical (or force diagram) method.

These two techniques are discussed in Chapters 14 and 15 respectively. The 
method of sections is appropriate only if the forces in some (rather than all) 
of the members are required. The graphical method, as its name suggests, 
involves scale drawing, which by its very nature introduces errors.

Students often have diffi culty in understanding the techniques for 
analysis of pin-jointed frames. This is because these techniques are partly 
intuitive in nature. Because of these diffi culties, students of architecture 
are often not taught how to analyse pin-jointed frames; if they receive any 
tuition on pin-jointed frames at all, it is usually merely conceptual. Some 
lecturers prefer to teach the graphical method to civil engineering students 
because (a) it is non-mathematical and (b) there is a rigid procedure to be 
followed, which makes it easier to teach and also easier for students to un-
derstand. However, the method of resolution at joints has more universal 
application and hence it will be taught in this chapter.

The rules
Throughout the analysis of pin-jointed frames using the method of resolu-
tion of joints, there are three rules to remember. These rules have all been 
taught in earlier chapters of this book and are as follows:
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106  Basic Structures for Engineers and Architects

Rule No. 1: Force acts in same direction as member

The forces in any member of a pin-jointed frame are axial. In other words, 
the forces act along the centre line of a member. So, if a member is vertical, 
the forces in that member must be vertical. If a member is horizontal, the 
forces in that member will be horizontal. And if a member is inclined at 
an angle of, say, 30 degrees to the horizontal, the forces within the member 
will act along that line.

Rule No. 2: Equilibrium applies everywhere

The basic rules of equilibrium apply at all nodes (and in all members) in a 
pin-jointed frame. This means that the sum of all downward forces on the 
node exactly equals the sum of all upward forces on the node. It also means 
that the total force to the left on the node exactly equals the total force to 
the right. See Chapter 6 if you are unclear on this point.

Rule No. 3: Forces can be split into components

If a force acts at an angle (i.e. it is neither horizontal nor vertical), then that 
force can be resolved into components – one horizontal and one vertical 
– which, taken together, have the same effect as the original force. Remem-
ber, if a force F acts at an angle θ to the horizontal, its horizontal component 
will always be F.cos θ and its vertical component will always be F.sin θ. 
(Remember: ‘sign up’.) See Chapter 7 if you need to review the concept of 
components.

Make sure that you fully understand the above three rules before pro-
ceeding, as they will come into play at every step in the following exam-
ples.

The general approach
As the term ‘method of resolution at joints’ implies, the technique involves 
examining each joint of a framework in turn. The easiest joints to analyse 
are those at which all forces and members are either horizontal or vertical. 
This is because there are no diagonal members – whose forces would have 
to be resolved into vertical and horizontal components – at such joints.

Consider Fig. 13.1 (a), which shows the end part of a framework. No 
diagonal members radiate from corner B. The joint (or node) at this corner 
is subjected to a vertical force of 30 kN and a horizontal force of 64 kN as 
shown.

As the structure is presumably stationary, the rules of equilibrium will 
apply at the joint.

As total force up = total force down, then the vertical member of this 
framework (member AB) must experience a 30 kN upward force at point 
B (to oppose the external 30 kN downward force). Similarly, as total force 
to the left = total force to the right, then the horizontal member BD must 
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Method of resolution at joints  107

experience a 64 kN rightward force at this point (to oppose the external 64 
kN leftward force). See Fig. 13.1 (b).

Another thing to remember is that, just as joints must be in equilibrium, 
so too must members. In the horizontal member, we have a 64 kN force 
to the right; this must be opposed by a 64 kN force to the left at the other 
end of the member. In the vertical member there is a 30 kN force upwards; 
this must be opposed by a 30 kN force downwards at the other end of the 
member. See Fig. 13.1 (c). In the vertical member the arrows are pointing 
away from each other, so this member is in compression. In the horizontal 
member the arrows are pointing towards each other, so this member is in 
tension (see Chapter 3 for reminder).

Now look at the framework shown in Fig. 13.2 (a). It would take some 
time to analyse the whole frame, but there are certain members for which 
we could determine the forces straight away. Specifi cally, we could exam-
ine the joints at which there are no diagonal members or inclined forces, 
namely joints B, C and H.

(a)      (b)   

(c)

64 kN 

30 kN 

A

B

C

D

30
 k

N
 

64 kN 

64 kN 

30 kN 

A

B

C

D

30
 k

N
 

64 kN 

64 kN

30 kN 

A

B

C

D

Fig. 13.1 Members in which forces are easily calculated.
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108  Basic Structures for Engineers and Architects

Using the approach discussed above, we can see straight away that the 
force in member BD must be 12 kN (to oppose the horizontal 12 kN exter-
nal force at B) and that it will be in compression (arrows pointing away 
from each other). Also, the force in member AB must be zero because there 
is no external vertical force to oppose at point B (or to put it another way, 
there is an external vertical force of 0 kN to oppose at point B).

Moving on to joint H, we see that the force in member GH must be 24 
kN (to oppose the vertical 24 kN external force at H) and that it will be in 
tension (arrows pointing towards each other). The force in member FH 
must be zero because there is no external horizontal force at point H to be 
opposed (or to put it another way, there is an external horizontal force of 0 
kN to oppose at point H).

Finally, let’s look at joint C. The force in the vertical member CD must 
be zero because there is no external vertical force to oppose at point C. 
Furthermore, considering horizontal equilibrium at joint C, the forces in 
members AC and CE must be equal and opposite – although we cannot 
obtain their values without further analysis.

The forces we now know are shown in Fig. 13.2 (b).

(a)     

(b)
24
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C

D

E

F

= =

Fig. 13.2 More members in which forces are easily calculated.
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Method of resolution at joints  109

Watch for the catch!

Now look at the frame shown in Fig. 13.3 (a). Looking at the frame, and 
without doing any calculation, what is the force in member CD?

I have presented this problem to students on numerous occasions. One 
common answer given to the above question is ‘60 kN’. I fi nd this depress-
ing because if you think the force in member CD is 60 kN, then I’m afraid 
you are wrong!

Look at joint D. There is no vertical external force there – or, if you prefer 
to think of it that way, the vertical external force at D is 0 kN. To balance 
this, the force in member CD must be 0 kN. The forces in the frame are 
shown in Fig. 13.3 (b). (Note that, for horizontal equilibrium at joint D, the 
forces in members BD and DF must be equal and opposite.)

So … why isn’t the force in member CD 60 kN?
To answer this question we will look at joint C. Certainly, there is an ex-
ternal downward force of 60 kN there, which, for equilibrium, must be 
counteracted by an upward force of 60 kN. But member CD will not carry 
this vertical force alone: diagonal members BC and CF are also present at 
joint C and will carry a vertical component of force. Therefore the 60 kN 
upward force is shared between members BC, CD and CF – and, as we saw 
above, member CD actually carries no force in this case.

Standard cases
From the above discussion we can generate some standard cases of forces 
in certain members of pin-jointed frames. These standard cases are illus-
trated in Fig. 13.4.

In Fig. 13.4 (a), consideration of vertical equilibrium at joint A tells us 
that the force in member AB must be F1 to counter the vertical external 
force of F1 at joint A. (Note that the external force of F3 at joint B has no di-
rect infl uence on the force in member AB.) Horizontal equilibrium at joint 

(a)       (b) 

12 kN 

36 kN

60 kN 

A

B

C

D

E

F

12 kN 

36 kN

60 kN 

A

B

C

D

E

F = =

Fig. 13.3 A case which is often misunderstood.
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A tells us that the force in member AC – whatever it is – must be equal to 
the force in AD and, as the direction of the arrows must oppose each other 
at joint A for equilibrium, members AC and AD are either both in compres-
sion or both in tension. This is illustrated in Fig. 13.4 (b).

As there are no diagonal members present at joint E in Fig. 13.4 (c), the 
force in vertical member EG must be equal to the support reaction R. Fur-
thermore, the force in horizontal member EH must be zero as there is no 
opposing horizontal external load. See Fig. 13.4 (d).

If we consider vertical and horizontal equilibrium at joint J in Fig. 13.4 
(e) we will see that the forces in members KJ and JL must both be zero as 

 (a)        (b) 

  (c)       (d) 

(e)       (f) 
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Fig. 13.4 Standard cases.
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there are neither external forces nor diagonal members at joint J. This is 
shown in Fig. 13.4(f).

You should realise by now that the force in member ST in Fig. 13.4 (g) 
is not P. There are diagonal members present at joint S: the vertical com-
ponents of the forces in these diagonal members will oppose the force P. 
The force in ST is in fact zero because there is no opposing external vertical 
force (or diagonal members to provide an opposing vertical force) at joint 
T. See Fig. 13.4 (h).

Study the standard cases shown in Fig. 13.4 and note particularly the 
presence or absence of diagonal members at the various joints.

The infl uence of diagonal members
It would be wonderful, from the analysis point of view, if pin-jointed 
frames contained no diagonal members. Unfortunately, they always do: di-
agonal members are required to assure the frame’s stability. So how do we 
analyse joints where diagonal members are present? Look at Fig. 13.5 (a), 
which shows a joint at the end of a frame. The joint comprises a horizontal 
member (AB) connected to a member inclined at an angle of 60 degrees to 
the horizontal (BC). A vertical external force of 3 kN acts at the joint. We 
wish to fi nd the forces in members AB and BC.

If we resolve vertically at B, we can determine the force in member BC. 
The total force down at the joint (3 kN) will be equal to the total force up, 
which must be the vertical component of the force in member BC. So:

FBC.sin 60 = 3 kN, therefore FBC = 3.46 kN

If we now resolve horizontally at B, we can calculate the force in member 
AB. The force in member AB will be equal to the horizontal component of 
the force in member BC. So: 

FAB = FBC.cos 60, therefore FAB = (3.46 × 0.5) = 1.73 kN

(a)        (b) 

A
B

C

K L

M

N

15 kN 3 kN 

60º 60º

Fig. 13.5 Joints with diagonal members.
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Now look at the joint L shown in Fig. 13.5 (b). We want to calculate the force 
in each of members KL, LM and LN, but it is not possible to do so from 
the information given: if we try to resolve either horizontally or vertically, 
we generate equations with more than one unknown, which cannot be 
solved. When analysing a frame with a joint like this, we should not start 
our analysis at this joint. Instead, we should start at another joint which 
resembles one of the examples above.

Now we will work through an entire framework in order to calculate 
all the forces in that frame. (Note: if the above calculation makes no sense 
at all to you, go back and read Chapter 7 – particularly the part on compo-
nents.)

Worked example No. 1
See Fig. 13.6. The procedure is as follows:

(1) Calculate the end reactions RA and RE in the same way as you would 
for a beam (see Chapter 9).

(2) Proceed through the framework node by node, using the rules above 
to calculate the forces (and the directions of those forces) in each mem-
ber.

Frequently Asked Question: How do I know which node to start at and 
which order to proceed through the nodes?

This is where the analysis becomes intuitive. You have to start at a node 
where there is not more than one unknown – but identifying such a node 
is not easy for the novice. Generally you should start at a support position, 
then move on to an adjacent node. The following example shows you how.

60 kN

RA RE

3 m 2 m

2 
m

 

A

B C D

E
F

�1 �2

Fig. 13.6 Worked example No. 1.
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Method of resolution at joints  113

Determination of reactions

From vertical equilibrium, the total force up ↑ = the total force down ↓. 
Therefore

RA + RE = 60 kN

This doesn’t tell us what RA is, neither does it tell us what RE is. It simply 
tells us that the two of them added together equals 60 kN. To evaluate 
RA and RE, we need another equation. This further equation can be deter-
mined from moment equilibrium, discussed in Chapter 6, which tells us 
that the total clockwise moment about any stationary point is equal to the 
total anticlockwise moment about that point.

Considering moments about point A

Clockwise moment about point A due to external forces = 60 kN × 3 m

Anticlockwise moment about point A due to external forces = RE × 5 m

Equating these two:

RE × 5 m = 60 kN × 3 m

Therefore

RE = 60 kN × 3 m/5 m = 36 kN

Now since RA + RE = 60 kN (discussed above), then

RA = 60 – 36 = 24 kN

Applying the ‘common sense check’ (introduced in Chapter 9): the 60 kN 
load (which is the only load on the structure) acts to the right of centre, so 
it will be the right-hand support which ‘does the most work’ in supporting 
the structure. Therefore we would expect the right-hand reaction (RE) to be 
the greater of the two, which in fact it is (36 kN is greater than 24 kN).

Let’s now add the reactions we’ve calculated to our diagram of the 
frame. See Fig. 13.7.

Analysis of the frame
Throughout this analysis, the following notation will be used:

FAB represents the force in member AB

FBC represents the force in member BC

… and so on.

Node A
There are three ‘legs’ to joint A:

• the vertical reaction RA

• the vertical member AB

• the horizontal member AF.
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Resolving vertically at joint A
The term ‘resolving vertically’ means that we are considering the vertical 
forces (and vertical components of forces) associated with joint A, mindful 
of the fact that, for equilibrium, the total upward force at A is equal to the 
total downward force at A.

Joint A experiences an upward force of 24 kN, in the form of the vertical 
reaction RA. This means that, for equilibrium, there must be an (opposing) 
downward force of 24 kN at A. Since member AF, being horizontal, can 
contain only a purely horizontal force (i.e. no component of vertical force 
– see Rule 3 above), the downward 24 kN force can occur only in member 
AB. Therefore the force in member AB, FAB, is 24 kN and is downwards in 
direction at end A.

Member AB
The principle of equilibrium applies in all parts of a structure or frame-
work: not only at all nodes but in all members too. We have just determined 
that the force in member AB is 24 kN downwards at end A. As previously 
stated, wherever there is a downward force there must be an equal and op-
posite upward force, so it follows that there must be an upward force of 24 
kN in member AB at end B.

Resolving horizontally at joint A
The term ‘resolving horizontally’ means that we are considering the hori-
zontal forces (and horizontal components of forces) associated with joint 
A, mindful of the fact that, for equilibrium, the total horizontal force to the 
left at A is equal to the total horizontal force to the right at A.

60 kN

RA = 24 kN RE = 36 kN

3 m 2 m

2 
m

 

A

B C D

E
F

�1 �2

Fig. 13.7 Worked example No. 1 – with reactions calculated.
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The reaction at A, RA, is purely vertical and has no horizontal compo-
nent. Similarly, the force in member AB (which we now know to be 24 
kN) is also purely vertical and has no horizontal component. Since there 
are no other external forces at joint A, the only member at joint A that can 
experience a horizontal force is member AF. And since there are no other 
horizontal forces to oppose it, the force in member AF, FAF, must be zero.

Our framework now looks as shown in Fig. 13.8.
We can now carry out a similar analysis of joint E. Using exactly the 

same approach as we used above for joint A, it can be shown that the force 
in member DE, FDE, is 36 kN downwards (at end E) and the force in mem-
ber FE, FFE, is zero.

Our framework now looks as shown in Fig. 13.9.

Joint B
There are three ‘legs’ to node B:

• the vertical member AB (which contains a vertical force only);

• the horizontal member BC (which contains a horizontal force only);

• the inclined member BF (which, being inclined, will contain both hori-
zontal and vertical components of force).

Resolving vertically at joint B
The only two members connecting at joint B that can have a vertical com-
ponent of force are AB and BF. (Member BC, being horizontal, has no verti-
cal force – see Rule No. 1 at the beginning of this chapter.)

We already know that there is an upward vertical force of 24 kN at joint 
B, contained in member AB. For equilibrium, there must be an opposing 

60 kN

RA = 24 kN RE = 36 kN

3 m 2 m

2 
m
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B C D

E
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24
 k
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Fig. 13.8 Worked example No. 1 – forces in members AB and AF calculated.
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(downward) force of 24 kN and this must occur in member BF (i.e. the only 
other member at joint B that can contain a vertical force). Therefore the 
vertical component of the force in member BF must be 24 kN downwards.

Remembering that the vertical component of a force F at an angle θ is 
F.sin θ, it follows that in this case:

FBF × sin θ1 = 24 kN

Now θ1 is the angle AFB = the inverse tan of 2/3 = 33.7°. Therefore

 FBF × sin 33.7° = 24 kN

So

FBF = 24/sin 33.7° = 43.3 kN

Let’s now consider the direction of this force. We have said that the ver-
tical component of the force in member BF (at end B) must act downwards. 
This means that the force in member BF (at end B) must act downwards 
and to the right. Because equilibrium must apply in members as well as 
joints, this means that the force in member BF at end F must oppose the 
force at end B; in other words, it must act upwards and to the left.

Because the arrows in member BF point towards each other, member BF 
must be in tension. (Remember from Chapter 3: if the arrows in a member 
point towards each other, that member is in tension. Think of the letter ‘T’ 
– the fi rst letter of the words ‘towards’ and ‘tension’.)

The framework now looks as shown in Fig. 13.10.
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Fig. 13.9 Worked example No. 1 – forces in members DE and EF calculated.
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Method of resolution at joints  117

Resolving horizontally at joint B
The only two members connecting at joint B that can have a horizontal 
component of force are BF and BC. (Member BA, being vertical, has no 
horizontal force – again, see Rule No. 1 at the beginning of this chapter.) If 
the force in member BF (at end B) is 43.3 kN downwards and to the right, 
then the horizontal component of this force is FBF cos θ1 = 43.3 × cos 33.7° = 
36 kN (to the right).

For equilibrium, there must be an opposing (to the left) force of 36 kN 
and this must occur in member BC (i.e. the only other member at joint B 
that can contain a horizontal force). So, the force in member BC (at end B) is 
36 kN to the left. This will be opposed by a force of 36 kN to the right at end 
C. Therefore the two arrows in member BC point away from each other, so 
member BC must be in compression.

Our framework now looks as shown in Fig. 13.11.
We can now carry out a similar analysis of joint D. Using exactly the 

same approach as we used above for joint B, it can be shown that the force 
in member DF, FDF, is 50.9 kN downwards and to the left (at end D) and 
the force in member DC, FDC, is 36 kN to the right (at end D). (If you don’t 
get those fi gures, remember that we have a different angle in this case: 
θ2 = 45°.)

Our framework now looks as shown in Fig. 13.12.

Joint C
Analysis of joint C is straightforward, as there are no inclined members to 
complicate matters.
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Fig. 13.10 Worked example No. 1 – force in member BF calculated.
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118  Basic Structures for Engineers and Architects

Resolving vertically at joint C
There is a downward external vertical downwards force of 60 kN at joint 
C. To oppose this, the force in member CF (at end C) must be upwards. The 
force at the other end of CF will be downwards, therefore the member is 
in compression.
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Fig. 13.11 Worked example No. 1 – forces in member BC calculated.
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Fig. 13.12 Worked example No. 1 – forces in members DF and DC 
calculated.
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Method of resolution at joints  119

Resolving horizontally at joint C
The 36kN force in member BC (at end C) is to the right, therefore, to oppose 
this, the force in member CD (at end C) must also be 36 kN, but to the left. 
The force at the other end of CD will be to the right, therefore the member 
is in compression.

The framework now looks as shown in Fig. 13.13.
We have now established the magnitudes and directions of the forces 

in all the members. So have we fi nished this example? No, not quite. It 
would be prudent to carry out a check since, after all, it is quite possible 
that we may have made a mistake somewhere in our calculations. We can 
do this by resolving at a point not considered in our earlier calculations 
and checking, by calculation, that the forces previously calculated balance 
at that point.

Check: Resolving vertically at joint F
As elsewhere, the total force up at joint F should equal the total force down. 
There are no external forces at joint F. The following members meet at joint 
F: AF, BF, CF, DF and EF. Members AF and EF are horizontal so can have no 
vertical forces (or vertical components of force) in them, so can be ignored 
when resolving vertically. This leaves members BF, CF and DF.

In our earlier calculations, we found that the vertical components of the 
forces in members BF and DF are upwards and we found that the vertical 
force in the (vertical) member CF is downwards. It follows, for equilib-
rium, that the sum of the vertical components of forces in members BF and 
DF (acting upwards) must equal the vertical force in member CF (acting 
downwards).
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Fig. 13.13 Worked example No. 1 – frame fully analysed.
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120  Basic Structures for Engineers and Architects

Vertical component of force in member:

BF = FBF. sin θ1 = 43.3 × sin 33.7° = 24 kN ↑

Vertical component of force in member:

DF = FDF. sin θ2 = 50.9 × sin 45° = 36 kN ↑

Vertical force in member:

CF = 60 kN ↓

Since 24 + 36 = 60, there is vertical equilibrium at joint F, so our earlier 
calculations are shown to be correct. A further check could be carried out 
by considering horizontal equilibrium at joint F.

Worked example No. 2
See Fig. 13.14. A different example, but the principles and the procedure 
are the same.

Determination of reactions

From vertical equilibrium, the total force up ↑ = the total force down ↓. 
Therefore

RA + RB = 200 kN

Once again, this doesn’t tell us what RA is, neither does it tell us what RB 
is. It simply tells us that the two of them added together equals 200 kN. To 

200 kN 

RA RC

0.5 m 1.5 m

A

B

C
60º 30º

Fig. 13.14 Worked example No. 2.
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Method of resolution at joints  121

evaluate RA and RB, we need another equation. This further equation can 
be determined from moment equilibrium, discussed in Chapter 6, which 
tells us that the total clockwise moment about any stationary point is equal 
to the total anticlockwise moment about that point.

Considering moments about point A

Clockwise moment about point A due to external forces = 200 kN × 0.5 m

Anticlockwise moment about point A due to external forces = RB × 2 m

Equating these two:

RB × 2 m = 200 kN × 0.5 m

Therefore

RE = 200 kN × 0.5 m/2 m = 50 kN

Now since RA + RB = 200 kN (discussed above), then

RA = 200 – 50 = 150 kN

Applying the ‘common sense check’: the 200 kN load (which is the only 
load on the structure) acts to the left of centre, so it will be the left-hand 
support which ‘does the most work’ in supporting the structure. Therefore 
we would expect the left-hand reaction (RA) to be the greater of the two, 
which in fact it is (150 kN is greater than 50 kN).

Let’s now add the reactions we’ve calculated to our diagram of the 
frame. See Fig. 13.15.

200 kN 

RA = 150 kN RC = 50 kN
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Fig. 13.15 Worked example No. 2 – with reactions calculated.
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122  Basic Structures for Engineers and Architects

Analysis of the frame
As before, the following notation will be used throughout this analysis:

FAB represents the force in member AB

FBC represents the force in member BC

… and so on.

Node A
There are three ‘legs’ to joint A:

• the vertical reaction RA

• the inclined member AB

• the horizontal member AC.

Joint A experiences an upward force of 150 kN, in the form of the vertical 
reaction RA. This means that, for equilibrium, there must be an (opposing) 
downward force of 150 kN at A. Since member AC, being horizontal, can 
contain only a purely horizontal force (i.e. no component of vertical force 
– see Rule 3 above), then the downward 150 kN force can occur only in 
member AB. Therefore the vertical component of the force in member AB 
is 150 kN. So

FAB × sin 60° = 150 kN

Therefore

FAB = 150/sin 60° = 173.2 kN

which is downwards (and to the left) in direction at end A.

Member AB
As in the previous example, the downward (and to the left) force of 173.2 
kN at end A of member AB must be opposed by an equal and opposite up-
ward (and to the right) force of 173.2 kN at end B. (As the two arrows point 
away from each other, the member AB is in compression.)

Resolving horizontally at joint A
The term ‘resolving horizontally’ means that we are considering the hori-
zontal forces (and horizontal components of forces) associated with joint 
A, mindful of the fact that, for equilibrium, the total horizontal force to the 
left at A is equal to the total horizontal force to the right at A.

The reaction at A, RA, is purely vertical and has no horizontal compo-
nent. But the force in member AB (which we now know to be 173.2 kN) 
is inclined and therefore will have a horizontal component. Member AC, 
being horizontal, will also experience a horizontal force. Since there are 
no other external forces at joint A, the force in member AC must be equal 
to the horizontal component of the force in member AB – but opposite in 
direction. So

FAC = FAB × cos 60°
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Method of resolution at joints  123

But

FAB = 173.2 kN (calculated above)

Therefore

FAC = 173.2 × cos 60° = 173.2 × 0.5 = 86.6 kN

Since the horizontal component of the force in member AB (at end A) acts 
to the left, the horizontal force in member AC (at end A) must act to the 
right.

Our framework now looks as shown in Fig. 13.16.
We can now carry out a similar analysis of joint C. Using exactly the 

same approach as we used above for joint A, it can be shown that the force 
in member CB, FCB, is 100 kN downwards and to the right (at end C) and 
the force in member BA, FBA, is 86.6 kN to the left (at end C) which, as we 
would expect, exactly counteracts the force of 86.6 kN to the right at end A 
of that member. (Since the arrows in member AB point towards each other, 
the member is in tension – remember the letter ‘T’).

Our framework now looks as shown in Fig. 13.17.
We have now established the magnitudes and directions of the forces 

in all the members, but, as with the previous example, it would be wise 
to carry out a check by resolving at a point not considered in our earlier 
calculations and checking, by calculation, that the forces previously calcu-
lated balance at that point. If you were to resolve vertically at joint C, you 
should fi nd that the forces at that joint balance.

200 kN 

RA = 150 kN RC = 50 kN

0.5 m 1.5 m

A

B

C
60º 30º

173.2 kN 

86.6 kN 

Fig. 13.16 Worked example No. 2 – forces in members AB and AC 
calculated.

1405120533_4_013.indd   1231405120533_4_013.indd   123 22/02/2005   16:24:3022/02/2005   16:24:30



124  Basic Structures for Engineers and Architects

Tutorial examples
Use the method of resolution at joints to fi nd the forces in all the members 
of each frame given in Fig. 13.18.
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RA = 150 kN RC = 50 kN

0.5 m 1.5 m
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B
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173.2 kN 

86.6 kN 

100 kN

Fig. 13.17 Worked example No. 2 – frame fully analysed.
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Fig. 13.18 Method of resolution at joints: tutorial examples.
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 14Method of sections

Introduction
Sometimes we don’t need (or wish) to determine the axial force in every 
member of a given pin-jointed frame, as we did when applying the method 
of resolution at joints in Chapter 13. We may wish to calculate the force in 
only one or two of the members. In such cases, the method of sections is 
useful.

In the method of resolution at joints, we doggedly worked our way 
through the structure, joint by joint, from one end of the structure to an-
other. As you will have found, this can get tedious, particularly when the 
structure has a large number of members and joints. In the method of sec-
tions, we establish a strategically placed ‘cut line’ through the structure. 
But determining the correct position of the cut line that will enable us to 
quickly solve the problem is crucial and partly intuitive, as we shall see.

Figure 14.1 shows another case of one structure – a spherical planetari-
um building – being encased in another: a huge glass cube supported in-
ternally by steel lattice trusses.

Figure 14.2 shows London’s Swiss Re building. Popularly known as the 
‘Gherkin’ because of its distinctive shape, it was designed to provide maxi-
mum fl oor space with aerodynamic streamlining. Architect Sir Norman 
Foster and engineer Ove Arup used an external ‘diagrid’ (steel members 
forming a series of triangles) to create the complex curved shape of the 
building.
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Method of sections  127

Fig. 14.1 New York Planetarium.

Fig. 14.2 Swiss Re building, London.
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128  Basic Structures for Engineers and Architects

Background to the method of sections
Imagine a steel framework that forms part of a steel railway bridge, as 
shown in Fig. 14.3 (a). Let’s suppose that we wish to fi nd the axial forces 
in members AB, BC and CD only. If the railway bridge was an existing 
structure and we were irresponsible enough to use suitable cutting tools 
to physically cut through the structure along a line through members AB, 
BC and CD, as shown in Fig. 14.3 (b), then what would happen? Obviously, 
the bridge would collapse.

Are there any circumstances under which the bridge would not collapse 
if cut through as shown? Well, collapse looks pretty inevitable, but there 
is one circumstance under which (in theory, at least) the bridge would not 
collapse, as follows:

(a)  Original frame 

(b)  Frame with cut line

(c)  Cut frame 

C
ut

   
   

   
   

 li
ne

 

A B 

C D

FAB

FBC

FCD

A

C

A B 

C D 

Fig. 14.3 Steel railway bridge.
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Method of sections  129

• If it were possible to use some system of steel ropes, pulleys and props 
to provide exactly the same forces as existed in the members before 
they were cut, then the bridge would not collapse.

This means that if we could calculate the external forces in the cut struc-
ture that would keep that cut structure in overall equilibrium (indicated 
as FAB, FBC and FCD in Fig. 14.3 (c)), these would be the same as the internal 
forces that existed in members AB, BC and CD respectively before they 
were cut.

To summarise then, the method of sections involves calculating the 
forces in certain members in a structure by pretending that the members 
concerned have been cut through and then calculating the external forces 
on the ‘cut’ structure. This process will be illustrated through the example 
that follows.

Example of method of sections
Suppose we wish to calculate the forces in members CD, HD and HG of the 
structure shown in Fig. 14.4 (a). We need to choose an appropriate cut line. 
In this case a good choice would be a vertical cut line that passes through 
all three members, as shown in Fig. 14.4 (a).

First of all, we need to calculate the reactions in the usual way.

Calculation of reactions

From horizontal equilibrium of the whole structure:

HF = 15 kN (i.e. Total force → = Total force ←)

From vertical equilibrium:

VA + VF = 50 + 20 = 70 kN (i.e. Total force ↑ = Total force ↓)

Taking moments about point A (i.e. Total clockwise moment = Total anti-
clockwise moment):

(50 kN × 6 m) + (20 kN × 9 m) = (VF × 12 m) + (15 kN × 4 m) + (15 kN × 4 m)

So

VF = 30 kN

Taking moments about point F:

(VA × 12 m) = (15 kN × 8 m) + (50 kN × 6 m) + (20 kN × 3 m)

So

VA = 40 kN

If you don’t follow the calculations above then I suggest you revisit the 
chapters on moments and reactions (Chapters 8 and 9).
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130  Basic Structures for Engineers and Architects

The ‘cut’ section
Let us now suppose that we have cut the frame along the cut line shown 
in Fig. 14.4 (a). We will discard the part of the frame that is situated to the 
right of the cut line and will consider only the part to the left, as shown 
in Fig. 14.4 (b). If we can fi nd the external forces FCD, FHD and FHG that will 
keep this frame in equilibrium, these forces will correspond to the internal 
forces that existed in members CD, HD and HG (respectively) in the origi-
nal pin-jointed frame.

(a) Before “cutting” 

(b) After “cutting” 
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Fig. 14.4 Method of sections example.
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Equilibrium of the frame shown in Fig. 14.4 (b)
Considering vertical equilibrium:

40 kN – 50 kN + (FHD × sin θ) = 0 (i.e. Total force ↑ = Total force ↓)

You should realise that (FHD × sin θ) is the vertical component of the force 
in member HD. Revisit Chapter 7 if you are unsure about this.

From basic trigonometry related to a right-angled triangle, 

tan θ =
 4 m

 = 1.333
 3 m

Therefore θ = 53.1 degrees.
So if

40 kN – 50 kN + (FHD × sin 53.1) = 0

then

FHD = 12.5 kN

We still need to fi nd FCD and FHG. Let’s take moments about point H. (Be-
cause the unknown force FHG passes straight through point H, there will 
be no term involving FHG in the equation if we use H as our ‘pivot point’ for 
taking moments. For the same reason, FHD and the vertical 50 kN force at H 
will not come into the equation either.)

Taking moments about point H
(i.e. Total clockwise moment = Total anticlockwise moment)

(FCD × 4 m) + (40 kN × 6 m) = (15 kN × 4 m)

So

FCD = –45 kN

(The minus sign indicates that the force acts in the opposite direction to 
that assumed – so it acts to the left.)

The only remaining force to fi nd is FHG. Although we now know FCD and 
FHD, it would make life easier if we could take moments about the point 
through which both of these forces pass (i.e. point D) so there will be no 
term involving FCD or FHD (or, as it turns out, the 15 kN horizontal force 
at B). Note that it does not matter that point D is outside the frame we’re 
considering: the rules of equilibrium hold for moments taken about any 
point, anywhere.

Taking moments about point D
(i.e. Total clockwise moment = Total anticlockwise moment)

(40 kN × 9 m) = (50 kN × 3 m) + (FHG × 4 m)

So 

FHG = 52.5 kN
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We’ve now calculated forces FCD, FHD and FHG. We could check our calcu-
lations by considering horizontal equilibrium (i.e. Total force → = Total 
force ←) of the structure shown in Fig. 14.4 (b). But I’ll leave that check to 
you …

So to summarise:

• The force in member CD is 45 kN and is compressive.

• The force in member HD is 12.5 kN and is tensile.

• The force in member HG is 52.5 kN and is tensile.

Summary of the method of sections
(1) Calculate the end reactions in the usual way.
(2) Decide in which member(s) you need to determine the force.
(3) Draw a cut line that cuts through the member(s) of interest. (The cut 

line may be vertical, horizontal or inclined. It may be necessary to use 
different cut lines for different members.)

(4) From now on, consider the part of the frame on one side of the cut line 
only (it doesn’t matter which side).

(5) Use the rules of equilibrium to determine the (now external) forces 
in the members of interest. Consider horizontal and/or vertical equi-
librium and take moments about a strategically chosen point. These 
external forces correspond to the internal forces that existed in the 
members before they were ‘cut’.

What you should remember from this chapter
This chapter outlines the method of sections. This is a useful procedure 
when we are interested in calculating the forces in only some (e.g. one 
or two) of the members of a pin-jointed frame. The concept involves pre-
tending that the structure has been cut through the member concerned, 
then calculating the external forces that would be required to keep the ‘cut’ 
structure standing (i.e. in equilibrium). These external forces correspond 
to the external forces that existed in the ‘cut’ members before they were 
cut.

Tutorial examples
Use the method of sections to calculate the axial force and its sense (ten-
sion or compression) in the members stated below for each of the pin-joint-
ed frames shown in Fig. 14.5:

• Frame No. 1: CD, DE, EG and GH.

• Frame No. 2: BE and BF.

• Frame No. 3: BC, CD and DE.

Check your answers using the method of resolution at joints (Chapter 13).
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Tutorial answers

(All units are in kN)

• Frame No. 1: 57.6 (c), 48 (T), 144 (T), 129.8 (T).

• Frame No. 2: 62.5 (T), 60 (C).

• Frame No. 3: 296 (T), 200 (C), 112 (C).
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Fig. 14.5 Tutorial questions.
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 15Graphical method

Introduction
The previous two chapters discussed two methods of analysing pin-joint-
ed frames, namely the method of resolution at joints and the method of 
sections. Both of these techniques are mathematical in nature, involving 
calculation. There is a third technique, called the graphical method (also 
known as the force diagram method). The graphical method is the subject 
of this chapter.

The graphical method involves no mathematical calculation whatsoever 
once the reactions have been calculated in the usual way. This, in itself, 
makes it appealing to some students. As the name suggests, the member 
forces and the type of forces are determined by constructing scale dia-
grams, for which you will need graph paper.

Example 15.1
The graphical method is best explained through example. The example we 
shall be working through in this chapter is illustrated in Fig. 15.1.

In the previous methods for pin-jointed frame analysis we labelled the 
joints. In the graphical method, we don’t label the joints; instead, we label 
the areas or zones between the members of the frame and we do so in ac-
cordance with Bow’s Notation, which is outlined below.

The graphical (force diagram) method in brief

(1) Draw a load line for the applied loads and reactions, to scale. Start 
from the left-hand support.

(2) Using Bow’s Notation (see below), construct a force diagram, one joint 
at a time, drawing each line parallel to the direction of the member in 
the framework.
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(3) Load values can now be scaled from the diagram.
(4) To determine the type of load in a member (i.e. tensile/compressive), 

‘travel’ clockwise round a joint and note the force direction at the 
joint.

(5) Construct a table.

Bow’s Notation

Bow’s Notation, named after its creator, is a convention for labelling the 
various zones in a diagram of a pin-jointed frame. Bow’s Notation suggests 
the following:

(1) Letter the spaces between the external applied loads and reactions.
(2) Number the spaces between internal members.
(3) Start with the letter ‘A’ between the reactions and work round the 

frame in a clockwise direction.
(4) Start with the number 1 in the fi rst left-hand space inside the frame-

work.

If we label our frame in accordance with Bow’s Notation, it will appear as 
shown in Fig. 15.2. Notice that the boundaries between the external zones 
(A, B, etc.) are defi ned by the positions of the lines of the external forces 
and reactions and the members of the framework defi ne the frontiers be-
tween the internal zones (1, 2, etc.).

As we progress through this problem, we will be constructing a dia-
gram (called a force diagram) on a blank piece of graph paper. As we do 
this we will continually be referring back to the diagram shown in Fig. 
15.2, which I will call the frame diagram.

20 kN  40 kN 

80 kN 

4 m 4 m 

3 
m

 

Fig. 15.1 Graphical method example.
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Calculation of reactions

Let’s start by calculating the reactions, which we will call VL (vertical reac-
tion, left-hand support), VR (vertical reaction at right-hand support) and HR 
(horizontal reaction, right-hand support).

From horizontal equilibrium,

HR = 80 kN →

From vertical equilibrium,

VL + VR = 20 + 40 = 60 kN

Taking moments about left-hand support:

(40 kN × 8 m) = (80 kN × 3 m) + (VR × 8 m)

So

VR = 10 kN

and therefore

VL = 50 kN

Construction of the force diagram

We are now in a position to start constructing the force diagram. The vari-
ous stages in the construction of this diagram are illustrated in Fig. 15.3.

Start with a blank piece of graph paper. Somewhere in the middle of the 
sheet, select a point and label it a. This (lower-case) a symbol on the force 
diagram corresponds to the (upper-case) zone A on the frame diagram. 
On the frame diagram (Fig. 15.2), you will notice that to get from zone A to 
zone B you need to cross a 50 kN upward force. This is represented on the 

20 kN  40 kN 

80 kN 

4 m 4 m 

3 
m

 

A F 

B
E

C D 

1

2

3

4

VL = 50 kN VR = 10 kN 

HR = 80 kN

Fig. 15.2 Application of Bow’s Notation (frame diagram).
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force diagram by drawing a line vertically upwards from position a (repre-
senting zone A) for a distance representing 50 kN to arrive at a new posi-
tion b (which represents zone B). To do this on graph paper, you will need 
to adopt a suitable scale – I would suggest a scale of 1 mm = 1 kN would be 
suitable for this problem on an A4 sheet of graph paper.

So … the line 50 mm long, going up from point a to point b on the force 
diagram, represents the upward force (reaction) of 50 kN that you have to 
cross to get from zone A to zone B on the force diagram.

Returning to the frame diagram, getting from zone B to zone C entails 
crossing a 20 kN downward force (see Fig. 15.2). On the force diagram 
(Fig. 15.3) this is represented by drawing a line vertically downwards from 
position b of length 20mm (equivalent to 20 kN). The point arrived at is 
labelled c and represents zone C on the frame diagram.

Back with the frame diagram again, it can be seen that:

(a)       (b) 

(c)       (d) 

80

40
 

20
 

50
10

d,f

e
a

c

b

20

d,f

e
a

c,1

b

2

20

d,fe

a

c,1

b

2

3

d,f

e
a

c,1

b

2

3

4

50

40 40 
30

10

Fig. 15.3 Force diagram.
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• getting from zone C to zone D involves crossing a 40 kN force (verti-
cally downwards);

• getting from zone D to zone E involves crossing an 80 kN force (to the 
left);

• getting from zone E to zone F involves crossing an 80 kN force (to the 
right); and

• getting from zone F to zone A involves crossing a 10 kN force (verti-
cally upwards).

These are represented, respectively, by:

• a vertical line downwards from c, 40 mm long, to establish d;

• a horizontal line leftwards from d, 80 mm long, to establish e;

• a horizontal line rightwards from e, 80 mm long, to establish f;

• a vertical line upwards from f, 10 mm long, to establish a.

The resultant force diagram is shown in Fig. 15.3 (a).
The next task is to locate the points 1, 2, 3 and 4 on the force diagram, 

which respectively represent zones 1, 2, 3 and 4 on the frame diagram. 
Examine zone 1 on the frame diagram (Fig. 15.2). It is separated from zone 
B by a vertical member and from zone C by a horizontal member. This 
dictates that on our force diagram:

• point 1 lies on a vertical line that also passes through point b; and

• point 1 lies on a horizontal line that also passes through point c.

So point 1 (representing zone 1) must lie at the point shown on Fig. 15.3 (b).
Moving on to zone 2 on the frame diagram, it can be seen that this is 

separated from zone A by a horizontal member and from zone 1 by a diag-
onal line sloping upwards and to the right at an angle of ‘4 squares along, 3 
squares up’ (or 36.9 degrees). So point 2 can be found on our force diagram 
from the following two rules:

• point 2 lies on the diagonal line (angle defi ned above) that also passes 
through point 1; and

• point 2 lies on a horizontal line that also passes through point a.

So point 2 must lie at the point shown on Fig. 15.3 (b).
From a similar process, point 3 lies at the point where a vertical line 

through point 2 intersects a horizontal line through point c (see Fig. 15.3 
(c)) and point 4 lies at the point where a vertical line through point e meets 
a horizontal line through point a. The completed force diagram is shown 
in Fig. 15.3 (d).

Using the force diagram to determine the magnitude of forces

Now comes the easy bit. To determine the force in a member, you simply 
scale off the distance between the relevant two points on the force dia-
gram (Fig. 15.3 (d)). For example, to determine the force in the right-hand 
diagonal member of the framework, which separates zone 3 from zone 4 on 
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the frame diagram (Fig. 15.2), you need to measure the distance between 
points 3 and 4 on the force diagram (Fig. 15.3 (d)). This distance is 50 mm 
and thus the force in the member is 50 kN. (Note: Please do not scale off 
the diagrams in this book as they are not to the correct scale. But your own 
force diagram will be.)

Similarly, to determine the force in the central vertical member, which 
separates zones 2 and 3 on the frame diagram, it is necessary to measure 
the distance between points 2 and 3 on the force diagram. It can readily be 
seen from Fig. 15.3 (d) that this distance is 30 mm and thus the force in the 
member is 30 kN.

If you were to carry out this process for the remaining members, the 
forces you would obtain are shown in Table 15.1.

We’re now half way to solving this problem. We have worked out the 
magnitudes of the forces in each member. Keep reading to fi nd out how we 
determine the type of force (tension or compression) in each member.

The van driver analogy
Imagine you are a delivery van driver, based in the town of Mitchellstown. 
On a particular day, you have to make deliveries to addresses in three dif-
ferent towns: Pennyport, Jackston and Charlesville. It is up to you to decide 
the order in which you visit the three towns. The highway system linking 
the three towns to each other and Mitchellstown is shown in Fig. 15.4 (a). 
From this you can see that the most effi cient two options are:

(1) Mitchellstown – Pennyport – Jackston – Charlesville – Mitchellstown 
(i.e. a clockwise circuit).

(2) Mitchellstown – Charlesville – Jackston – Pennyport – Mitchellstown 
(i.e. an anticlockwise circuit).

Table 15.1 Member forces in Example 15.1

Member reference Axial force in member (kN)

B–1 20

C–1  0

1–2 50

A–2 40

2–3 30

C–3 40

3–4 50

A–4 80

E–4 10

The member references represent the zones (as shown in Fig. 15.2) that the 
member lies between. For example, member B–1 lies between zones B and 1 
(i.e. the left-hand vertical member), member 3–4 lies between zones 3 and 4 
(i.e. the right-hand inclined member) and so on.
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You are trying to decide which of the options to go with when your boss 
comes running out of his offi ce. He tells you he has had an urgent phone 
call and asks you to do the Charlesville delivery fi rst. So the decision is 
made for you: you need to visit the towns in the order given in the second 
option above, shown in Fig. 15.4 (b).

Calculation of the sense (compressive or tensile) of the 
internal forces in the framework

Returning to the example presented in Fig. 15.1, we have now drawn our 
force diagram (Fig. 15.3), from which we have scaled off the magnitude 
of the forces (presented in Table 15.1). But how do we determine which of 
these forces are in tension and which are in compression?

Joint at top right-hand corner of frame

Consider the top right-hand corner of the frame in our example. By inspec-
tion of Fig. 15.2, it can be seen that fi ve zones meet at this point. (If it helps, 
and if you’ve got agricultural interests, it might help to consider this point 
as the place where fi ve fi elds meet and you have to name them.) The fi ve 
zones meeting at this point are: C, D, E, 3 and 4.

If we now turned to the force diagram (Fig. 15.3 (d)) and superimposed 
thick lines on it representing the links between these fi ve points (c, d, e, 3 and 
4) we would end up with the diagram shown in Fig. 15.5 (a). Now we know 
that a 40 kN downward force separates zones C and D (Fig. 15.2), so this can 
be represented by a downward arrow between points c and d in Fig. 15.5 (a). 
Similarly, the 80 kN leftward force separating zones D and E can be repre-
sented by a leftward arrow between points d and e in Fig. 15.5 (a).

Charlesville 

Mitchellstown

Jackston

Pennyport

Charlesville 

Mitchellstown

Jackston

Pennyport

(a)       (b) 

Fig. 15.4 A van driver’s delivery route.
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By reference to the van driver’s analogy above, the directions of these 
two forces determine the directions of the other forces to complete the cir-
cuit in Fig. 15.5 (a) – shown by arrow heads. So the force in line e–4 is 
upwards, 4–3 is upwards and rightwards and in line 3–c is rightwards, 
as shown in Fig. 15.5 (a). If we transfer these force directions to the cor-
responding members of the frame diagram we see that the direction of the 
forces on the frame diagram will be as shown in Fig. 15.5 (b).

Joint at bottom left-hand corner of frame

Now let’s consider the bottom left-hand corner of the frame. Looking at 
Fig. 15.2, it can be seen that four zones meet at this point, namely A, B, 1 
and 2. If we now turned to the force diagram (Fig. 15.3 (d)) and superim-
posed thick lines on it representing the links between these four points (a, 
b, 1 and 2) we would end up with the diagram shown in Fig. 15.5 (c).

(a)       (b) 

(c)       (d) 

d,fe

a

c,1

b

2

3

4

d,fe

a

c,1

b

2

3

4

C D

E

4

3

40 kN 

80 kN

VL

1

2B

A

Fig. 15.5 Determining force directions.
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Now we know that a 50 kN upward force separates zones A and B (see 
Fig. 15.2), so this can be represented by an upward arrow between points 
a and b in Fig. 15.5 (c).

Once again, the direction of this force determines the directions of the 
other forces to complete the circuit in Fig. 15.5 (c) – shown by arrow heads. 
This tells us that the force in line b–1 is downwards, 1–2 is downwards and 
leftwards, and 2–a is rightwards. So the direction of the forces on the frame 
diagram will be as shown in Fig. 15.5 (d). Repeating the process for every 
joint will give the arrow formation shown in Fig. 15.6. Remember:

• Arrows pointing towards each other indicate tension.

• Arrows pointing away from each other indicate compression.

So, to sum up, the procedure for determining which members are in ten-
sion and which are in compression is as follows:

(1) Consider each joint in turn.
(2) For the chosen joint, consider which zone numbers/letters directly 

contact the joint.
(3) Draw a thick line connecting the corresponding zone numbers on the 

force diagram.

20 kN  40 kN 

80 kN 

4 m 4 m 

3 
m

 

A F 

B
E

C D 

1

2

3

4

VL = 50 kN VR = 10 kN 

HR = 80 kN

tension

compression 

no force 

Fig. 15.6 Direction of forces in members.
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(4) The direction of the force between two of the zone numbers is usually 
known. From this the direction of all the other forces can be deter-
mined.

The roof shown in Fig. 15.7, which was photographed from the platform 
of an underground railway station many metres below, is a typical space 
frame. A space frame is a three-dimensional pin-jointed frame and has to 
be designed accordingly.

What you should remember from this chapter
This chapter describes the graphical method, which is a procedure for 
determining the forces in pin-jointed frames using drawing rather than 
calculation. The procedure can best be learned by following the example 
used in this chapter and applying it to the tutorial examples given in the 
following section.

Fig. 15.7 Steel space frame roof, Lille Europe metro station, France.
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Tutorial examples
Use the graphical method to determine the forces in each member of each 
of the examples illustrated in Fig. 15.8. In each case, fi nd out whether the 
force is tensile or compressive. Then either:

• check your answers using the method of resolution at joints (Chapter 
13); or

• check the forces in selected members using the method of sections 
(Chapter 14).

60 kN 108 kN 162 kN 80 kN

3 
m

 

3 m 3 m 3 m

1

2

4

3

4 
m

 
4 

m
 

4 
m

 

3 m 

8 kN 

12 kN 

16 kN

5 m 5 m 5 m

3 
m

 

8 kN 

16 kN16 kN 

8 kN 

40 kN 60 kN 

3 m3 m 

all angles  
60 degrees 

Fig. 15.8 Tutorial questions.

1405120533_4_015.indd   1441405120533_4_015.indd   144 23/02/2005   20:29:3623/02/2005   20:29:36



 16Shear force and bending moments

Introduction
We encountered the concepts of shear and bending in Chapter 3. In this 
chapter these concepts are explored further and their quantifi cation and 
calculation are explained.

Deformation of structures
Imagine that the beams indicated by the thick solid horizontal lines in Fig. 
16.1 are quite fl exible but not particularly strong, so will readily deform 
under the loads shown. The lines in Fig. 16.2 indicate the deformed (or 
defl ected) forms of the corresponding beams in Fig. 16.1.

Hogging and sagging

We’re going to discuss the deformations shown in Fig. 16.2, but before we 
do so let’s defi ne two important terms. You have probably already encoun-
tered the term sagging – for example, you may have a bed that sags, or 
dips, in the middle (in which case, my advice is: get a better bed – it’s well 
worth the investment). Sagging, or downward deformation, is illustrated 
in Fig. 16.3 (a).

Hogging – an upward deformation – is the opposite (or mirror image) of 
sagging. The concept of hogging is illustrated in Fig. 16.3 (b).

Discussion of the defl ected forms shown in Fig. 16.2

Consider, as an example, beam number 1 in Fig. 16.1, which is simply sup-
ported at either end and is subjected to a central point load. Clearly, the 
beam will tend to sag under that load, as indicated by the line in the corre-
sponding diagram in Fig. 16.2. When the beam has sagged, the fi bres in the 
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very top of the beam will be squashed together; in other words, they will 
be compressed. Similarly, the fi bres in the bottom part of the beam will 
have stretched, which indicates that the bottom of the beam is in tension. 
The fact that the bottom of the beam is in tension is indicated by the letter 
T (for tension) placed underneath the line in beam number 1 in Fig. 16.2.

Beam number 2 in Fig. 16.1 will tend to hog (or ‘break its back’) over the 
central support as a result of the point loads at either end. This hogging 
profi le is indicated by the line in the corresponding diagram in Fig. 16.2. 
In this case, we will see that the top of the beam will be in tension and 
therefore we’ve indicated tension (letter T) above the line at the support 
position.

We can analyse the remaining beams in Fig. 16.1 in a similar fashion 
and obtain the deformed profi les and tension positions for each one (indi-
cated by the lines and letter T respectively in Fig. 16.2).

1 2

3 4

5 6

7

8

Fig. 16.1 Deformations in beams.
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1 2

3 4

5
6

7

T

T T

T T

T T

T

T

T

T

8

T

TT

Fig. 16.2 Deformations in beams – indicated.

(a) sagging 

(b) hogging 

Fig. 16.3 Hogging and sagging.
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If you have diffi culty visualising the deformation of the beam shown in 
beam number 4, replicate the situation by holding a standard-length ruler 
horizontal by gripping it fi rmly with your left hand at its left-hand end and 
applying an anticlockwise twist with your right hand at the right-hand 
end. You will then see the ruler deform in the manner depicted for beam 
number 4 in Fig. 16.2 and tension will occur on the underside.

When examining the deformed shapes of the beams indicated in Fig. 
16.2 for beams 6 and 7, remember that a fi xed support fi rmly grips a beam, 
while a pinned (or simple) support permits rotation to take place. (See 
Chapter 10 to remind yourself of the various support types.)

If you completely understand Fig. 16.2, move on to the next section.

Shear and bending
You were introduced to the concepts of shear and bending in Chapter 3. 
These two terms represent the ways in which a structural member (for ex-
ample, a beam) can fail and were illustrated in Figs 3.4 and 3.5. To remind 
you:

(1) Shear is a cutting or slicing action which causes a beam to simply 
break or snap. As discussed in Chapter 3, a heavy load located near 
the support of a weak beam might cause a shear failure to occur.

(2) If a beam is subjected to a load it will bend. The more load that is ap-
plied, the more the beam will bend. The more the beam bends, the 
greater will be the tensile and compressive stresses induced in the 
beam. Eventually, these stresses will increase beyond the stresses the 
material can bear and failure will occur – in other words the beam 
will break. In short, if you increase the bending in a beam, eventually 
it will break.

So, a beam can fail in shear or it can fail in bending. A natural question 
at this stage is: which will occur fi rst? Unfortunately, there is no general 
answer to that question. In some circumstances, a beam will fail in shear; 
in other cases, a beam will fail in bending. Which happens fi rst depends 
on the longitudinal profi le of the beam: its spans, the position and nature 
of its supports and the positions and magnitudes of the loading on it. Only 
by calculation can we tell whether a shear or a bending failure will occur 
fi rst.

The fi rst thing we need to do is develop a system of quantifying shear 
and bending effects. These quantifi cations are called shear force and bend-
ing moment respectively and are defi ned in the following paragraphs.

Shear force

A shear force is the force tending to produce a shear failure at a given point 
in a beam.

The value of shear force at any point in a beam = the algebraic sum of all 
upward and downward forces to the left of the point. (The term ‘algebraic 
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sum’ means that upward forces are regarded as being positive and down-
ward forces are considered to be negative.)

Example 16.1

Consider the example shown in Fig. 16.4, in which the end reactions 
have already been calculated as 25 kN and 15 kN as shown (you should 
check this). To calculate the shear force at point A, ignore everything to 
the right of A and examine all the forces that exist to the left of A. Re-
member, upward forces are positive and downward forces are negative. 
Adding the forces together:

Shear force at A = + 25 – 30 – 10 = –15 kN

Bending moment

The bending moment is the magnitude of the bending effect at any point 
in a beam. We encountered moments in Chapter 8, where we learned that a 
moment is a force multiplied by a perpendicular distance, it’s either clock-
wise or anticlockwise and is measured in kN.m or N.mm. The value of 
bending moment at any point on a beam = the sum of all bending moments 
to the left of the point. (Regard clockwise moments as being positive and 
anticlockwise moments as being negative.)

Consider – again – the beam shown in Fig. 16.4. To calculate the bending 
moment at point A, ignore everything to the right of A and examine the 
forces (and hence moments) that exist to the left of A. You should realise 
that, as we are calculating the moment at A, all distances should be meas-
ured from point A to the position of the relevant force. See Fig. 16.5 for 
clarifi cation.

Bending moment at A = (25 kN × 4 m) – (30 kN × 2 m) – (10 kN × 1 m)
 = 100 – 60 – 10
 = 30 kN.m

A

10 kN 30 kN 

25 kN 15 kN 

2 m 1 m 1 m 2 m 

Fig. 16.4 Example 16.1: Shear force and bending moment at a point.
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Figure 16.6 shows a more generalised case. Beam AB supports two point 
loads, M and N, located at the positions shown. The end reactions at A 
and B are RA and RB respectively. Suppose we are interested in fi nding the 
shear force at position X, which is located a distance x1 from the support A, 
x2 from point load M and x3 from point load N. The shear force and bend-
ing moment at X are calculated as follows:

Shear force at X = RA – M – N

Bending moment at X = (RA × x1) – (M × x2) – (N × x3)

(Remember: clockwise moments are positive, anticlockwise moments are 
negative.)

Shear force and bending moment: some examples

In each of the three examples shown in Fig. 16.7, calculate the shear force 
and bending moment at point D. Check your answers with those given 
below:

A

10 kN30 kN 

25 kN 15 kN 

4 m 

2 m

1 m

Fig. 16.5 Bending moment at point A.

X

NM

RA RB

x1

x2

x3

A B

Fig. 16.6 Shear forces and bending moments: general case.
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(a) Shear force at D = –52 kN; bending moment at D = 104 kN.m.
(b) Shear force at D = –17.5 kN; bending moment at D = 35 kN.m.
(c) Shear force at D = –5 kN; bending moment at D = 45 kN.m.

(If you are unsure where these answers came from, re-read the examples 
and rules given above. In example (b), the vertical component of the in-
clined 14.14 kN force is 10 kN; revisit Chapter 7 for clarifi cation.)

Up till now we’ve discussed how to calculate values of shear force and 
bending moment at a specifi c point in a beam. As engineers and archi-
tects though, we’re not interested so much in the values at a specifi c point 
as in how shear force and bending moment vary along the entire length 
of a beam. Accordingly, we can calculate and draw graphical representa-
tions of shear force and bending moment and their variation along a beam. 
These are called shear force and bending moment diagrams.

B

70 kN 51 kN 

RA = 69 kN RC = 52 kN

2 m 1 m 1 m

A
C

B

30 kN 
14.14 kN 

RA = 22.5 kN RC = 17.5 kN 

3 m 3 m 4 m

A
C

B

15 kN 35 kN 

RA = 20 kN RC = 20 kN 

2 m 1 m 1 m

A
C

2 m 

2 m 

10 kN

1 m 1 m 

10 kN 

45º

(a)

(b)

(c)

D E

D E

D

E
F

Fig. 16.7 Shear forces and bending moments at a point: examples.
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Shear force and bending moment diagrams

Example 16.2

Look at the example shown in Fig. 16.8 (a). The beam is supported at 
its two ends, A and G, and experiences an 18 kN point load at point E, 
which is 4 metres from the beam’s left-hand end. The reactions at the 
left and right hand ends are 6 kN and 12 kN respectively, as previously 
calculated in Chapter 9.

We are going to calculate the shear force and bending moment val-
ues at 1 metre intervals along the beam, in other words at points A, 
B, C, D, E, F and G. When you do this or a similar exercise yourself, I 
suggest you use graph paper and draw vertical guide lines to make the 
draughtsmanship easier.

A

18 kN 

6 kN 12 kN 

4 m 2 m 

B G

6

18 12

0
0

6 6

12 12

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

24

C D
E

F

6 6 6

12

6
12

18
12

Fig. 16.8 Example 16.2: Shear force and bending moment diagrams.
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Shear forces

(Remember, always look at what’s going on to the left of the point at which 
you’re trying to calculate shear force.) First of all, draw a horizontal straight 
line representing zero shear force. This will be the base line from which 
the shear force diagram is drawn.

There is nothing to the left of point A, so the shear force at point A is 
zero.

If we go a very small distance (say 2 millimetres) to the right of A, there 
is now a 6 kN upward force to the left of the point we’re considering. So the 
shear force at this point is 6 kN. We can represent this effect by a vertical 
straight line at point A, starting at the zero force base line and going up to 
a point representing 6 kN. Each of points B, C, D and E has a 6 kN force to 
the left of it (i.e. the reaction at point A), so the shear force at each of those 
points is 6 kN. These values can be plotted on our shear force diagram.

Now consider a point a very small distance (say 2 millimetres) to the 
right of E. If we examine all the forces to the left of this point, we see that 
there is an upward force of 6 kN (at A) and a downward force of 18 kN (at 
E). The shear force at this point must be (6 – 18) = –12 kN (which means 12 
kN below the base line). The shear forces at F and just to the left of G will 
have the same value (–12 kN).

At G itself the sum of all the forces = (6 kN – 18 kN + 12 kN) = 0 kN. So 
the shear force at G is zero. The shear force diagram is drawn in Fig. 16.8 
(b).

Bending moments

Again, we will be looking solely at forces and moments to the left of the 
point we’re considering. We will calculate the moment at each point, re-
membering that:

• clockwise moments are positive and anticlockwise moments are nega-
tive;

• distances are measured from the force concerned to the point consid-
ered.

Bending moment at A = +(6 kN × 0 m)  = 0 kN.m

Bending moment at B = +(6 kN × 1 m)  = 6 kN.m

Bending moment at C = +(6 kN × 2 m)  = 12 kN.m

Bending moment at D = +(6 kN × 3 m)  = 18 kN.m

Bending moment at E = +(6 kN × 4 m) – (18 kN × 0 m)  = 24 kN.m

Bending moment at F = +(6 kN × 5 m) – (18 kN × 1 m)  = 12 kN.m

Bending moment at G = +(6 kN × 6 m) – (18 kN × 2 m)  = 0 kN.m

The bending moment diagram is drawn in Fig. 16.8 (c).
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Hint: As we’re only looking at shear forces and bending moments to the 
left of a particular point, you might fi nd it helpful, to begin with, to use a 
piece of paper to cover up the part of the diagram to the right of the point 
you’re considering.

There is an easier way …
While the above example has given us a good feel for the way in which to 
calculate and construct shear force and bending moment diagrams, con-
sidering every metre along the beam in this way does get rather tedious. A 
quicker way of drawing the shear force and bending moment diagrams for 
the above example is as follows.

Shear force diagram – ‘follow the arrows’

Draw a base line representing zero shear force. Then start from the left-
hand end of the beam. At this point, there is an upward force of 6 kN. So 
draw a line upwards from the zero line – go up 6 kN, to a value of +6 kN. 
Going right from A, we encounter no further forces or other features until 
we reach point E, so the shear force diagram between A and E will be rep-
resented by a horizontal straight line between these two points at a value 
of +6 kN.

At point E there is a downward force of 18 kN. Our shear force diagram 
will refl ect this by dropping down by 18 kN, which takes us from +6 kN 
to –12 kN. Going right from E, we encounter no further forces or other fea-
tures until we reach point G, so the shear force diagram between E and G 
is a horizontal straight line at a value of –12 kN.

At point G there is an upward force of 12 kN. We’re already at –12 kN, so 
the upward force of 12 kN takes us back up to zero. (Note that shear force 
diagrams always end up back on the zero line. If yours doesn’t, you’ve 
made a mistake somewhere.)

The shear force diagram is shown in Fig. 16.8 (b). Of course, it is the same 
as calculated before. Note that there is nothing ‘magic’ about this process. 
All we’ve done is follow the arrows. To summarise: if a force goes upwards 
(for example, the 6 kN reaction at A), then the shear force diagram goes up 
by that amount. On the other hand, if a force goes downwards (for exam-
ple, the 18 kN force at E), then the shear force diagram jumps downwards 
at that point, again by the same amount.

Bending moment diagram – at ‘eventful’ points only and join the dots

Earlier we calculated the bending moment at 1 metre intervals along the 
beam. In fact, we need to do this only at ‘eventful’ points, plot the values 
and join the dots. ‘Eventful’ points (my term) are those points where the 
problem has some feature, e.g. a point load, a reaction or an end of the beam. 
If in doubt as to whether a particular point is ‘eventful’ or not, assume that 
it is. The ‘eventful’ points on this beam are A, E and G. We previously 
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calculated the moment values at these three points as 0, 24 and 0 kN.m re-
spectively. Plot these values and join the plotted points with straight lines 
and you have the bending moment diagram shown in Fig. 16.8 (c).

There is one further point to note. You may have been wondering why 
we elected, in Fig. 16.8 (c), to indicate the bending moment values below 
the zero line rather than above it. The convention is that the bending mo-
ment diagram is plotted on the side of the beam that experiences tension. 
From the discussion at the beginning of this chapter – and, specifi cally, 
from Fig. 16.1 – you will note that in the current example the beam will sag, 
so tension occurs in the underside of the beam, which suggests that we plot 
the bending moment diagram below the zero line.

To summarise: the bending moment diagram is drawn either above or 
below the zero line, dependent on whether the beam experiences tension 
in the top or bottom at the point concerned (top: above the line, bottom: 
below the line).

The shape of shear force and bending moment diagrams

If you examine the shape of the shear force and bending moment diagrams 
above you will notice the following features:

• The shear force diagram is a series of ‘steps’; in other words, it contains 
horizontal and vertical straight lines only.

• The bending moment diagram comprises sloping straight lines.

The above features hold for all cases where a beam is loaded with point 
loads only (i.e. no uniformly distributed loads).

To summarise: if a beam experiences point loads only, the shear force 
diagram will be a series of steps and the bending moment diagram will 
contain only straight lines (usually sloping).

The relationship between shear force and bending moment
You may explore the mathematical relationship between shear force and 
bending moment at a later stage in your course. One thing to be aware of 
now is the following rule, which always holds:

Where the shear force is zero, the bending moment is either a local maxi-
mum, a local minimum or zero.

If we look again at the example in Fig. 16.8, we see that the shear force dia-
gram touches (or cuts through) the zero line at A, E and G. If we look at the 
bending moment at each of those three points, we see it is zero at A and G 
and a maximum (24 kN.m) at E.

This rule is very useful in problems where it is diffi cult to identify the 
position of maximum bending moment. In such cases, the key lies in iden-
tifying the position(s) of zero shear force.
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156  Basic Structures for Engineers and Architects

More examples

Draw the shear force and bending moment diagrams for each of the three 
beams shown in Fig. 16.7. The solutions are given in Figs 16.18–16.20 at the 
end of this chapter.

Shear force and bending moment diagrams for uniformly distributed loads

In Chapter 9 we saw how to calculate moments for uniformly distributed 
loads. You might fi nd it worthwhile to revisit that chapter to refresh your 
memory. The rule for calculating bending moments for uniformly distrib-
uted loads is shown in Fig. 9.5 which, for convenience, is reproduced here 
as Fig. 16.9. With reference to that fi gure, the moment of the uniformly 
distributed load about A is the total load multiplied by the distance from 
the centre line of the UDL to the point about which we’re taking moments. 
The total UDL is w × x, the distance concerned is a, so:

Moment of UDL about A = wax

Apply this principle whenever you’re working with uniformly distributed 
loads.

Example 16.3 

Beam AG, shown in Fig. 16.10, spans 6 metres. It supports a uniformly 
distributed load of 4 kN/m along its entire length. Draw the shear force 
and bending moment diagrams.

A
w kN/m 

a

x

Centre line of 
Loaded length

Fig. 16.9 Bending moment calculation for uniformly distributed load (UDL): 
general case.
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First of all, calculate the reactions. This is easy in this case because of 
the symmetry of both the beam itself and its loading. Each end reaction 
will be half the total load on the beam. So

RA = RG = (4 kN/m × 6m)/2 = 12 kN

We will now try the metre-by-metre approach – as pioneered in the 
earlier example – to drawing the shear force and bending moment dia-
grams. So, we are going to calculate the shear force and bending mo-
ment values at points A, B, C, D, E, F and G.

A

4 kN/m

RA = 12 kN RG = 12 kN 

6 m

B G

12

0
0

12

4 12

12

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

16

C D E F

8
4

0

8

10
16

18

10

Fig. 16.10 Example 16.3: Shear force and bending moment diagrams: 
uniformly distributed load example.
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Shear forces

(Remember, always look at what’s going on to the left of the point at which 
you’re trying to calculate shear force.) As before, draw a horizontal straight 
line representing zero shear force. This will be the base line from which 
the shear force diagram is drawn

There is nothing to the left of point A, so the shear force at point A is 
zero.

If we go a very small distance (say 2 millimetres) to the right of A, there 
is now a 12 kN upward force (the reaction at A) to the left of the point we’re 
considering. So the shear force at this point is 12 kN. We can represent this 
effect by a vertical straight line at point A, starting at the zero force base 
line and going up to a point representing 12 kN.

Each of points B, C, D, E, F and G has this 12 kN upward force to the left 
of it (i.e. the reaction at point A), but they also have downward forces to the 
left. Let’s consider each of these points in turn.

Point B:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 1m) = 4 kN.
Therefore shear force at point B = 12 – 4 = 8 kN.

Point C:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 2m) = 8 kN.
Therefore shear force at point C = 12 – 8 = 4 kN.

Point D:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 3m) = 12 kN.
Therefore shear force at point D = 12 – 12 = 0 kN.

Point E:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 4m) = 16 kN.
Therefore shear force at point E = 12 – 16 = –4 kN.

Point F:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 5m) = 20 kN.
Therefore shear force at point F = 12 – 20 = –8 kN.

Immediately left of Point G:
Upward force to left = 12 kN.
Downward force to left = (4 kN/m × 6m) = 24 kN.
Therefore shear force left of point G = 12 – 24 = –12 kN.

At point G, there is an upward reaction of 12 kN. So the net shear force 
at G will be –12 + 12 = 0 kN.

These values can be plotted on our shear force diagram in Fig. 16.10 (b).
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Bending moments

Once more, we will be looking solely at forces and moments to the left of 
the point we’re considering. As in earlier examples, we will calculate the 
moment at each point, remembering that:

• clockwise moments are positive, and anticlockwise moments are neg-
ative;

• distances are measured from the force concerned to the point consid-
ered.

Bending moment at A = +(12 kN × 0 m)  
= 0 kN.m

Bending moment at B = +(12 kN × 1 m) – (4 kN/m × 1m × 0.5m) = 12 – 2 
= 10 kN.m.

Bending moment at C = +(12 kN × 2 m) – (4 kN/m × 2m × 1m)  = 24 – 8 
= 16 kN.m.

Bending moment at D = +(12 kN × 3 m) – (4 kN/m × 3m × 1.5m) = 36 – 18 
= 18 kN.m

Bending moment at E = +(12 kN × 4 m) – (4 kN/m × 4m × 2m)  = 48 – 32 
= 16 kN.m

Bending moment at F = +(12 kN × 5 m) – (4 kN/m × 5m × 2.5m) = 0 – 50 
= 10 kN.m

Bending moment at G = +(12 kN × 6 m) – (4 kN/m × 6m × 3m)  = 72 – 72 
= 0 kN.m

The bending moment diagram is drawn in Fig. 16.10 (c).

The shape of shear force and bending moment diagrams 
where uniformly distributed loads are present

If you examine the shape of the shear force and bending moment diagrams 
in Fig. 16.10 you will notice the following features:

• The shear force diagram comprises sloping straight lines.

• The bending moment diagram is curved (parabolic).

In general, where a beam is loaded with uniformly distributed loads along 
all or part of its length, the shear force and bending moment diagrams 
along the part of the beam concerned have the above features.

To summarise: where a beam experiences uniformly distributed loads, 
the shear force diagram will comprise sloping straight lines and the bend-
ing moment diagram will be curved.
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Shear force and bending moment diagrams for standard cases

There are three standard cases of beam loading that are so common that 
the reader would be well advised to commit the results to memory. These 
are:

• beam with a central point load;

• beam with a non-central point load;

• beam carrying a uniformly distributed load over its entire length.

These cases, along with their respective shear force and bending moment 
diagrams, are shown in Figs 16.11–16.13. Using the techniques discussed 
above, you should be able to obtain these reactions and shear force and 
bending moment values for yourself.

A

P

RA = P/2 RB = P/2 

L

B

P/2

0
0

P/2

P/2

P/2

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

C

0

PL/4

Fig. 16.11 Standard case 1: Shear force and bending moment diagrams for 
a beam carrying a central point load.
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Note that the result for the maximum bending moment in a beam with 
a uniformly distributed load over its entire length (wL2/8) is particularly 
commonly used in practice.

Some years ago a colleague of mine in a fi rm of consulting engineers 
declared, slightly fl ippantly: ‘wL2/8 – that’s all you ever need to know!’ 
While this is not quite true (or fair), the comment does at least dem-
onstrate the importance of this result. You might consider that this is 
underlined by the fact that, in a ‘friendly’ rafting competition held be-
tween the contractor’s and resident engineer’s staff at a site on which I 
once worked, the winning raft had been named ‘Double You Ell Squared 
Upon Eight’.

A

P

RA = Pb/L RB = Pa/L 

L

B

Pb/L

0
0

Pb/L

Pa/L

Pa/L

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

C

0

Pab/L

a b

Fig. 16.12 Standard case 2: Shear force and bending moment diagrams for 
a beam carrying a non-central point load.

1405120533_4_016.indd   1611405120533_4_016.indd   161 09/02/2005   22:32:1009/02/2005   22:32:10



162  Basic Structures for Engineers and Architects

More examples involving uniformly distributed loads

Draw the shear force and bending moment diagrams for each of the beams 
shown in Figs 16.14. The solutions are given in Figs 16.21–16.23 at the end 
of this chapter.

What else can shear force and bending moment diagrams 
tell us?

Look at the beam shown in Fig. 16.15 (a). It is supported at A and C and 
experiences a point load at B and at the free end D. By examining the beam 
and deducing the way in which it might bend (in the same way as we did 
with the examples at the very beginning of this chapter), we can deduce 
that:

A

w kN/m 

RA = wL/2 RB = wL/2 

L

B

wL/2

0
0

wL/2

wL/2

wL/2

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

C

0

wL2/8

Fig. 16.13 Standard case 3: Shear force and bending moment diagrams for 
a beam carrying a uniformly distributed load over its entire length.
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• the beam is sagging at point B;

• the beam is hogging at support C;

• the beam is hogging at point D.

Clearly, somewhere between points B and C, the nature of the beam’s de-
fl ection switches from sagging to hogging. This point is termed the point of 
contrafl exure. But where, exactly, does the point of contrafl exure occur?

By now you should be able to calculate the reactions and draw the shear 
force and bending moment diagrams. These are shown in Figs 16.15 (b) 
and (c) respectively.

Now, earlier in this chapter you were introduced to a convention which 
stated that the bending moment diagram is always drawn on the tension 
side of the zero line. This suggests that:

• if the bending moment profi le is below the zero line, tension occurs in 
the bottom face of the beam, which suggests it is sagging;

B

6 kN/m 

RA RB

3 m 

A C

B

3 kN/m 

50 kN 

RA
RC

4 m 6 m 

A C

B

5 kN 5 kN 

RA RE

1 m 1 m 1 m 

A C

3 m 

5 m 

3 m 

12 kN/m 

(a)

(b)

(c)

D

10 kN/m 

5 kN

D
E

Fig. 16.14 Further shear force and bending moment diagram examples.
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• if the bending moment profi le is above the zero line, tension occurs in 
the top face of the beam, which suggests it is hogging.

It follows from this that where the bending moment diagram crosses the 
zero line, the nature of defl ection of the beam switches from sagging to 
hogging (or vice versa). Therefore a point of contrafl exure occurs wherever 
the bending moment profi le crosses the zero line. In the current example, 
that point is 2.5 metres from the left-hand end of the beam. This is deter-
mined by recognising that the two (hatched) triangles that constitute the 
bending moment diagram are similar (in the mathematical sense of the 
word). The defl ected profi le of the beam is shown in Fig. 16.15 (d).

A

25 kN

RA = 5 kN RB = 30 kN 

2 m 

B

5
0

0
5 10

20

(a) Beam diagram 

(b) Shear force diagram 

(c) Bending moment diagram

0 0

C

20

30

10 kN

2 m 3 m 

D

10

30

25

10

(d) Deflected form 

SAGGING HOGGING

Fig. 16.15 Defl ected forms and contrafl exure.

1405120533_4_016.indd   1641405120533_4_016.indd   164 09/02/2005   22:32:1109/02/2005   22:32:11



Shear force and bending moments  165

Example 16.4

Draw the shear force and bending moment diagrams and sketch the 
defl ected form for the beam shown in Fig. 16.16. Identify the position of 
the points of contrafl exure. (The solution is given in Fig. 16.24 at the end 
of this chapter.)

What you should remember from this chapter

• Shear is a cutting or slicing action which causes a beam to break or 
snap.

• If a beam is subjected to a load it will bend. If the loading is increased, 
the bending will increase and eventually the beam will break (if it 
doesn’t fail in shear fi rst).

• A shear force is the force tending to produce a shear failure at a given 
point in a beam.

• The value of shear force at any point in a beam = the algebraic sum of 
all upward and downward forces to the left of the point.

• A beam will fail in either bending or shear. Which occurs fi rst can only 
be determined by calculation.

• The bending moment is the magnitude of the bending effect at any 
point in a beam. The value of bending moment at any point on a beam 
= the sum of all bending moments to the left of the point.

• Shear force and bending moment diagrams are graphical representa-
tions of shear force and bending moment and their variation along a 
beam.

• The bending moment diagram is drawn either above or below the zero 
line, dependent on whether the beam experiences tension in the top or 
bottom at the point concerned (top: above the line, bottom: below the 
line).

• Where the shear force is zero, the bending moment is either a local 
maximum, a local minimum or zero. It follows from this that the posi-
tion of maximum bending moment can be determined from drawing 
the shear force diagram fi rst.

A

20 kN

RB = 62.5 kN RD = 47.5 kN 

2 m 

B
C

10 kN

2 m 3 m 

D
E

80 kN

2 m 

Fig. 16.16 Example 16.4.
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• If a beam experiences point loads only, the shear force diagram will be 
a series of steps and the bending moment diagram will contain only 
straight lines (usually sloping).

• Where a beam experiences uniformly distributed loads, the shear force 
diagram will comprise sloping straight lines and the bending moment 
diagram will be curved.

• The point of contrafl exure is where the defl ected form of a beam 
switches between hogging and sagging. The bending moment dia-
gram will cross the zero line at this point.

• And don’t forget wL2/8!

Tutorial examples
Draw shear force and bending moment diagrams for each of the beams 
shown in Fig. 16.17.

(a)      (b) 

(c)      (d)

30 kN 20 kN 

4 m 3 m 1 m 

A
B

C

D

RA RC

16 kN/m 
A

B

C

5 m 3 m 

RA RC

10 kN/m 

50 kN 

4 m 2 m 2 m 

RA RD

A
B C 

D

RA RD

3 m 3 m 3 m 

40 kN/m 30 kN/m 
A

B C 

D

Fig. 16.17 Further tutorial examples.
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B

70 kN 51 kN 

RA = 69 kN RC = 52 kN

2 m 1 m 1 m

A
C

2 m 

D E

0
0

69 69

18 18

52 52

0 0

138
156

104

(a) Beam diagram 

(b) Shear force diagram (kN) 

(c) Bending moment diagram (kN.m)

Fig. 16.18 Solution to Fig. 16.7 (a).
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B

30 kN 
14.14 kN 

RA = 22.5 kN RC = 17.5 kN 

3 m 3 m 4 m

A
C

2 m 

10 kN45º D E

(a) Beam diagram

(b) Shear force diagram (kN) 

(c) Bending moment diagram (kN.m)

0 0

0 0

22.5 22.5 

12.5 12.5

17.5 17.5

67.5
105

35

Fig. 16.19 Solution to Fig. 16.7 (b).
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B

15 kN 35 kN 

RA = 20 kN RC = 20 kN 

2 m 1 m 1 m

A
C

1 m 1 m 

10 kN 

D

E
F

(a) Beam diagram 

(b) Shear force diagram (kN) 

(c) Bending moment diagram (kN.m)
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Fig. 16.20 Solution to Fig. 16.7 (c).
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Fig. 16.21 Solution to Fig. 16.14 (a).
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Fig. 16.22 Solution to Fig. 16.14 (b).
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Fig. 16.23 Solution to Fig. 16.14 (c).
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Fig. 16.24 Solution to Example 16.4.
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Figure 16.25 shows a cantilever in a shopping centre in Germany. The can-
tilever allows a café area on an upper level to overhang (by a modest dis-
tance) the pedestrian circulation area below. Note how the depth of the 
supporting beam reduces towards the ‘free’ (i.e. unsupported) end. This 
is because the bending moment in the beam also reduces towards the free 
end.

Fig. 16.25 Cantilevered balcony in shopping centre.
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 17This thing called stress

Introduction
Those of you who are studying to become an architect will be relieved to 
know that most laymen have some idea of the work that an architect does. 
However, the civil engineers among you have probably already discov-
ered, to your dismay, that most members of the general public – even the 
more educated ones – don’t have a clue what a civil engineer is or what he 
or she does, despite the efforts of the relevant professional bodies to pro-
mote the profession. However, if pushed, some non-engineers are aware 
that engineers ‘deal with stresses’ and that is what this chapter is about.

If some members of the general public are aware of engineers’ dealings 
with stresses, it may have come as a surprise that stresses have hardly been 
mentioned in the fi rst 16 chapters of this book. However, this and the fol-
lowing three chapters are concerned exclusively with stress.

As we shall see, stress is internal pressure at a point within a struc-
tural element occurring as a result of the loads and moments to which 
the element is subjected. There is a limit to the amount of stress any given 
ma terial can take, so in structural design it is important to check that this 
stress is not exceeded.
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Figure 17.1 shows a high-tech tent structure: the roof of the Sony Centre 
in Berlin.

Fifteen giant steel arches, approximately 7 metres apart, form the main 
structure of the unusual building shown in Fig. 17.2. The vertical supports 
to the fl oors in this building are either suspended off the higher reaches of 
the arch or, in the case of the end columns, supported off the lower part of 
the arch. The end support (visible beneath the foliage of the tree in the pho-
tograph) is thus in compression and is noticeably fatter than the other ver-
tical supports (which are in tension) because it has to be designed against 
the possibility of buckling (that is, bending and crumpling).

Fig. 17.1 Roof of Sony Centre, Berlin.
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What is stress?

Stress is internal pressure. Pressure is defi ned mathematically as Force/
Area. As an example, let’s suppose you are considering an extended period 
of foreign travel. As you will be travelling for many months, your exten-
sive preparations will include purchasing a backpack. When fully loaded, 
the backpack will no doubt be quite heavy, so it’s important to select one 
that will be as comfortable as possible to wear.

From experience, you know that a backpack with narrow shoulder straps 
will become uncomfortable – if not downright painful – very quickly. An 
extremely narrow strap – for example, a piece of string – would become 
extremely uncomfortable and you would probably whimper in agony as 
the string cut into your shoulders. This is because the load contained in the 
backpack is transmitted to your shoulder through a comparatively small 
area, so the pressure will be large (since Pressure = Force/(small) Area).

On the other hand, a broad-strapped backpack will feel much more 
comfortable. This is because the load from the contents of the backpack 
will be spread over a much greater area, hence the pressure will be much 
less. So the message is: choose a backpack with broad shoulder straps and 
you’ll feel much more comfortable.

Whereas pressure is external to an object – e.g. the pressure transmitted 
into your shoulder through the straps of a backpack or the pressure on a 
concrete slab due to a heavy piece of machinery or the pressure a building 
exerts through its foundations to the ground beneath – stress is a similar 
phenomenon but considered at a point within (for example) a concrete col-
umn, a steel beam or a timber joist.

Fig. 17.2 Ludwig-Erhard-Haus (‘The Armadillo’), Berlin.
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As for pressure, direct stress is defi ned mathematically as Force/Area. 
(Readers should note that it is only direct stress that is thus defi ned; bend-
ing stress and shear stress are different, as we shall see in the chapters that 
follow.)

Units of stress

As we know, force is measured in Newtons (N) or kiloNewtons (kN) and 
area is measured in square millimetres (mm2) or square metres (m2). As 
direct stress is Force/Area, it could be expressed in units of kN/m2 or 
N/mm2. In civil engineering we use N/mm2 as the units of stress, for the 
reason that the stresses encountered in practice can be expressed in man-
ageable fi gures in N/mm2 units.

There is a limit to the stress any particular material can take. This stress 
is known as the permissible stress or the strength of the material. Obvi-
ously, some materials are stronger than others. For example, the strength 
of timber is typically in the range 4–7 N/mm2, depending on the species. 
The strength of concrete is typically in the range 25–40 N/mm2, while the 
strength of the steel type normally used in structural steelwork construc-
tion is 275 N/mm2.

Note the inclination of the main mast of the cable-stayed bridge shown 
in Fig. 17.3. What does this tell you about the nature of the stresses in the 
bridge?

Fig. 17.3 Cable-stayed bridge, Bingley bypass, West Yorkshire.
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Stress and strain
We use the terms stress and strain in everyday life in circumstances un-
connected with structures. For example, you hear people say ‘he’s under 
stress’ or ‘she’s feeling the strain’. The ‘popular’ uses of the words stress 
and strain are analogous to the technical uses of those words, as we shall 
see.

Stress can arise as a result of certain situations or circumstances. For 
example, you might fi nd any of the following situations stressful:

• You are on a plane which is being hijacked.

• Your wife, husband, girlfriend or boyfriend has just announced that 
s/he is leaving you.

• Your boss tells you he will have to ‘let you go’.

• Your car breaks down.

You might react to the stressful situation in a number of ways:

• You might get angry and shout at someone.

• You might burst into tears.

• You might decide that a stiff drink would help.

The stress is represented by the situation (the hijacked plane, wife leaving 
you, etc.) and the strain is represented by your reaction to it (the tears, 
anger or stiff drink).

It’s the same principle in structural engineering. For example, a col-
umn in a building experiences stress as a result of the forces on it from the 
fl oors and walls that the column is supporting. These forces are trying to 
compress, or squash, the column – in other words, the forces are infl icting 
stress on the column. The column will react to this ‘squashing’ stress by 
allowing itself to be reduced in length. This reduction in length (as a pro-
portion of the column’s original length) is the strain.

Similarly, a hangar cable in a suspension bridge experiences a stress that 
is trying to stretch the cable, to which it responds by increasing its length. 
This increase in length (as a proportion of the cable’s original length) is 
the strain.

You will learn more about stress and strain in structural engineering 
and how to calculate their values in the next chapter.
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The graceful shallow concrete arches shown in Fig. 17.4 provide an un-
cluttered public space beneath an elevated roadway.

Types of stress
Direct and shear stresses are discussed in Chapter 18. Bending stress is 
explained in Chapter 19. Combined bending and axial stresses are investi-
gated in Chapter 20.

What you should remember from this chapter

• Stress is the internal pressure occurring at a given point within a 
structural element.

• The units of stress are N/mm2.

• Strain is a measure of what happens as the result of the stress. For 
example, an extension or reduction in length.

Fig. 17.4 Concrete arches supporting elevated roadway, Lille, France.
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 18Direct (and shear) stress

Introduction
Chapter 17 introduced the concepts of stress and strain. In this chapter 
we shall discuss direct and shear stresses. We shall also look at how to 
calculate strains.

Direct (or axial) stress
As discussed in Chapter 17, stress is an internal pressure. A direct (or 
axial) stress occurs as a result of a direct (or axial) force which acts along 
the axis of the member (and perpendicular to the member’s cross-sec-
tion). Dependent on the direction of the force, the member may experience 
tension (causing extension, or stretching, of the member) or compression 
(which causes contraction, or squashing, of the member). Remember that 
for equilibrium, forces in one direction must be opposed by equal forces 
in the opposite direction (see Chapter 6). Examples include a concrete col-
umn experiencing a vertical load, as shown in Fig. 18.1 (a) and a steel bar 
experiencing a horizontal load, shown in Fig. 18.1 (b).

You will notice that the load in the column in Fig. 18.1 (a) is attempt-
ing to squash the column, therefore it is inducing a compressive stress in 
the column. On the other hand, the force on the steel bar in Fig. 18.1 (b) 
is trying to stretch the bar, so it is producing a tensile stress in the bar. In 
both cases, if the values of the force (P) and the cross-sectional area (A) are 
known, the direct (or axial) stress can be calculated using the following 
equation:

Direct stress (σ) = 
Force (P)

Area (A)

As explained in Chapter 17, the stress calculated should be expressed in 
units of N/mm2.
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It is important to note that the stress has the same value at every point in 
the cross-section of the column or bar and it is generally assumed that the 
stress will be the same throughout the length of the element as well.

Shear stress
A shear stress occurs as a result of a shear force. You will remember from 
earlier chapters that shear is a cutting or slicing action – for example, if 
you cut through a loaf of bread with a breadsaw you are applying a shear 
force to the loaf. Shear forces therefore act perpendicular to the axis of the 
member. As with direct stresses, shear forces must be opposed by equal 
forces in the opposite direction – for example, you wouldn’t be able to slice 
a piece of bread without holding the loaf in place with your other hand 
(which provides the opposing force) at the same time. An example is a 
timber beam experiencing a shear force – and hence a shear stress – as 
shown in Fig. 18.2.

If the hatched zone in Fig. 18.2 represents the cross-section (of area A) 
where shear failure occurs, and the associated shear force is V, the shear 
stress is calculated from the following equation:

Shear stress (σ) = 
Shear force (V)

Area (A)

(a) Concrete column (compression)  (b) Steel bar (tension)  

Fig. 18.1 Direct stresses.
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As with direct stress, the shear stress calculated should be expressed in 
units of N/mm2.

Note the symbols used for direct stress (σ) and shear stress (τ). These 
are the standard symbols used in structural engineering. A full list of sym-
bols used in this book is given in Appendix 4.

Strain
The concrete column shown in Fig. 18.1 (a) will reduce in length (by a very 
small amount, it is hoped) as a result of the compressive axial force to which 
it is subjected. Similarly, the steel bar in Fig. 18.1 (b) will increase in length 
(again, by a small amount). These changes in length, as a proportion of the 
original length of the element, give rise to the strain, as defi ned below:

Strain (ε) = 
Change in length (δL)

Original length (L)

It should be pointed out that strain, being simply the ratio of two lengths, 
has no units. It is a proportion or can, if desired, be expressed as a percent-
age.

Shear strain is beyond the scope of this book.
We shall now try some numerical examples.

Fig. 18.2 Shear stress in a beam.
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Example 18.1: Stress and strain in compression

A square concrete column in an offi ce building is shown in Fig. 18.3. The 
column has cross-sectional dimensions 400 mm × 400 mm and supports 
a total vertical load of 2000 kN. Calculate the direct compressive stress 
at any point in the column.

If the column reduces in length by 3.5 mm as a result of the loading 
and the column’s original length was 4 metres, calculate the strain in 
the column.

Solution
The column is clearly in compression.

The column’s cross-sectional area, A = 400 × 400 = 160,000 mm2

Axial load P = 2000 kN = 2000 × 103 N

Stress (σ) = 
Force (P)

 =
2000 × 103

 = 12.5 N/mm2

Area (A) 160,000

Strain (ε) = 
Change in length (δL)

 =
3.5 mm

 = 8.75 × 10–4 = 0.000875
Original length (L) 4000 mm

(Remember: strain has no units.)

(a)      (b) 

Fig. 18.3 Compressive stress and strain (Example 18.1).
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Example 18.2: Stress and strain in tension

The circular steel bar shown in Fig. 18.4 has a diameter of 30 mm and 
is subjected to a tensile axial force of 50 kN. Calculate the direct tensile 
stress at any point in the bar.

If the bar, whose original length was 2 metres, extends in length by 
0.67 mm as a result of the force, calculate the strain in the bar.

Solution
The procedure is similar to Example 1, but this time the member is in 
tension.

The column’s cross-sectional area, A = πr2 = π × 152 = 706.9 mm2. (Re-
member that the radius of a circle is half the diameter. The diameter in 
this case is 30 mm, so the radius is 15 mm.)

Axial load P = 50 kN = 50 × 103 N

Stress (σ) = 
Force (P)

 =
50 × 103 N

 = 70.73 N/mm2

Area (A) 706.9 mm2

Strain (ε) = 
Change in length (δL)

 =
0.67 mm

 = 0.000335
Original length (L) 2000 mm

Again, strain has no units.

(a)      (b) 

Fig. 18.4 Tensile stress and strain (Example 18.2).
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Example 18.3: Shear stress

The shear force at the end of the timber joist shown in Fig. 18.5 is found 
to be 18 kN. If the timber joist is 50 mm wide and 200 mm deep, calcu-
late the shear stress at this point in the joist.

Solution

Shear stress (σ) = 
Shear force (V)

 =
18 × 103 N

 = 1.8 N/mm2

Area (A) 50 × 200 mm2

The relationship between stress and strain
It would be natural at this point to wonder whether or not there is any rela-
tionship between stress and strain. We saw in Chapter 17 that strain is a re-
action to stress. In Example 18.1 above, we saw that a stress of 12.5 N/mm2 
in a given concrete column gave rise to a strain of 0.000875. You may won-
der whether a stress of double that amount would produce double the 
strain – or whether tripling the stress would produce triple the strain, and 
so on. In other words, is stress proportional to strain?

If you have studied a materials module you will already know the an-
swer. For most materials, the answer is yes: stress and strain are propor-
tional – up to a point. As you can see from Fig. 18.6, if a graph is plotted 
of stress versus strain, the graph is a straight line up to a certain point, 
known as the limit of proportionality. (Beyond the limit of proportionality, 
the shape of the graph depends on the material but is no longer a straight 
line.)

If stress is proportional to strain then, mathematically speaking, stress/
strain = a constant (Hooke’s Law). This constant is known as Young’s Mod-
ulus, has the symbol E and units of N/mm2 or kN/mm2.

(a) Elevation     (b) Cross section 

50

20
0

Fig. 18.5 Timber beam in shear.
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Young’s modulus (E) = 
Stress (σ)

Strain (ε)

(For more information on Hooke and Young, see the end of this chapter.)
In Example 18.1 we found that the compressive stress and strain experi-

enced by the concrete column were 12.5 N/mm2 and 0.000875 respectively. 
Therefore:

Young’s modulus = 
12.5 N/mm2

 = 14286 N/mm2 = 14.3 kN/mm2

0.000875

In Example 18.2 we found that the tensile stress and strain experienced by 
the steel bar were 70.73 N/mm2 and 0.000335 respectively. Therefore:

Young’s modulus for steel = 
70.73 N/mm2

 = 211,134 N/mm2 
 
 = 211 kN/mm2

0.000335

How to predict change in length
Now we already know that:

Direct stress (σ) = 
Force (P)

Area (A)

and

Strain (ε) = 
Change in length (δL)

Original length (L)

limit of
proportionality

O

stress
(�)

strain (�)

Fig. 18.6 Stress v strain graph.
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Combining these three equations and rearranging, we get:

Change in length (δL) = 
PL

AE

From this equation we can calculate the change in length of a structural 
element if we know its length (L), the axial load to which it is subjected (P), 
its cross-sectional area (A) and its Young’s Modulus value. The latter can be 
obtained from scientifi c data tables if necessary.

Example 18.4 Calculating the change in length of a 
member under direct stress

A steel tie in a space frame roof structure is originally 2 metres long. If 
the tie is a solid bar of diameter 40 mm, calculate the extension of the 
steel bar that would be expected if a tensile force of 150 kN is applied to 
the bar. The Young’s Modulus of steel is 205 kN/mm2. If the extension 
was unacceptably large, what steps could you take to reduce it?

Solution
Cross-sectional area of steel bar = πr2 = π × 202 = 1256.6 mm2.

Change in length (δL) = 
PL

=
150 × 103 N × 2000 mm

AE 1256.6 mm2 × 205 × 103 N/mm2

= 1.16 mm

This extension of 1.16 mm is small and is probably tolerable in most 
structures. However, by examination of the ‘change in length’ formula, 
the following steps could be taken to reduce the extension if desired:

• Reduce the axial load in the member.

• Reduce the length of the member.

• Increase the cross-sectional area of the member. (This is usually the 
most practical option.)

• Use a material with a greater Young’s Modulus.

What you should remember from this chapter

Direct stress (σ) = 
Force (P)

Area (A)

Shear stress (σ) = 
Shear force (V)

Area (A)

Strain (ε) = 
Change in length (δL)

Original length (L)
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Young’s modulus (Ε) = 
Stress (σ)

Strain (ε)

Change in length (δL) = 
PL

AE

Tutorial examples
(1) Calculate the direct stress in a reinforced concrete column of cross-

section 400 mm × 350 mm, subjected to a compressive load of 3000 kN. 
Express your answer in N/mm2 units. 

(2) A solid circular steel rod, forming part of a framed structure, is sub-
jected to a tensile force of 750 kN. If the permissible stress in steel is 
460 N/mm2, what is the minimum diameter of the rod in millimetres? 
Had the rod been in compression rather than tension, what other fac-
tors would need to be considered? 

(3) A timber column is subjected to a compressive force of 60 kN. If the 
permissible compressive stress in timber is 6 N/mm2, select a suitable 
section size for the column. Express your answer in terms of the col-
umn’s cross-sectional dimensions, in millimetres. 

(4) A force is applied to a steel bar, originally 3 metres in length, causing 
it to extend by 1.5 mm. Calculate the strain (ε) in the bar. 

(5) A 3.5 metre long steel tie is subjected to a tensile force of 150 kN. If the 
bar is round, of diameter 20 mm, and the Young’s Modulus (E) value 
for steel is 200 kN/mm2, calculate the change in length of the bar. 

(6) An aluminium ‘strut’ (a compression member) 1.5 metres long is part 
of a lightweight framed structure and is subjected to a compressive 
force of 50 kN. Calculate the strain in the strut and determine its 
change in length. Assume the area of the cross-section is 220 mm2 and  
= 70 kN/mm2.

(7) A new suspension bridge in the Far East has one of the longest spans 
in the world. Each of its main cables is 1 metre in diameter and is de-
signed to sustain an axial tensile force of 13,000 tonnes. Assuming, for 
simplicity, that each main cable is of solid steel (rather than the collec-
tion of many smaller diameter cables that it actually is), calculate the 
stress in each main cable, in N/mm2 units.

Tutorial answers

(1) 21.4 N/mm2.
(2) 45.6 mm; buckling.
(3) 100 mm × 100 mm or 75 mm × 150 mm.
(4) ε = 0.0005, or 0.05%.
(5) 8.35 mm.
(6) ε = 0.00325, δL = 4.87 mm.
(7) σ = 166 N/mm2.
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Who were Mr Hooke and Mr Young?

It’s claimed that Robert Hooke (1635–1703) was one of the greatest ex-
perimental scientists of the 17th century. Certainly he had wide interests 
in most branches of science and collaborated with other well-known 
scientists of the day, including Isaac Newton, but unfortunately the two 
men did not get on. Hooke also had an interest in architecture and he 
assisted Sir Christopher Wren on the rebuilding of London’s St Paul’s 
Cathedral after the Great Fire of 1666. Hooke’s Law, discussed in this 
chapter, is the scientifi c principle for which he is best remembered.

Thomas Young (1773–1829) also had wide-ranging professional in-
terests. As well as being a physicist whose experiments in elasticity led 
to the modulus that bears his name, Young was medically qualifi ed and 
researched extensively in the fi elds of light and optics.
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 19Bending stress

Introduction
In Chapter 18 we investigated direct stresses – the stresses caused by direct 
or axial loads on structural elements. In this chapter we will study bending 
stresses. As the name suggests, these are stresses associated with the bend-
ing of a beam or other type of structural member.

Bending theory
Consider the beam shown in Fig. 19.1 (a), which is simply supported at its 
two ends. If a central point load is applied to the beam, it will bend to give 
the profi le shown in Fig. 19.1 (b) Alternatively, if the beam shown in Fig. 
19.1 (a) is subjected to a longitudinal load which does not act along the line 
of the beam’s central axis, it will again bend, to give the profi le shown in 
Fig. 19.1 (c).

So, bending can be induced in a beam in one of two ways:

(1) loading perpendicular to the beam’s longitudinal axis; or
(2) eccentric axial loads.

If we were to paint vertical stripes at regular intervals along a simply sup-
ported beam before loading it, it would appear as shown in Fig. 19.2 (a). 
After the beam has bent under loading, its profi le will resemble Fig. 19.2 
(b). You will notice that the stripes in the bent beam shown in Fig. 19.2 (b) 
are still straight, despite the fact that they are no longer the same distance 
apart at top and bottom. This would suggest that although the beam has 
bent, particular cross-sections (as represented by the painted stripes) re-
main straight and thus have not warped.

Consider the cross-section of a rectangular beam, shown in Fig. 19.3 (a). 
If the beam bends, we know from our earlier studies that the top part of 
the beam will be in compression and the bottom part will be in tension. 
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192  Basic Structures for Engineers and Architects

Fig. 19.1 Bending in beams.

(a) Beam cross sections (edge on) before load applied 

(b) Beam cross sections (edge on) after load applied 

(a) Beam before load applied 

(b) Beam bending caused by central point load 

(c) Beam bending caused by eccentric axial load 

Fig. 19.2 Effect of bending on beam cross-section.
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This implies that there must be some level in the cross-section that will be 
the interface between the compression and tension zones. This interface is 
called the neutral axis or neutral plane and we shall see that there is no 
stress at this level.

Figure 19.3 (b) is a simple force diagram. The compression in the top 
part of the beam is represented by force C. The tension in the bottom part 
of the beam is represented by force T. Note that, as required for equilib-
rium, forces C and T are equal but opposite in direction.

Figure 19.3 (c) is a stress diagram in which the vertical line represents 
zero stress. We can readily see that the maximum tension – and hence the 
maximum tensile stress – occurs at the very bottom of the beam and re-
duces as we move up the beam from this level. Similarly, the maximum 
compression – and hence the maximum compressive stress – occurs at the 
very top of the beam and reduces as we move down the beam. If we join 
these two maximum values with a straight line, our stress diagram be-
comes as shown in Fig. 19.3 (c). Note the linear (i.e. straight line) variation 
in stress as we move down the cross-section.

As we have just seen (Fig. 19.3(c)), tension occurs in the bottom of a 
beam that is sagging. As concrete is weak in tension, steel reinforcement 
is provided in the place where it is most useful; that is, near the bottom 
face of the beam. But site labourers in general, and steelfi xers in particu-
lar, have not been schooled in structural mechanics. Occasionally you will 
come across cases where a steelfi xer feels it is inconvenient to put all the 
required steel reinforcement in the bottom face and therefore puts some 
of it half way up a section. Figure 19.3 demonstrates that any steel placed 
half way up a section is useless, as the stress is minimal at this point and 
therefore the steel is not doing any work. The bottom of the section is, ac-
cordingly, under-reinforced and therefore likely to fail.

max. 
compressive
stress

max. 
tensile
stress

C

T

neutral       axis 

0

0

Fig. 19.3 Bending theory applied to a beam cross-section.

(a) Cross-section  (b) Force diagram (c) Stress diagram 
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194  Basic Structures for Engineers and Architects

Assumptions for bending theory

(1) The material is linearly elastic (as represented by the straight-line 
graph in Fig. 19.3 (c).

(2) Young’s Modulus (E) is the same in compression and tension. (See 
Chapter 18 if you need a reminder of Young’s Modulus and its signifi -
cance.)

(3) Material is homogeneous (i.e. the same throughout). This is obviously 
not the case if we’re considering a cross-section containing two differ-
ent materials, e.g. reinforced concrete.

(4) Plane sections remain plane after bending – i.e. no warping. See the 
discussion of Fig. 19.2 above.

Neutral axis

As discussed above, the neutral axis occurs at the interface of the compres-
sion and tension zones of a structural element experiencing bending. The 
neutral axis has the following characteristics:

• The neutral axis occurs at a level where there is no stress.

• The neutral axis is half way down the cross-section for homogeneous, 
symmetrical sections.

• The neutral axis passes through the centroid if the material is homoge-
neous.

The Engineers’ Bending Equation
The equation below is known as the Engineers’ Bending Equation. The 
derivation of it is not included here as it contains some fairly scary math-
ematics, but it can be found in more advanced structures textbooks. It is far 
more important for you to become familiar with the equation itself – rather 
than its derivation – and the meaning of the various terms therein:

σ
= 

M
= 

E

y I R

where:

σ = bending stress (N/mm2).
i = distance (measured, in millimetres, vertically upwards or down-
wards) to a particular point from the neutral axis (see Fig. 19.4 (a))
M = bending moment at the point concerned (kN.m or N.mm)
E = Young’s Modulus (kN/mm2 or N/mm2)
R = radius of curvature (millimetres) (see Fig. 19.4 (b))
I = second moment of area (mm4) (see explanation below)

The second moment of area mentioned above is a geometrical property of a 
cross-section. Its derivation is complex, involving calculus. Suffi ce it to say 
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Bending stress  195

that for a rectangular section of breadth b and depth d, the second moment 
of area, I = bd3/12.

A further parameter is the section modulus, also known as the elastic 
modulus. This has the symbol z, and is defi ned as:

z =
I

ymax

Now, for a rectangular section, as mentioned above:

I =
bd3

12

Moreover, for a rectangular section which is homogeneous (same material 
throughout), the neutral axis must be exactly half way down the section. 

(a) Geometry of a rectangular cross section 

(b) Radius of curvature 

b

d

d/
2

d/
2

y

y

neutral
axis

R

point A represents centre 
of circle of which bent 
beam’s profile forms part 
of circumference 

A

Fig. 19.4 Engineers’ Bending Equation: some terms.
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Therefore the maximum vertical distance that can be travelled from the 
neutral axis that still remains within the section is d/2. So ymax = d/2.

So, substituting in the above equation for the special case of a rectan-
gular section:

z =
I

= 

bd3

12
= 

bd3

× 
2

= 
bd2

ymax d

2

12 d 6

So, for a rectangular section,

z =
bd2

6

The basic stress equation

From the Engineer’s Bending Equation (discussed above):

σ
= 

M

y I

Therefore:

σ = 
My

I

But:

z =
I

ymax

Therefore:

σ = 
M

z

Or, rearranging:

z = 
M

σ

When I teach this material to students I express the opinion that the above 
equation is not immediately interesting or exciting and the reaction I get 
could be described as passive agreement. However, the above equation 
– unexciting as it may appear – forms the basis of all structural design. Let 
me explain.
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If a bending moment (M) can be calculated – which it generally can if 
the loading and span of the beam are known (see Chapter 16) – and the 
permissible stress (σ) of the material is known (it can be obtained from sci-
ence data tables), the required section size (z) can be determined. Once the 
required z value is known, a suitable timber beam size or ‘off the peg’ steel 
I section size can be selected, either by calculation or from tables, as shown 
in the following two examples.

Example 19.1: Timber beam

A timber beam spans 3.0 metres and carries a uniformly distributed 
load of 3.35 kN per metre run, as shown in Fig. 19.5. Headroom con-
siderations dictate that a 225 mm deep timber section is used. If the al-
lowable bending stress in timber is 6 N/mm2, determine a suitable size 
(breadth × depth) for the beam.

Maximum bending moment (M) = 
wL2

 =
3.35 × 32

 = 3.77 kN.m
8 8

σ = 
M

 so, rearranging: z = 
M

z σ

but z = 
bd2

 for a rectangular section 
6

Therefore 
bd2

 = 
M

6 σ

Rearranging: b =  
6M

 = 
6 × 3.77 × 106 N.mm

σd2 6 N/mm2 × 2252 mm2

So minimum b = 74.5 mm
Therefore use a 75 mm wide × 225 mm deep timber beam.

(a) Elevation     (b) Cross section 

x

22
5

3.0 metres 

3.35 kN/m

Fig. 19.5 Sizing a timber beam (Example 19.1).
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198  Basic Structures for Engineers and Architects

Example 19.2: Steel beam design

A steel beam is to span 5 metres and will carry a load of 25 kN/metre, 
including its own weight, as shown in Fig. 19.6. If the permissible stress 
in the steel is 180 N/mm2, select a suitable steel beam section from the 
tables.

From the information above, w = 25 kN/m and L = 5 m.

Maximum bending moment (M) = 
wL2

 =
25 × 52

 = 78.1 kN.m
8 8

zrequired = 
M

 =
78.1 × 106 N.mm

 = 433 889 mm3 = 433.9 cm3

σ 180 N/mm2

Tables of the properties of standard steel beams should now be used. 
We need to select one that has a section modulus value of 433.9 cm3 
or greater. The terminology used in the labelling of steel beams is ex-
plained in Chapter 24.

Possibilities include a 305 × 127UB37 steel beam (z = 471 cm3) and a 
254 × 146UB37 steel beam (z = 434 cm3).

If the fi rst of these is selected:

Actual bending stress (σ) = 
M

 =
78.1 × 106

 = 165.8 N/mm2

z 471
 
000 mm3

As this is less than the permissible stress of 180 N/mm2, this choice is 
fi ne. (Note: see Chapter 16 for the origin of M = wL2/8.)

Repeat the above example with a span of 6 metres. You will fi nd that 
the section modulus (z) value required this time is 625 000 mm3 and 
therefore a different steel beam section needs to be selected from the 
tables.

(a) Elevation     (b) Cross section 

5.0 metres 

25 kN/m 

Fig. 19.6 Sizing a steel beam (Example 19.2).
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Calculation of second moment of area (I) for symmetrical 
sections

As mentioned above, the I value for a rectangular section of breadth b and 
depth d is bd3/12. Another useful piece of information is that the I value 
for a circle of diameter D is πD4/64. Armed with the above information, it 
is straightforward to calculate I values for I sections or hollow rectangular 
sections (as illustrated in Fig. 19.7) or hollow circular sections. In each case, 
the shape can be considered as being the difference of the I values of two 
or more rectangles (as shown in Fig. 19.7) or the difference of the I values 
of two circles.

Consider the two examples shown in Fig. 19.8. In the fi rst case, the I 
value for the I section can be determined by difference of I values for rec-
tangular sections. In the second case, the I value for the hollow pipe is 
obtained by subtracting the I value for the inner circle from the I value for 
the outer circle. The calculations are given below.

(a) An I-section 

(b) A hollow rectangular section 

Fig. 19.7 Calculation of second moment of area for common symmetrical 
shapes.
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For the I section shown in Fig. 19.8 (a):

I = 
BD3

 –
bd3

 =
150 × 3003

 –
130 × 2603

 = (337.5 × 106) – (190.4 × 106) 

 = 147.1 × 106 mm4

12 12 12 12

For the hollow pipe section shown in Fig. 19.8 (b):

I = 
πD4

 –
πd4

 =
π

 (D4– d4) =
π

 (3004 – 2704) = 137 × 106 mm4

64 64 64 64

Calculation of second moment of area (I) for unsymmetrical 
sections

The bad news is that, for unsymmetrical sections, determination of the sec-
ond moment of area (I) value is a whole lot trickier. In brief, the procedure 
for unsymmetrical sections is as follows:

(1) Determine the position of the centroid of the section, using the ap-
proach outlined below. As you know from earlier in this chapter, the 
neutral axis always passes through the centroid of a section (assuming 
the section is made of the same material throughout). So, when you’ve 
determined the centroid position, you have also determined the level 
of the neutral axis.

(2) Once you know the neutral axis position, use the Parallel Axis Theo-
rem (outlined below) to calculate the second moment of area (I) value.

(a) An I-section     (b) A hollow pipe 
30

0

27
0

All dimensions are in millimetres

26
0

20
20

20

150

Fig. 19.8 Calculate the second moment of area (I) value for the above 
symmetrical shapes.
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Centroids and how to locate them
The centroid is the geometric centre of area of a body, shape or section. If a 
body is of uniform density, the centre of gravity will be at the centroid. If 
a structural element is homogeneous (i.e. of the same material throughout) 
and experiences pure bending, the neutral axis (i.e. axis of zero stress) will 
pass through the centroid. Therefore the location of the centroid of a cross-
section enables us to locate the level of the neutral axis (or neutral plane) 
relating to that cross-section.

Figure 19.9 shows the centroid positions of some common shapes. As we 
can see, the centroids of rectangles and circles occur at the centre of area 
(i.e. the obvious point), whereas the centroid of a right-angled triangle oc-
curs one-third of the way along each side from the right-angled corner – or 
two-thirds of the way along from a ‘pointed corner’.

Centroids of irregular shapes
An irregular shape, and the location of its centroid, is indicated in Fig. 
19.10, from which it can be shown that:

A.x = Σ(x.δA)

a
a

b b

G

Rectangle ra
di

us

G

Circle

e e e

Right angled 
triangle

c
c

c

G In each case, point G 
represents centroid 
position

Fig. 19.9 Centroid positions for common shapes. 
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202  Basic Structures for Engineers and Architects

or:

x = Σ( x.δA )A

Similarly:

y = Σ( y.δA )A

where x and y are the distances from the y-axis and x-axis (respectively) 
to the centroid G. Note that the symbol Σ means ‘sum of’. In other words, 
the dimension to the centroid of the total area from the appropriate axis 
or base line is equal to the sum of the area–distance products divided by 
total area.

Don’t worry too much if you don’t fully understand the mathematics 
above – it’s the result, and its application, that is important.

Centroids of cross-sections which can be broken down into 
regular shapes

Most cross-sections encountered in civil engineering can be divided into 
constituent rectangles and triangles. The centroid positions in such cross-
sections may be calculated using the above formulas.

G

x-bar

y-
ba

r

�A

Y2

X1

O

y

x

Fig. 19.10 Centroids of irregular shapes.
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Example

The beam shown in Fig. 19.11 can be divided into four rectangles as shown. 
The position of the section’s centroid can be located from the following 
equations:

x = 
A1x1 + A2x2 + A3x3 + A4x4

A1 + A2 + A3 + A4

y = 
A1y1 + A2y2 + A3y3 + A4y4

A1 + A2 + A3 + A4

where:

A1 = area of zone 1,
A2 = area of zone 2, etc.

x1

x2

x3

x4

y-
ax

is
 

x-axis

y 4

y 3

y 2

y 1

xbar

y b
ar

zone 1zone 2 

zone 3 

zone 4 

centroid

Fig. 19.11 Centroids of groups of rectangles.
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x1 = distance from y-axis to centroid of zone 1
x2 = distance from y-axis to centroid of zone 2, etc.
y1 = distance from x-axis to centroid of zone 1
y2 = distance from x-axis to centroid of zone 2, etc.

Parallel Axis Theorem
The Parallel Axis Theorem can be used to calculate I values (i.e. second 
moment of area values) for sections that can be divided into individual 
rectangular parts. (For a rectangular section, I = bd3/12.)

First, the neutral axis level (i.e. centroid position) has to be determined, 
in the manner previously discussed. Consider the rectangular element em-
phasised in Fig. 19.12, which forms part of a larger cross-section. It can be 
shown that:

IXX = ICC + Ah2

or, for a rectangle,

IXX = (bd3/12) + bdh2

where:

IXX = second moment of area of the rectangular element about the neu-
tral axis of the composite section (i.e. about axis X–X)
ICC = second moment of area of the rectangular element about the axis 
through its centroid (i.e. about axis C–C)
A = area of rectangular element

h

centroid

b

d
C C

X X

Fig. 19.12 Parallel Axis Theorem.
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b = breadth of rectangular element
d = depth of rectangular element
h = distance between centroidal axis of the rectangular element and the 
centroidal axis of the composite section.

The total IXX for the composite section is equal to the sum of the IXX terms 
for the individual parts.

Example 19.3: Bending stresses in a T section

A beam with the cross-section shown in Fig. 19.13 is simply supported 
and carries a maximum bending moment of 16.0 kN.m. Calculate:

• The neutral axis position.

• Maximum tensile stress.

• Maximum compressive stress.

Fig. 19.13 Calculation of second moment of area for a T section 
(Example 19.3). All dimensions are in mm.

y2

ybar

y1

h1

h2

datum line 

100

20

130

zone 1 

zone 2 

centroid of 
zone 2 

centroid of 
zone 1 

represents centroid 
of entire section 

All dimensions are in 20
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Solution
Use the top edge of the beam as a datum from which to calculate dis-
tances. I suggest a methodical way to approach this problem would be 
to do the calculations in tabular form – see Table 19.1.

Split the cross-section into two rectangles: let the ‘cross-bar’ be zone 
1 and the stem of the T be zone 2. The breadth (b) and depth (d) of each 
zone are given in columns (2) and (3) of Table 19.1. In each case, these are 
multiplied together to give the area of each zone, shown in column (4).

The y values are the vertical distances from the top of the section (the 
datum level) to the centroids of each zone. It can be seen from Fig. 19.13 
that these values are 10 mm (half of 20 mm) for zone 1 and 85 mm (20 
mm + half of 130 mm) for zone 2. These values are given in column (5) 
of Table 19.1.

The values given in column (6) are A (from column (4)) multiplied by 
y (from column (5)). From column (6) it can be seen that the sum of the 
Ay values is 241,000 mm3 and from column (4) the sum of the A values 
(i.e. the total area of the section) is 4600 mm2. So the distance to the sec-
tion’s centroid from the top (ybar) is calculated as follows:

ybar = Σ(Ay)
 =

241,000 mm3

 = 52.4 mm
ΣA 4600 mm2

(This is the answer to part 1 of the question.)
Now that the position of the centroid of the section has been deter-

mined, the distances, h, from the section’s centroidal axis to the centro-
ids of the individual zones (depicted as h1 and h2 in Fig. 19.13) can be 
calculated. These fi gures are given in column (7) of Table 19.1.

Column (8), Ah2, is A (from column (4)) multiplied by h2 (from column 
(7)). Column (9) is the I value (= bd3/12) for each rectangular zone.

When discussing the Parallel Axis Theorem above, we saw that:

IXX = Ah2 +
bd3

12

Table 19.1 Calculation of second moment of area for Example 19.3

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Zone b
(mm)

d
(mm)

A
(mm2)

y
(mm)

Ay
(mm3)

h
(mm)

Ah2

(mm4)
(x106)

I = bd3/12
(mm4)
(x106)

1 100  20 2000 10  20 000 42.4 3.59 0.07

2  20 130 2600 85 221 000 32.6 2.76 3.66
Sum 4600 241 000 6.35 3.73

In column (7):  42.4 = 52.4 – 10
32.6 = 85 – 52.4
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So, Ixx is the sum of all the fi gures in column (8) and all the fi gures in 
column (9):

IXX = (6.35 + 3.73) × 106 = 10.08 × 106 mm4

Now we know the I value we can calculate the bending stresses.
Earlier in this chapter we saw that:

σ = 
My

I

where:

σ = bending stress
M = bending moment
y = distance from neutral axis to top or bottom of section
I = second moment of area.

In this example:

M = 16.0 kN.m = 16.0 × 106 N.mm (given in question)

I = 10.08 × 106 mm4 (calculated above)

y = 52.4 mm (to top of section)

y = (150–52.4) = 97.6 mm (to bottom of section)

As this beam is simply supported, the maximum tensile stress occurs in 
the bottom of the section and the maximum compressive stress occurs 
in the top. So:

Max tensile stress (bottom of section) =

My
 =

16.0 × 106 N.mm × 97.6 mm
 = 154.9 N/mm2

I 10.08 × 106 mm4

Max compressive stress (top of section) =

My
 =

16.0 × 106 N.mm × 52.4 mm
 = 83.2 N/mm2

I 10.08 × 106 mm4

Example 19.4: Bending stresses in a non-symmetrical 
I section

Determine the maximum bending moment that can be applied to the 
simply supported beam whose cross-section is shown in Fig. 19.14 if:

• Maximum tensile stress = 2.0 N/mm2.

• Maximum compressive stress = 20 N/mm2.
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As in the previous example, we will use a table (Table 19.2) to calcu-
late the neutral axis position and the second moment of area (I) value. 

y2ybar

y1

h1

h2

datum line 

320

30

660

zone 1 

zone 2 

centroid of 
zone 2 

centroid of 
zone 1 

represents centroid 
of entire section All dimensions are in millimetres

30

440

40

y3

h3

zone 3 

centroidal axis 

centroid of 
zone 3 

Fig. 19.14 Calculation of second moment of area for a non-symmetrical I 
section (Example 19.4). All dimensions are in mm.

Table 19.2 Calculation of second moment of area for Example 19.4

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Zone b
(mm)

d
(mm)

A
(mm2)

y
(mm)

Ay
(mm3)

h
(mm)

Ah2

(mm4)
(x 106)

I = bd3/12
(mm4)
(x 106)

1 320  30  9 600  15    144 000 372.7 1 333.50   0.72

2  30 600 18 000 330  5 940 000  57.7    59.93 540.00

3 440  40 17 600 650 11 440 000 262.3 1 210.90   2.35

Sum 45 200 17 524 000 2 604.33 543.07

In column (7):  372.7 = 387.7 –15
57.7 = 387.7 – 330
262.3 = 650 – 387.7
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Again, we’ll use the top edge of the beam as the datum. (Note: it doesn’t 
matter what level you use as your datum, provided you are consistent 
throughout.)

From Table 19.2:

y = Σ(Ay)
 =

17 524 000
 =  387.7 mm from top (342.3 mm from bottom)

ΣA 45 200

IXX = (2604.33 + 543.07) × 106 = 3147.4 × 106 mm4

Unlike the previous example, it is not bending stresses we need to cal-
culate this time. We need to determine the bending moments associated 
with particular values of tensile and compressive stress.

From the Engineers’ Bending Equation:

σ
= 

M

y I

Therefore, rearranging:

M = 
σy

I

Using the above equation we can calculate the moment that would 
cause the maximum (compressive) stress in the top of the beam and the 
moment that would cause the maximum (tensile) stress in the bottom:

In top of beam:

M = 
σcomp × I

 =
20 N/mm2 × 3147.4 × 106 mm4

 =  162.4 × 106 N.mm 
 = 162.4 kN.mytop 387.7 mm

In bottom of beam:

M = 
σcomp × I

 =
2.0 N/mm2 × 3147.4 × 106 mm4

 =  18.4 × 106 N.mm 
 = 18.4 kN.mybtm 342.3 mm

So the maximum bending moment that could be applied to the beam 
would be the lesser of the two fi gures calculated above, i.e. 18.4 kN.m.

What you should remember from this chapter

• A simply supported beam subjected to bending (in a sagging mode) 
will experience maximum tensile stress in the bottom and maximum 
compressive stress in the top.

• The magnitude of the stress varies linearly between the top of the sec-
tion and the bottom.
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210  Basic Structures for Engineers and Architects

• The level at which there is no stress is called the neutral axis. For sym-
metrical sections of the same material throughout, the neutral axis oc-
curs half way down the section.

• Before a given cross-section can be analysed for stress, the second mo-
ment of area needs to be calculated. While this is relatively straight-
forward for symmetrical sections, it is more complicated for non-sym-
metrical sections, for which the Parallel Axis Theorem must be used.

Tutorial questions
(1) A timber beam of rectangular cross-section 75 mm wide and 300 mm 

deep carries a 5 kN point load at the mid point of a simply supported 
span of 4 metres. Determine the maximum bending stress in the beam.

(2) A steel beam with a symmetrical I-shaped cross-section sustains a uni-
formly distributed load of 25 kN/m over a simply supported 3 metre 
span. The cross-section dimensions (all in millimetres) are given in 
Fig. 19.15. Calculate:
(a) The maximum bending stress in the beam.
(b) The radius of curvature of the beam, given E = 205 kN/mm2.
(c) The bending stress at the top of the web in the beam at the location 

of maximum bending moment.
(3) A hollow tube of 50 mm external diameter and 44 mm internal diam-

eter is subjected to a bending moment of 0.50 kN.m. Determine the 
maximum bending stress.

100
20

0

15

20
20

all dimensions 
are in millimetres 

Fig. 19.15 Tutorial question no. 2.
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Bending stress  211

(4) The reinforced concrete hollow rectangular section shown in Fig. 19.16 
comprises the cross-section of a 5 metre long beam, which sustains a 
15 kN/m uniformly distributed load. Calculate:
(a) The maximum bending stress in the beam.
(b) The radius of curvature of the beam given E = 20 kN/mm2.

(5) Figure 19.17 shows the cross-sectional geometry of a steel beam. The 
cross-section of the beam is symmetrical about both the X–X and Y–Y 

150

35
0

30 30

30
30

all dimensions 
are in 
millimetres 

Fig. 19.16 Tutorial question no. 4.

100

25
0

10

10
10

all dimensions 
are in millimetres 

Fig. 19.17 Tutorial question no. 5.
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212  Basic Structures for Engineers and Architects

axes. The beam spans 4 metres and supports a uniformly distributed 
load of 4 kN/m. Calculate the following:
(a) The second moment of area about the X–X axis (IXX).
(b) The maximum bending moment in the beam.
(c) The maximum bending stress.
(d) The strain corresponding to the stress calculated in (c) if Young’s 

Modulus (E) for the steel beam is 205 kN/mm2.
(6) Figure 19.18 shows the geometry of a steel T section. A beam is con-

structed from this section and required to sustain a maximum bend-
ing moment of 75 kN.m. Calculate:
(a) The depth of the centroidal (X–X) axis from the top of the section.
(b) The second moment of area about the X–X axis (IXX).
(c) The maximum bending stress in the beam when it is subjected to 

the maximum bending moment of 75 kN.m.
(7) Figure 19.19 shows the cross-section of a steel beam. The section is 

symmetrical about the Y–Y axis and the X–X axis passes through the 
centroid of the section and forms the neutral axis. Calculate:
(a) The depth of the centroidal (X–X) axis from the top of the section.
(b) The second moment of area about the X–X axis (IXX).
(c) The maximum bending stress in the beam when it is subjected to 

a maximum bending moment of 50 kN.m.

200

30
020

20

all dimensions 
are in millimetres 

Fig. 19.18 Tutorial question no. 6.
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Tutorial answers

(1) 4.44 N/mm2.
(2) (a) 74.6 N/mm2;(b) 274.7 metres; (c) 59.7 N/mm2.
(3) 101.8 N/mm2.
(4) (a) 23.3 N/mm2; (b) 150.5 metres.
(5) (a) 38.9 × 106 mm4; (b) 8 kN.m; (c) 25.7 N/mm2; (d) 1.25 × 10-4. 
(6) (a) 97.5 mm; (b) 89.2 × 106 mm4; (c) 170.3 N/mm2.
(7) (a) 85 mm; (b) 16.35 × 106 mm4; (c) 290.6 N/mm2.

100

18
0

10
10

10

all dimensions 
are in millimetres 

80

Fig. 19.19 Tutorial question no. 7.
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 20Combined bending and axial stress

Introduction
In Chapter 18 we studied direct stresses. We found that the value of di-
rect stress is constant across a cross-section and is equal to the axial force 
(P) divided by the cross-sectional area (A). In Chapter 19 we investigated 
bending stresses. There we found that the value of bending stress is not 
constant across a cross-section (in fact, it varies linearly) and that its maxi-
mum value is given by the bending moment (M) divided by its section 
modulus (z).

In this chapter we will see what happens when direct stresses and bend-
ing stresses are combined.

Combined stresses by formula

Direct (axial) stress (σ) = 
P

 (from Chapter 18)
A

Maximum bending  stress (σ) = 
M

 (from Chapter 19)
z

These two equations can be combined, as shown below.

Combined bending and axial stress = 
P ± M

A z

It is not easy to see how this equation may be applied. To assist in this, 
look at Fig. 20.1. The two diagrams show the elevation of a column before 
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Combined bending and axial stress  215

and after an eccentric longitudinal load is applied. As you see, the left-
hand side of the column (side A) is pushed down from its original position 
under the effects of the axial load, while the right-hand side of the column 
(side B) is pulled up. This suggests that side A is experiencing compression 
while side B is undergoing tension.

Each of the nine diagrams shown in Fig. 20.2 represents a plan view of 
a column which is square in cross-section. The four sides are labelled A, 
B, C and D. In each diagram, the large black blob represents the position at 
which the longitudinal load is applied.

In each case, determine which side(s) of the column experience tension 
and which side(s) experience compression. To make things simpler, we 
will introduce a +/– sign convention as follows:

• If a side is pushed downwards under the applied load, it experiences 
compression (+).

• If a side is pulled upwards under the applied load, it experiences ten-
sion ( –).

The answers, in the form of + and – signs, are shown in Fig. 20.3.
Keep the above exercise in mind as you progress through this chapter. 

It will help you to determine whether a + or a – sign is required at various 
points in your calculations.

(a) Before load applied    (b) After load applied 

Column
centre-line

A B

A

B

Fig. 20.1 Column with eccentric axial loading.
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216  Basic Structures for Engineers and Architects

Another way of looking at combined bending and axial stress

Consider the rectangular cross-section shown in Fig. 20.4 (a).  In Chapter 
18 we learned that direct (or axial) stress has a value P/A which is constant 
across the cross-section. This is illustrated in Fig. 20.4 (b). By contrast, we 
learned in Chapter 19 that the value of bending stress varies linearly across 
a cross-section, with a maximum value of M/z. This was illustrated in Fig. 
19.3 and is shown again, here, in Fig. 20.4 (c). If we combine the two graphs, 

(a) Central point load (b) Eccentric load towards A (c) Eccentric load 
            towards D  

(d) Eccentric load   (e) Eccentric load    (f) Eccentric loads 

(g) Eccentric loads    (h)Eccentric loads     (i) Eccentric loads 

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

Fig. 20.2 Eccentric loading on a column.
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the result depends on the relative values of P/A and M/z. If P/A is greater 
than M/z, the combined graph will appear as in Fig. 20.4 (d). But if P/A is 
less than M/z, the combination is shown in Fig. 20.4 (e). Note that this last 
case gives rise to tensile stresses when it is negative.

(a) Central point load (b) Eccentric load towards A (c) Eccentric load 
            towards D  

(d) Eccentric load   (e) Eccentric load    (f) Eccentric loads 

(g) Eccentric loads    (h)Eccentric loads     (i) Eccentric loads 

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

A

B

C D xx

y

y

+ represents compression, - represents tension 
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+
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Fig. 20.3 Effect of eccentric loading on a column.
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218  Basic Structures for Engineers and Architects

The formulas
I have said earlier in the book that I’m not a great fan of ‘magic formulas’ 
into which students can plug numbers and produce a (possibly incorrect) 
answer without a great deal of understanding of what they’re doing. How-
ever, calculations for combined bending and axial stress situations are de-
pendent on certain formulas – but you have to know when to use a plus 
sign and when to use a minus sign. And, as with any formula, you have to 
understand what the various terms mean.

Earlier in this chapter we encountered the following equation:

Combined bending and axial stress = 
P ± M

A z

Now, a force P acting at an eccentricity e from the centre line of a cross-sec-
tion will apply a moment of (P × e) at that centre line. So:

M = Pe

Also, in Chapter 19 we learned that z = I/y. From this we can generate two 
further equations for combined bending and axial stress, as follows:

Combined bending and axial stress = 
P ± My

A I

or:

Combined bending and axial stress = 
P ± Pey

A I

For a reminder of what all the symbols mean, see Fig. 20.5. 

neutral       axis 

0

00

0

P/A M/z

M/z

P/A + M/z 

P/A – M/z 

P/A + M/z

P/A – M/z 

0

0

0

0

(a) cross 
      section

(b) direct
stresses

(c) bending 
stresses

(d) (e)

combined bending and axial stresses 

Fig. 20.4 Stress combinations.
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Example 20.1

A force of 200 kN acts vertically downwards on a column of cross-sec-
tional dimensions 400 mm × 300 mm. The force acts at an eccentricity of 
100 mm along the Y–Y axis from the centre of the section, as shown in Fig. 
20.6 (a). Calculate the stress in the column at the following positions:

• Along the ‘top’ face of the column (position A).

• At the point of application of the load (point K).

• At the centroid of the cross-section (point L).

• At a point 50 millimetres ‘below’ the centre line (point M).

• Along the ‘bottom’ face of the column (position B).

We know the following:

P = 200 kN (or 200 × 103 N)

M
e

P

b

d y

Area A = bd

M = Pe

z = bd2/6 (see Chapter 19) 

I = bd3/12 (see Chapter 19) 

y = vertical distance from neutral axis to point of interest

Fig. 20.5 Symbols in combined bending and axial stress equation.
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220  Basic Structures for Engineers and Architects

A = bd = (300 mm × 400 mm) = 120,000 mm2

e = 100mm

M = Pe = (200 × 103 N × 100 mm) = 20 × 106 N.mm

I = 
bd3

 =
300 × 4003

 = 1.6 × 109 mm4

12 12

y is the distance from the centroidal axis (X–X) to the position at which 
we’re interested in calculating the stress. Its values for positions A, K, L, 
M and B are respectively 200, 100, 0, 50 and 200 millimetres.

Signs are also important. As the force P is pushing down on the 
upper part of the section, it will induce compression (+) for points A 
and K, zero for L, and tension (–) for points M and B.

σ = 
P ± My

A I

For point A: σA = 
200 × 103

 +
20 × 106 × 200

 = 1.67 + 2.5 = 4.17 N/mm2

120,000 1.6 × 109

For point K: σK = 
200 × 103

 +
20 × 106 × 100

 = 1.67 + 1.25 = 2.92 N/mm2

120,000 1.6 × 109

(a)       (b) 

40
0 10

0

P = 200 kN

300

50

10
0

P = 200 kN

300

50 P = 50 kN 

A

B

K

L

M

B

M

L

K

A

Fig. 20.6 Worked example 20.1.
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For point L: σL = 
200 × 103

 +
20 × 106 × 0

 = 1.67 + 0 = 1.67 N/mm2

120,000 1.6 × 109

For point M: σM = 
200 × 103

 –
20 × 106 × 50

 = 1.67 – 0.625 
 = 1.045 N/mm2120,000 1.6 × 109

For point B: σB = 
200 × 103

 –
20 × 106 × 200

 = 1.67 – 2.5 = –0.83 N/mm2

120,000 1.6 × 109

Now let’s make the problem slightly harder. Let’s suppose that, in addi-
tion to the 200 kN force shown above, a 100 kN force acts at point M, as 
illustrated in Fig. 20.6 (b).

The overall moment about the X–X axis is now:

M = (200 × 103 N × 100 mm) – (100 × 103 N × 50 mm) = 15 × 106 N.mm

The total force, P, is now:

(200 kN + 100 kN) = 300 kN (or 300 × 103 N)

So, the fi rst term of the equation is now:

P
 =

300 × 103

 = 2.5 N/mm2

A 120,000

The other quantities remain the same. So now the stresses are as fol-
lows:

For point A: σA = 2.5 +
15 × 106 × 200

 = 2.5 + 1.875 = 4.375 N/mm2

1.6 × 109

For point K: σK = 2.5 +
15 × 106 × 100

 = 2.5 + 0.938 = 3.438 N/mm2

1.6 × 109

For point L: σL = 2.5 +
15 × 106 × 0

 = 2.5 + 0 = 2.5 N/mm2

1.6 × 109

For point M: σM = 2.5 –
15 × 106 × 50

 = 2.5 – 0.047 = 2.453 N/mm2

1.6 × 109

For point B: σB = 2.5 –
15 × 106 × 200

 = 2.5 – 1.875 = +0.625 N/mm2

1.6 × 109

These stresses, for each of the two cases considered, are tabulated in 
Table 20.1.
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Beware the difference between e and y

Many students are puzzled as to the distinction between e and y. This dis-
tinction is crucial to the understanding of problems involving combined 
bending and axial stress, and is as follows:

• e represents the eccentricity of the load(s) – that is, the distance from 
the point of action of the load to the relevant centroidal axis (axis X–X 
in the above case). In the above example, e = 100 mm for the 200 kN 
load and 50 mm for the 100kN load.

• y represents the distance from the centroidal axis to the point at which 
we wish to know the stress.

Maximum and minimum values of stress

Examine the fi gures in Table 20.1. You will see that in each case the maxi-
mum stress occurs in the ‘top’ face (position A) and the minimum stress 
occurs in the ‘bottom’ face (position B).

The values of maximum and minimum stresses are particularly impor-
tant to engineers, as we design a column (or other structural element) to 
sustain the worst stress to which it is likely to be subjected. This ‘worst’ 
stress is usually the maximum value, but the minimum value is of interest 
too, especially if it is negative (as it was in the case of point B in Example 
20.1 above). A negative value of stress suggests that tension is being expe-
rienced and in many situations we need to avoid tensile stresses. More of 
that later.

Combined stresses in two dimensions
So far we have considered stresses in one dimension only. (For example, 
in Fig. 20.6, points A, K, L, M and B all lie on the same vertical line.) This 
is fi ne for situations where the loads happen to act directly on centroidal 
axes, but what happens if they don’t?

Table 20.1 Stresses derived from Example 20.1

Point Description of point 200 kN load only 200 kN load + 100 kN load
A ‘Top’ face of column +4.17 +4.375

K 100 mm above centre +2.92 +3.438

L At centre of column section +1.67 +2.5

M 50 mm below centre +1.045 +2.453

B ‘Bottom’ face of column   – 0.83 +0.625

The fi gures in the right-hand columns are stresses, expressed in N/mm2 units
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Examine Fig. 20.7, which shows a column cross-section on which a load 
P is acting. P acts at a point which is eccentric from the column’s centroid 
in both directions – in other words, the point is on neither the X–X or Y–Y 
axes. The four corners of the column are labelled A, B, C and D.

The eccentric load P will induce a moment about each of the axes X–X 
and Y–Y. We will call these moments Mx and My respectively.

zx = bd2/6 and zy = db2/6

(z, the section modulus, was introduced in Chapter 19.)
The stresses at the four corners (A, B, C and D) of the column can be 

calculated from the following equations:

σA =
P

+ 
Mx – 

My

A zx zy

σB =
P

+ 
Mx + 

My

A zx zy

σC =
P

– 
Mx + 

My

A zx zy

σD =
P

– 
Mx – 

My

A zx zy

P

A B

CD

x x

y

y

My

Mx

Moment Mx is clockwise when viewed from side BC 
Moment My is clockwise when viewed from side DC 

Fig. 20.7 Stresses caused by rotation about both axes – general case. 
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Example 20.2

As in Example 20.1 above, a column of cross-sectional dimensions 400 
mm × 300 mm experiences a load of 200 kN. This time though, the load 
is applied eccentrically to both axes, as shown in Fig. 20.8. Calculate the 
stress at each of the four corners of the column (A, B, C and D).

P = 200 kN (or 200 × 103 N)

A = (300 mm × 400 mm) = 120,000 mm2

Mx = +(200 × 103 N × 100 mm) = 20 × 106 N.mm

My = +(200 × 103 N × 50 mm) = 10 × 106 N.mm

zx = bd2/6 = 300 × 4002/6 = 8.0 × 106 mm3

zy = db2/6 = 400 × 3002/6 = 6.0 × 106 mm3

Note that Mx and My are both positive because they both act in the same 
direction as the general case shown in Fig. 20.7.

σ =
P ± 

Mx ± 
My

A zx zy

σ =
200 × 103

± 
20 × 106

± 
10 × 106

 N/mm2

120,000 8 × 106 6 × 106

σ = 1.67 ± 2.5 ± 1.67 N/mm2

40
010
0

P = 200 kN

300

50

A B

D C

x x

y

y

Fig. 20.8 Worked example 20.2.
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So the stresses at the four corners are:

σA = 1.67 + 2.5–1.67 = +2.5 N/mm2

σB = 1.67 + 2.5 + 1.67 = +5.84 N/mm2

σC = 1.67–2.5 + 1.67 = +0.84 N/mm2

σD = 1.67–2.5–1.67 = –2.5 N/mm2

Note the negative value of stress at point D – it indicates that tensile 
stress is being experienced there.

Pressure on foundations
The principles outlined above regarding eccentric loads on columns are 
equally applicable to eccentric loads on foundations. Columns in build-
ings have to be supported at their base by a foundation, whose function is 
to safely transmit all the loads from a structure safely into the ground (see 
Chapter 1). A concrete pad (or isolated) footing is often used, as illustrated 
in Chapter 3.

In the design of pad foundations it is important to ensure that the per-
missible ground bearing pressure (that is, the maximum pressure that the 
ground can sustain) is not exceeded. It is therefore important to be able to 
calculate the actual pressure at any point in the foundation. In practice, the 
maximum or minimum pressures occur at one of the four corners, so it is 
suffi cient to calculate the actual pressure at each of the corners.

Figure 20.7, which we referred to earlier when we were considering 
stresses in columns, is equally applicable to the general case for pressure 
on foundations. It is a plan view of a rectangular concrete pad foundation 
whose four corners are labelled A, B, C and D.

The two centroidal axes are labelled X–X and Y–Y. An eccentric load P 
acts at a position that causes a clockwise moment (as viewed from side BC) 
about axis X–X and a clockwise moment (as viewed from side DC) about 
axis Y–Y. The pressures at the corners A, B, C and D are given by the four 
equations discussed earlier.

(Note: Although we used N and mm units when calculating stresses in 
columns, the larger forces and dimensions in foundations suggest that kN 
and metres are more suitable units when calculating pressures in founda-
tions.)

Example 20.3

Calculate the pressure at each corner of the foundation shown in Fig. 
20.9. The 80 kN load will cause a clockwise rotation about the x-axis (as 
viewed from side BC) which is the same as that assumed in the general 
case of Fig. 20.8. Hence the positive sign in the Mx calculation below.
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The 80 kN load will cause an anticlockwise rotation about the y-axis 
(as viewed from side DC), which is opposite in direction from the clock-
wise rotation assumed in the general case of Fig. 20.8. Hence the nega-
tive sign in the My calculation below.

P = 80 kN

Mx = +(80 kN × 0.2 m) = +16 kN.m

My = –(80 kN × 0.7 m) = –56 kN.m

A = (3.0 × 1.5) = 4.5 m2

zx = 
bd2

 =
3 × 1.52

 = 1.125 m3

6 6

zy = 
db2

 =
1.5 × 32

 = –2.25 m3

6 6

σ =
P ± 

Mx ± 
My

A zx zy

σ =
80 ± 

16 ± 
–56

4.5 1.125 2.25

σ = 17.78 ± 14.22 ± (–24.89)

σA = 17.78 + 14.22 – (–24.89) = +56.89 kN/m2

σB = 17.78 + 14.22 + (–24.89) = +7.11 kN/m2

σC = 17.78 – 14.22 + (–24.89) = –21.33 kN/m2

σD = 17.78 – 14.22 – (–24.89) = +28.45 kN/m2

As the pressure at corners C is negative, this suggests that tension oc-
curs at this point. In other words, the foundation would tend to lift off 
the ground at point C, which is obviously not desirable in practice!

3 m

1.5 m 1.5 m 

1.5 m 
0.75 m 

0.75 m 0.7m

80 kN 
A B

CD

0.
2m

x x 

y

y

Fig. 20.9 Example of eccentric foundation loading.
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What you should remember from this chapter
This chapter explains how to combine axial and bending stresses in a 
column or a foundation. The calculation procedure has been outlined to 
obtain the overall stress (or pressure) at any point in a column (or founda-
tion). Watch out for the signs (+ or –) and be aware that a negative stress 
indicates that tension is occurring at the point concerned.

Tutorial questions
Calculate the stresses at each of the four corners (A, B, C and D) of the four 
examples illustrated in Fig. 20.10. In each case, identify the points (if any) at 
which tension occurs. (Note: In each case, the loads act ‘into the paper’.)

(a)       (b) 

(c)        (d) 

0.3 m 

0.
2 

m
 

4 m

2 
m

 

100 kN

A B

CD

3 m 

2 
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A B
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0.
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100 kN 

2.
6 

m
 

2.0 m 

0.
4 

m
 

64 kN 

A B

CD

250 mm 

40
0 

m
m

 

A B 

CD

50 kN 

100 kN 

60 mm 

60 mm 

12
0 

m
m

 

80
 m

m
 

Fig. 20.10 Tutorial examples.

1405120533_4_020.indd   2271405120533_4_020.indd   227 23/02/2005   20:54:5823/02/2005   20:54:58



228  Basic Structures for Engineers and Architects

Tutorial answers

Values given are at points A, B, C and D respectively.

(a) +23.67, +23.67, +0.95, +0.95 kN/m2.
(b) +25.63, +14.37, –0.63, +10.63 kN/m2.
(c) +19.17, +39.17, +14.17, –5.83 kN/m2.
(d) –419, +1019, +3419, +1981 kN/m2.
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 21Structural materials: concrete, steel, 
timber and masonry

Introduction
This book is primarily concerned with the basics of structural analysis. 
Up till now we haven’t paid much attention to the material that a beam, 
column or slab might be made of. There are, of course, many materials 
available for us to use, but in this chapter we will confi ne our discussion 
to the four main structural materials, namely concrete, steel, timber and 
masonry.

Both architects and structural engineers need to decide at an early stage 
what material (or combination of materials) they are going to use in a par-
ticular project. But it’s diffi cult to make such a decision if you don’t know 
anything about the various materials. The purpose of this chapter is to 
discuss the different materials available to the construction professional.

Which is the best material?
A natural question at this stage is: which is the best structural material? 
Well, it depends on what you mean by ‘best’. Does ‘best’ mean strongest, 
stiffest, cheapest, most readily available or most attractive? Or all of these? 
Or maybe none of these?

A moment’s consideration would lead us to conclude that there is no 
one building material that is the best in all respects. If there were, then 
every building structure in the entire world would be built out of that 
one material. Clearly this isn’t the case. If we look at the world around us, 
we see buildings made of brickwork or stonework, timber buildings, and 
buildings with frames of steel or reinforced concrete. In certain parts of the 
world we see buildings constructed of ice, mud or bamboo. It is apparent 
that there are many different materials that can be used in building, each 
of which has its advantages and disadvantages.
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The kettle analogy

If you look at your everyday surroundings you will notice that particular 
objects tend to be made of certain materials. This is because these materi-
als are particularly suitable for given applications. For example, car tyres 
are made of rubber, windows are made of glass, pens are usually plastic.

We also know that certain materials are patently unsuitable for certain 
applications. For example:

• Contact lenses are never made from steel.

• Aircraft fuselages are never constructed from brickwork.

• Computers are never made out of concrete.

• Radiators are never made from plastic (although perhaps they could 
be?).

Consider a kettle as an example. If you review the desired properties of a 
kettle, you might come up with some or all of the following:

• Strength: the kettle must be strong enough to contain water and to 
resist the pressure of steam building up inside it. It must also be strong 
enough not to break if dropped onto a hard fl oor surface.

• Thermal properties: the kettle must be able to resist the temperature 
of boiling water and must not break, melt or otherwise deform at such 
temperatures. It must also be able to cope with sudden changes of tem-
perature, for example if cold water is poured into a recently boiled 
kettle.

• Rigidity: the kettle must not deform under water or steam pressure.

• Disposability: what will happen to the kettle at the end of its life?

• Availability of materials: the materials must be readily available in the 
quantities required for mass production of kettles.

• Manufacturing costs: the manufacturing process must be streamlined 
so that kettles are produced as cheaply as possible.

• Durability: the kettle should not readily rot, corrode or otherwise de-
grade in use.

• Waterproofness: the kettle shouldn’t leak.

• Attractiveness: the kettle should be suffi ciently good looking that peo-
ple would want to buy it.

A manufacturer of kettles has to fi nd a material that has all the above prop-
erties. Until the late 1970s, all kettles were made of steel; then plastics were 
developed that could cope with high temperatures without deforming. 
Nowadays most kettles are made of plastic because there are plastics avail-
able that meet the above requirements and are cheaper than steel. Let’s 
consider the consequences of making kettles out of other materials:

• A timber kettle is possibly more expensive to manufacture. It would be 
diffi cult to achieve a waterproof seal and the timber would rot quickly 
in such a damp, steamy environment unless preservatives were used 
– which may be poisonous!
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• It would be diffi cult (and therefore uneconomic) to create a concrete 
kettle to the required dimensions; otherwise it would be too heavy. 
Also, the surface of the concrete might tend to fl ake off or dissolve 
inside into the water being boiled.

• A masonry kettle would be impractical for the same reasons as a con-
crete one, with formation of waterproof joints being an additional 
problem.

So what was the purpose of this diversion into the preferred properties of 
a kettle? Well, some of the properties listed above, desirable in the manu-
facture of kettles, are also important properties of the materials to be used 
in structures. Let’s examine some of these desirable properties in more 
detail.

Factors to be considered in material selection
Availability

Construction materials are used in large quantities and therefore need 
to be readily available. Stone and clay are extracted in most parts of the 
United Kingdom, hence masonry (stonework, brickwork and blockwork) is 
widely used in domestic construction. (For example, until the 1960s every 
building in the Scottish city of Aberdeen was built out of granite, which 
was readily available locally from one massive quarry.) In some parts of 
the world, other locally available materials are excellent for construction. 
Also, the local labour force is likely to be familiar with the use of locally 
available materials.

Strength

Materials need to be strong enough (in tension and/or compression) for 
their intended purpose. Clearly, some materials are stronger than others. 
Selection of too weak a material for a particular application is an obvious 
mistake, but selection of a needlessly strong material is also undesirable.

Stiffness

Stiffness, or rigidity, is not to be confused with strength: some strong ma-
terials are not stiff (e.g. rope) and some stiff materials are not particularly 
strong (e.g. glass). The stiffer a material, the less it will defl ect. The stiff-
ness of a material is proportional to its Young’s Modulus value. (For the 
derivation of Young’s Modulus, see Chapter 18.) Typical Young’s Modulus 
values for the materials being considered in this chapter are:

• Steel: 210 kN/mm2

• Aluminium: 71 kN/mm2

• Concrete: 14 kN/mm2

• Timber: 5–10 kN/mm2
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It can be seen from the above that steel is by far the stiffest of the common 
structural materials – for a given cross-section steel is three times as stiff 
as aluminium, 15 times as stiff as concrete and over 20 times as stiff as 
timber. But remember, this is for a constant cross-section, so these relative 
stiffnesses will vary according to the cross-section used.

We saw in Chapter 1 that defl ection needs to be controlled, but it is less 
critical in some applications than others. A super-stiff material, therefore, 
is not always required or even desirable.

Speed of erection

Some building types can be erected more quickly than others. For example, 
a steel-framed structure can be completed far more quickly than a mason-
ry one. But speed of construction is not always critical and there may well 
be a trade-off between speed and cost. Being told that a building could be 
built twice as fast for twice the cost greatly concentrates the mind!

Cost/economics

A complex issue. Architects and engineers are always looking to minimise 
cost. There is an old saying that an engineer can do for a penny what any-
one can do for two pence. We have to consider the cost of the raw materials, 
the cost of conversion of the material into its usable form, transportation 
costs and associated labour costs.

Ability to accommodate movement

All buildings tend to move. Some materials can accommodate this better 
than others. For example, brickwork can cope with movement more read-
ily than a steel-framed structure can.

Durability

Some materials rot, decompose, corrode or spall, etc. over time. Some ma-
terials do this more readily than others; in other words, some materials are 
less durable than others. Maintenance costs and programmes need to be 
taken into account. For example, it is well-known that the Forth Rail Bridge 
in Scotland is repainted on a three- to fi ve-year cycle to control corrosion 
of the steel structure.

Disposal

Nothing lasts for ever. How is the building going to be disposed of at the 
end of its life? Can the material be re-used or converted into some other 
usable form? What are the costs associated with this?
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Fire protection

There is an unfortunate possibility that any structure may catch fi re. Some 
materials have better fi re resistance properties than others.

Size and nature of the site

The location of the site may infl uence the choice of materials. Traffi c con-
gestion problems, local by-laws and physical obstructions may limit the 
size of deliveries to the site and the times of day that deliveries can take 
place.

We will now discuss each of the main structural materials individually. 
As you will see, each material has its advantages and disadvantages.

Concrete
Concrete is manufactured by mixing four ingredients – cement, fi ne ag-
gregate (sand), coarse aggregate (gravel or crushed rock) and water – in 
pre-determined proportions in a controlled manner to form a grey fl uid 
resembling porridge. This wet concrete is transported to the place where it 
is needed and poured into ‘moulds’ of the required shape and size. These 
moulds, known by the terms formwork or shuttering, are usually made of 
timber or steel. Chemical reactions take place within the concrete, which 
lead to its setting, hardening and gaining in strength over a period of 
weeks.

The production of concrete needs to be carefully controlled. Firstly, its 
naturally occurring constituent materials are variable in quality. Secondly, 
wet concrete is susceptible to high or low temperatures and needs to be 
placed as quickly as possible before it ‘goes off’. Thirdly, careless treatment 
of wet concrete – for example, allowing it to drop from a great height or 
to bounce off formwork – can lead to segregation of its constituents which 
can affect the integrity of the fi nished concrete.

Concrete is strong in compression (typically 30–40 N/mm2) but weak in 
tension (3–8 N/mm2). As we saw in Chapter 3, any structural element in 
bending – for example, a beam or a slab – experiences tension, therefore, if 
made of concrete, it needs to be reinforced with steel bars. Concrete with 
steel bars in it is known as reinforced concrete. In practice, all concrete 
seen in structures is reinforced concrete.

Reinforced concrete has a number of advantages:

• It has high strength when reinforced.

• It is mouldable into any desired shape.

• Because it is mouldable, it can be formed into structurally continuous 
elements.

• It is durable: it does not corrode or rot.

• It has good fi re resistance properties.

• It also has good thermal and noise insulation properties.
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• It is relatively cheap to produce – although its placement on site is quite 
labour-intensive, which increases the cost.

• It can be used compositely (that is, two materials acting together) with 
structural steel.

• It is widely used in foundations, columns, beams, slabs, bridges, roads, 
railway sleepers.

• It is suitable for short-span low- and high-rise building frames.

• Prestressed concrete – concrete through which highly tensioned rods 
or cables have been placed – is stronger than reinforced concrete 
and therefore longer and more slender members can be produced. 
Prestressed concrete is therefore suitable for long spans and rigid 
frames.

• Concrete elements (beams, columns, etc.) can be made in factories and 
then, when hardened, transported to a construction site and erected 
into position. Such elements are termed precast concrete elements. 
The more usual concrete construction, where wet concrete is poured 
into formwork on site, is called in-situ construction.

However, the following disadvantages of reinforced concrete also need to 
be considered:

• It is heavy, both physically and aesthetically.

• As indicated above, construction using reinforced concrete needs to 
be carefully controlled and is labour intensive. It is ‘messy’, requir-
ing formwork, reinforcement and the placing and compaction of con-
crete.

• Once poured, it takes several weeks for the concrete to achieve the 
required strength. This delays consequent construction activities (un-
less the concrete is precast).

• Although it doesn’t rot or corrode, concrete can suffer certain ills, in-
cluding spalling, cracking (leading to possible corrosion of reinforce-
ment) and carbonation (a chemical reaction with the atmosphere that 
causes deterioration).

Masonry
Traditionally the term masonry refers to the material crafted by a mason 
– namely, stone. In modern times, the term more usually applies to brick-
work or blockwork.

Bricks and blocks come in small, cuboidal units which can be lifted by 
hand. They are laid in rows by a bricklayer to form walls or columns. Mor-
tar is used to ‘glue’ the individual units together and to fi ll the gaps or any 
irregularities between units.

The advantages of masonry are as follows:
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• It has high compressive strength, making it ideal for walls, columns 
and arches, all of which are in pure compression.

• It is durable – no fi nish is required.

• It is made from raw materials readily available in the UK at low cost.

• No complicated plant is required.

• It has an attractive appearance.

• There is design fl exibility – bricks or blocks can be combined to form 
complex shapes.

• Masonry has good fi re resistance properties and good thermal/acous-
tic properties.

The disadvantages of masonry are:

• It has very low tensile strength, which means it cannot be used for ele-
ments which bend, for example beams or slabs.

• Compared with timber (the other material used for low-rise domestic 
construction), masonry is heavy, so larger foundations are required 
and transport costs are higher.

• Frost and chemical attack can cause spalling in brickwork.

• Effl orescence – chalky and unsightly (but harmless) deposits – can 
occur on brickwork following a cycle of wetting and drying.

Figure 21.1 shows a traditional stone arch bridge. Arch structures are in 
compression throughout and stone, being strong in compression, is an ex-
cellent material for such structures.

Fig. 21.1 Stone arch bridge.
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Timber
Timber is the only structural material which is used in its naturally occur-
ring form. The length and cross-section of a timber beam are limited by 
the height and girth of the tree from which it is obtained.

Longer timber beams, and larger cross-sections, can be obtained by slic-
ing the timber into thin strips and gluing these strips together both along 
their lengths and their ends, but it is an expensive process rarely used in 
the United Kingdom. This is known as glued laminated (or ‘glulam’) tim-
ber.

Timber comes in two types:

• hardwoods, obtained from deciduous (leaf-shedding) trees;

• softwoods, obtained from coniferous (evergreen) trees.

Softwoods are generally used for structural purposes. Strength of a given 
species of timber is determined either visually (from inspection by a suit-
ably skilled person) or mechanically (by laboratory testing).

Timber is one of the oldest building materials and has the following 
structural advantages:

• It is light, with a high strength/weight ratio.

• It is easy to cut and shape.

• Despite what you might expect, it performs well in fi re.

• It has good chemical durability.

• It has a pleasing appearance.

• It is relatively cheap.

• Although it has low stiffness, it is relatively stiff in relation to its own 
(light) weight.

• It is suitable for lightly or moderately loaded low-rise building frames 
and for shed and rigid frames.

But timber has the following disadvantages:

• Its low strength means that spans are limited, as is the height of timber 
buildings.

• It is diffi cult to form joints in certain circumstances.

• As mentioned above, the size of a piece of timber is limited by the size 
of the tree from which it comes.

• Timber is susceptible to rot and decay unless properly maintained.

• Its properties vary according to species of tree.

Steelwork
Structural steelwork is manufactured in standard sections. It has the fol-
lowing advantages:

• Its strength is high in both tension and compression (but compression 
in steelwork can be a problem – see below).

• Steel has a high strength/weight ratio.
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• Because steel sections are produced in a factory under carefully con-
trolled conditions, high quality control can be achieved.

• Steel’s appearance can be elegant, with slender elements, smooth sur-
faces, straight and sharp edges.

• Pre-fabrication is possible.

• Steel has high stiffness.

• Steel is economic in material: a small amount carries a relatively large 
load.

• Steel is suitable for low/high-rise buildings and roof structures of all 
spans.

Steelwork does, however, have the following disadvantages:

• It is diffi cult to form curves.

• It is heavy: cranes are required to lift steelwork.

• It is a high-cost material.

• It has a durability problem: it corrodes if not protected and main-
tained.

• It has poor fi re resistance; therefore steelwork needs to be protected by 
other materials.

• Because of the slender sections used in steelwork, it is prone to buck-
ling in compression. This is an important criterion in the design of 
steelwork.

The complex steel and glass footbridge structure shown in Figure 21.2 was 
constructed in the late 1990s to connect two shopping centres.

Fig. 21.2 Steel footbridge, Manchester.
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Aluminium
Aluminium is rarely used as a structural material except in very small 
structures (e.g. greenhouses). Its main properties are as follows:

• Its strength is about the same as mild steel.

• It is stiffer than concrete or timber.

• It is less stiff than steel, but also lighter.

• It has high strength/weight ratios.

• But: aluminium is expensive.

So how do I decide what materials to use in a given 
building?

The following discussion relates to construction in the United Kingdom, 
though some of it may apply elsewhere.

Framed or unframed structure?

The fi rst decision to be made is whether the structure will be framed or 
unframed. In a framed structure, a framework or ‘skeleton’ of beams and 
columns is used to carry the structural loads down the building to the 
foundations. The framework is usually of steel or reinforced concrete, but 
in very small (usually single-storey) structures may be of timber or alu-
minium. The fi nished building will usually also have external and inter-
nal walls, but these are non-structural and support no loads other than 
their own weight.

In a non-framed structure, the walls are load-bearing. These load-bear-
ing walls are usually masonry, but may be reinforced concrete.

Example 21.1

Consider the following scenario.
Depending on your specialism, you run either an architectural prac-

tice or a fi rm of consulting engineers. One of your clients, a property 
development company, proposes to construct an offi ce development on 
a specifi c site. Dimensions of the planned building have yet to be fi nal-
ised, but it is known that the building will be two-storey, of approxi-
mate plan dimensions 60 m x 20 m. When complete, the building will 
be rented out to either one company or, with appropriate subdivisions, 
to a number of small tenant companies.

At the fi rst meeting of the project team, your client asks your advice 
on whether a framed structure would be appropriate. Write your reply, 
giving full reasons for your choice.

Having thought about this, your answer would probably be that a 
framed structure is the appropriate option, for the following reasons:
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• It is clear that the use of the building is not rigidly defi ned. It is an 
offi ce building, but may be occupied by a number of companies, 
and the tenant companies may grow (thus requiring more space) 
or shrink (requiring less space). Companies may come and go over 
time. Accordingly, the available space should be as fl exible as possi-
ble to accommodate the changing needs of the tenants. It is best not 
to have such fl exibility inhibited by the presence of internal load-
bearing walls.

• The absence of load-bearing walls means there will be more fl oor 
space. Although this increase in fl oor space will be relatively small, 
it will be good news for your property developer client, who will be 
anxious to squeeze as many lettable square feet as possible out of 
the building.

• If there are no load-bearing walls – which would be made of con-
crete or masonry and so would be relatively heavy – the building as 
a whole will be lighter. This relative lightness would mean that the 
loads on the foundations would be less, which in turn means that 
the foundations could be less substantial and thus cheaper. Your 
client would be delighted at any saving in money that you could 
offer him.

• Framed structures of steel or concrete can be erected much faster 
than load-bearing masonry structures. This will again please your 
client, who will want to see the structure completed (and thus pro-
viding rental income) as soon as possible – preferably yesterday.

However, as with most projects in ‘the real world’, things do not run 
smoothly and there is a twist in the tale:

At the second meeting of the project team, your client shares his be-
lief that a forthcoming recession will cause a drastic decrease in the 
demand for offi ce accommodation. He does, however, foresee a growing 
demand for quality hotel accommodation and has therefore replaced 
the offi ce project with a hotel project on the same site, which, when 
complete, will be sold to the Dream Easy Inn hotel chain for use as a 
bedroom block. Due to planning constraints, the height and overall di-
mensions of the building will remain as before.

Your client asks whether this change of use would change your earlier advice 
on the building’s structure. What is your reply? Give reasons.

Now the scheme has changed totally. Although the fi nal building 
will be the same shape and size as before, its use is now completely 
different. The needs of a hotel chain (and the guests who pay to stay 
there) are vastly different to the demands of a company renting offi ce 
space (and those of the offi ce workers it employs). So the architect and 
engineer need to think again.

In this case, you may well decide that a framed structure is not ap-
propriate, for the following reasons:
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• Guests in a hotel room want a good night’s sleep. It is therefore 
important that the hotel room be at the right temperature and quiet 
– no guest wants to be disturbed by noise from the room next door 
or from outside. High levels of thermal and sound insulation are 
therefore important. It makes sense to use load-bearing blockwork 
which, correctly specifi ed, would provide an appropriate level of 
thermal and sound insulation as well as forming part of the build-
ing’s structure.

• Unlike the offi ce scenario, no fl exibility is required of a hotel bed-
room block. It is unlikely that the hotel owner would need to change 
the size of individual hotel rooms or the location of their walls in 
the future.

• Once again, you should consider your client’s needs. As he will be 
selling the building on to a hotel chain on completion, his main 
concern is that the fi nished building will be an attractive purchase 
for such an operator. Your client is not concerned about the build-
ing’s future income potential.

• It should be noted that this building is low-rise (only two storeys). 
The decision might be different with a high-rise building, where 
the effi ciency of a structural framework would override other con-
siderations.

We can extrapolate the lessons we’ve learned from this specifi c example 
to more general cases, as follows.

Features of framed structures:

• fl exibility: can accommodate change of use;

• small saving in fl oor space;

• lighter, giving smaller (and hence cheaper) foundations;

• faster speed of erection.

Features of non-framed structures:

• inherent thermal and sound insulation properties in masonry, so 
useful for hotels or apartment buildings where insulation is impor-
tant;

• no fl exibility in the use of the building – but this may not be re-
quired anyway.

The following is a list of the materials used for particular structural ele-
ments.

Walls

• Masonry (unframed structures).

• Masonry, timber stud, aluminium frame (framed structures).
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Floors

• Timber joists supporting fl oorboards (domestic: low loads, small 
spans).

• In situ reinforced concrete (general industrial/commercial).

• Precast concrete (suitable for regular, repetitive fl oor layouts).

• Composite: in situ concrete on corrugated steel (popular for offi ce 
buildings).

Beams

• Timber (short spans only).

• In situ reinforced concrete (general industrial/commercial).

• Precast concrete (not common unless prestressed).

• Prestressed concrete (suitable where long spans are required).

• Steel.

Columns

• Timber (domestic and other small-scale construction only).

• Reinforced concrete.

• Steel.

Pitched roofs

• Timber truss or rafter/purlin construction (domestic only).

• Steel truss or portal frame (longer-spanned commercial/industrial 
buildings).

Foundations

• Concrete (usually reinforced for other than domestic construction).
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Material selection for structural design
In earlier chapters of this book we have looked at such matters as shear 
force, bending moment and stress. We have learned how to evaluate these 
things and, in the case of shear force and bending moment, draw diagrams 
of their distribution. Some readers may have wondered how we apply this 
information. For example, we might calculate that the maximum bending 
moment experienced in a particular beam is 45 kN.m, or that the compres-
sive stress in a certain column is 25 N/mm2, but how do we make use of 
this information?

The process of converting a piece of information such as maximum 
bending moment = 45 kN.m to a reinforced concrete or steel beam of a 
shape and size that will resist this bending moment is known as struc-
tural design. The full structural design process is beyond the scope of this 
book – there are many excellent textbooks available on the subject – but 
this chapter serves as an introduction to structural design.

The fi rst decision that the structural designer needs to make is what 
material – or combination of materials – should be used in a given situa-
tion. In Chapter 21 we discussed the four main materials used in structural 
design (steel, reinforced concrete, masonry and timber), the advantages 
and disadvantages of each, and which material(s) is likely to be used for 
any particular type of structural member. This should guide you in your 
material selection. We will now discuss the alternative forms of building 
construction that are available to the designer.

Alternative forms of construction
The most common types of structural schemes for buildings are outlined 
in the following sections.
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Steel frames

These are structural frameworks comprising steel beams and columns 
supporting fl oor slabs. The fl oor slabs are usually of concrete or a steel/
concrete composite such as profi led steel decking onto which concrete is 
poured. The beams that span between columns are called primary beams 
and they in turn may support secondary beams (we saw an example of 
this in Chapter 5).

Lateral stability of the structure is important and we saw in Chapter 11 
that this may be assured by using diagonal cross-bracing or by designing 
the beam/column joints to be suffi ciently rigid. Such measures may also be 
necessary to prevent torsion (twisting) of the building.

Steel beams and columns are available from manufacturers in standard 
section sizes and tables of the structural properties of these standard sizes 
are available for designers. While deeper sections may be stronger and 
lighter (and hence, in material terms, cheaper) than shallower ones, head-
room considerations may lead to the overall building height being greater 
if deeper sections are used. This will lead to increased costs because the 
increased height of the building means that a greater number of columns, 
cladding, lifts, etc. is required.

Services (that is, electrical and telephone cables, gas and water pipes 
and ventilation ducts) need to be accommodated. We will see in Chapter 
23 that some types of steel beam can cater for such services more readily 
than others.

Steel beams and columns need to be connected to each other, usually 
by bolting or welding. Connection details need to be kept simple in order 
to keep the costs (of fabrication, installation and material) to a minimum. 
And, as we’ve already seen, steel is vulnerable to fi re and corrosion and 
needs to be protected accordingly. Because steel sections are slender, they 
are also vulnerable to buckling, a consideration that needs to be addressed 
at the design stage.

Figure 22.1 shows a typical steel-framed offi ce building under construc-
tion.

Reinforced concrete frames

These are frames of concrete beams and columns. As we saw in Chapter 
21, structural concrete is always reinforced internally with steel bars in 
order to provide the required tensile strength. Reinforced concrete frames 
usually comprise in situ concrete: this means that the concrete beams or 
columns are formed by pouring wet concrete into a mould (formwork) lo-
cated at the beam or column’s fi nal position. The formwork needs to be 
supported by a temporary propping structure which, along with the form-
work itself, needs to be left in position for several days until the concrete 
has gained suffi cient strength. This requirement can impede and delay 
other site activities.
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Reinforced concrete beams support reinforced concrete slabs, which can 
be of various types, for example, one-way spanning, two-way spanning, 
rib or waffl e, which were illustrated in Chapter 3. Unlike steel structures, 
fi re protection is not normally a problem with concrete and, provided 
cracking is kept within acceptable limits, neither is corrosion of the steel 
reinforcement.

Construction of reinforced concrete buildings is quite labour-intensive: 
operatives are required to make and install the formwork and its supports, 
place the reinforcement and place the concrete.

Precast concrete frames

Precast concrete frames comprise individual beams and columns of rein-
forced concrete that have been made in a factory then delivered to site in 
their completed form. (This contrasts with the in situ concrete frames dis-
cussed above, where the concrete is formed at its fi nal position on site.) 
Greater quality control can normally be achieved with precast members, 
as the environment in a factory is more controllable than that on site. Also, 
as the precast members will have achieved their full strength when they 
arrive on site, there will be no waiting time to delay other site activities. 
However, precast construction is best suited to structures which are totally 
regular and repetitive in nature.

Fig. 22.1 Steel-framed offi ce building under construction.
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Timber frames

Because of timber’s limited strength, timber-framed structures tend to be 
small-scale domestic buildings. Timber roof frames are generally used for 
domestic pitched roofs. Connection between members, and protection of 
timber against rot or insect attack, is also a consideration.

Load-bearing masonry

Structural masonry – stone, brickwork and blockwork – is the preferred 
form of construction for the walls of houses and other non-framed struc-
tures in the United Kingdom and elsewhere. Masonry’s high compressive 
strength makes it ideal for such structures and also for other structures 
that are in pure compression: for example, arches. Masonry comes in small 
units (e.g. individual bricks) which are easy to manage. However, skilled 
labour is required.

Masonry is generally less tolerant to differential settlements and acci-
dental damage than steel or in situ concrete-framed buildings.

Hybrid schemes, e.g. steel frame with precast concrete fl oors

These are combinations of the above.

The choice between different construction types
The choice between construction types will depend on the following fac-
tors.

The need for fl exibility

As we saw in Chapter 21, the future use of the building – and whether this 
is likely to change over time – may infl uence the type of construction.

The spans required

Sometimes there are requirements for long uninterrupted spans in, for 
example, theatres and other auditoria, multi-storey car parks, exhibition 
halls or, in the case of bridges, shipping lanes. In such cases the span will 
usually dictate the form of construction. As a general rule, the longer the 
crossing, the more expensive it will be to achieve.

The ground conditions

These will dictate whether relatively cheap conventional foundations can 
be used or whether more expensive piling or other foundation types are 
required.
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The access to the site

If the site is isolated, access roads may need to be built. On the other hand, 
if the site is in the middle of a large city, delivery of materials may be re-
stricted. There may be other constraints, for example, all materials may 
have to be lifted in by crane because of physical site constraints. The wise 
designer considers all this at the design stage.

The experience of the designers

The designers may have great experience of a particular type of design 
which can be used on the present project. This makes the whole process 
less painful – and less costly – because of the benefi ts of the lessons learned 
on previous projects.

The experience of the contractors

Again, the contractors may have experience of certain construction types 
and techniques which, if used on the present project, will keep the cost 
down.

The availability of materials

It is no use specifying materials which are either unavailable or have to be 
imported at great cost, whatever their attributes might be.

Risks and diffi culties in the construction process tend to lead to in-
creased costs, so the chosen solution should seek to minimise these. Once 
you have decided on the material (or combination of materials) to use, the 
design process can begin.

Design from fi rst principles and design standards
You can learn how to design (for example) a reinforced concrete beam 
from fi rst principles. This largely mathematical process is taught at some 
universities and is dealt with in some textbooks. But bear in mind that you 
aren’t the fi rst person to attempt to design a reinforced concrete beam and 
you won’t be the last. The problems you encounter in doing so have all been 
encountered before and attempts have been made to deal with the process 
in documents called Standards or Codes of Practice. In the remainder of 
this discussion I will assume that you are either in the United Kingdom or 
some other places where British Standards are used, as my discussion will 
be based on British Standards. However, the general principles of what 
I say will apply to other Standards (e.g. the American ASTM Standards) 
also. In addition, you should be familiar with the local building codes of 
the country or place where you are, as local building codes overrule the 
requirements of Standards.
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British Standards

Are British Standards a set of rules and regulations, legal documents or 
design guides? Certainly, all design must conform to the requirements of 
the relevant British Standard, but to what extent do British Standards fulfi l 
the role of design guides? Certainly, a person who is given half an hour 
to design a reinforced beam is unlikely to fi nd the relevant British Stand-
ard much use unless he or she has been trained in putting it into practice. 
However, a person familiar with the Standard will be able to use it to de-
sign a beam very quickly.

The early British Standards may have been user-friendly design guides. 
However, British Standards have become more and more voluminous over 
the years and, in my opinion, now read more like legal documents.

An individual new to structural design needs guidance in the use of 
British Standards. If you study a course or module entitled ‘structural de-
sign’ (or similar) at university or college, your lecturer or tutor will (or 
should) act as a friendly guide through the relevant parts of the code. Some 
textbooks are also good at performing this role.

The good news is that the design of, say, a timber beam or a structural 
steelwork column is a fi xed procedure which can be easily followed or 
learned – effectively, once you’ve designed one masonry wall you’ve de-
signed them all!

The relevant British Standards and where to fi nd further information

The relevant British Standards are:

• BS 8110: Part 1: 1997: Structural use of concrete.

• BS 5628: Part 1: 1992: Structural use of unreinforced masonry.

• BS 5268: Part 2: 1996: Structural use of timber.

• BS 5950: Part 1: 2000: Structural use of steelwork in building.

I’m sure it’s totally unintentional on the part of the drafters of the British 
Standards, but you’ll realise how easy it is to confuse the masonry and 
timber standards with each other (BS 5628 and BS 5268 respectively).

Eurocodes will replace these British Standards within the next few years. 
These documents will be used for design throughout the European Union 
and it is hoped that this international consistency will make it easier for 
engineers from different countries to work together. Each Eurocode should 
be read in conjunction with the relevant National Application Document 
(NAD) which will give parameters which should be used for specifi c coun-
tries. The relevant Eurocodes are listed below:

• EN 1990 Basis of structural design

• EN 1991 Actions on structures

• EN 1992 Design of concrete structures

• EN 1993 Design of steel structures

• EN 1994 Design of composite steel and concrete structures

• EN 1995 Design of timber structures
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• EN 1996 Design of masonry structures

• EN 1997 Geotechnical design

• EN 1998 Design of structures for earthquake resistance

• EN 1999 Design of aluminium structures

Apart from the fi rst, each of these Eurocodes is divided into a number of 
parts. (Note: The numbering of these Eurocodes is unfortunate and should 
not be confused with years. For example, EN 1996 has nothing to do with 
the year 1996.)
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 23How far can I span?

Introduction
Any person involved in the conceptual design of a building will soon have 
to consider how far can be spanned in practice. There are no easy answers 
to this question (although some rules of thumb are given below), but this 
chapter explores the various factors involved.

Long span structures
What is a span?

You will be most familiar with the word span in the context of bridges, 
but it applies to beams and slabs within building structures as well. The 
span of a bridge (or beam, or whatever) is the horizontal distance between 
supports.

How far can we span?

On the face of it, a span can be as long as is necessary. A concrete lintel 
struggles to span a 1 metre wide door opening, while modern suspension 
bridges can – and do – span several kilometres. In practice, the greater the 
span, the stronger the spanning element has to be. This generally means it 
has to be deeper and this greater depth may be diffi cult to accommodate 
physically. And inevitably, as span increases, the cost will also increase.

However, spans should not be too small either, as an excessive number 
of columns or supporting walls can interfere too much with activities 
going on within the building – nobody wants to see a ‘forest’ of columns. 
In general, spans are made as long as is reasonably practical.

Some points worth noting are as follows:
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• Some materials are stronger than others, therefore can span greater 
distances.

• In general, the longer the span, the deeper the supporting element has 
to be.

• Some building uses dictate that large uninterrupted spans are re-
quired. Examples include sports halls, swimming pools, theatres, con-
cert halls, etc.

At fi rst glance, the canopy shown in Fig. 23.1 looks impossibly wafer-thin 
in respect of the distance it is cantilevering. However, Fig. 23.2 shows a 
break in the canopy that reveals it is in fact considerably deeper (and hence 
stronger) at its supporting columns. Careful design conceals this fact else-
where from street-level observers.

Let’s consider the various structural materials one by one.

Steel
Standard steel beams

Steel beams (universal beams) are manufactured in standard sizes. Corus 
(formerly British Steel) produces tables of these standard sizes and their 
various dimensions and properties. In many cases a steel building will 
comprise standard beams (and columns), selected by the designer to ac-
commodate the calculated bending moments, shear forces and defl ections. 
A typical universal beam section is shown in Fig. 23.3 (a). 

Fig. 23.1 Building with cantilevered canopy, Berlin.
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Plate girders

The largest standard section Corus produces is 914 mm deep. In situa-
tions where even this largest size is not adequate, it is possible to fabricate 
larger sections by welding together plates in the right confi guration. In 
other words, a section can be ‘tailor made’ when no ‘off the peg’ section is 
adequate. A typical plate girder section is shown in Fig. 23.3 (b).

Castellated and cellular beams

These steel beams have large holes in their webs (that is, the vertical parts) 
at regular intervals along the beam. These holes are hexagonal in the case 

Fig. 23.2 Building with cantilevered canopy, Berlin (detail).

Flange
plates

Web
plate

Stiffeners at 
intervals along 
beam

(a) Universal beam    (b) Plate girder 

Fig. 23.3 Universal beams and plate girders.

1405120533_4_023.indd   2511405120533_4_023.indd   251 10/02/2005   16:22:2110/02/2005   16:22:21



252  Basic Structures for Engineers and Architects

of castellated beams and circular in the case of cellular beams. Cellular 
beams in particular are very popular in multi-storey steel-framed con-
struction. Castellated beams are formed by cutting a standard steel beam 
longitudinally along a zigzag, as shown in Fig. 23.4 (a), then reconnect-
ing the two half beams as shown in Fig. 23.4 (b), thus forming a deeper 
(and therefore stronger) section of the same weight as before. Moreover, 
the holes in castellated and cellular beams can be used to accommodate 
services such as cables or water pipes.

Lattice girders

But what happens when a plate girder section would have to be so big as to 
be impractical? Well, instead of using a solid steel beam (as shown in eleva-
tion in Fig. 23.5 (a)), a lattice girder beam could be used. As you will recall, 
the top of a sagging beam is in compression and the bottom is in tension. A 
lattice girder comprises a top boom (in compression) and a bottom boom 
(taking the tension), with the two booms linked by diagonal members. 

(a) Formation of a castellated beam 

(b) The completed castellated beam 

(c) A cellular beam 

Fig. 23.4 Castellated and cellular beams.

1405120533_4_023.indd   2521405120533_4_023.indd   252 10/02/2005   16:22:2210/02/2005   16:22:22



How far can I span?  253

Using a lattice girder, a deep beam can be achieved without the require-
ment for it to be solid. This saves on material (and thus weight) and means 
that the gaps within the lattice can be used for other things (e.g. services 
can pass through them). A typical lattice girder is shown in Fig. 23.5 (b).

Lattice girders (referred to there as ‘bar joists’) are a common type of 
fl oor construction in commercial buildings in North America. These bar 
joist are typically 300–400 mm deep and are spaced at (typically) 600 mm.

Lattice box girders

What happens when the required span and loading increase still further? 
We could continue deepening (and thus strengthening) the lattice girder. 
Another option is to introduce a second lattice girder running alongside 
the fi rst one and linked to it by two horizontal lattice girders, one at top 
boom level, the other at bottom boom level. A box is thus formed and 
therefore this type of beam is called a box lattice truss, shown in Fig. 23.6 
(a). A variation on this theme is the triangular lattice truss, shown in Fig. 
23.6 (b). As steel is more likely to buckle when in compression, the cross-
section of steel available in the compression zone is maximised by having 
two booms in this zone and one in the bottom (tensile) zone) as shown. 
Figure 23.7 shows triangular steel lattice trusses, double curvature in pro-
fi le, spanning an airport concourse and supporting its roof.

(a) A solid steel beam 

(b) A lattice girder 

section

section

Fig. 23.5 Solid steel beams and lattice girders.
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Suspension structures

Lattice box girders can span considerable distances – typically up to 100 
metres when supporting football stands – but there may be cases when we 

(a) Box lattice truss      

(b) Triangular lattice truss 
section

section

Fig. 23.6 Lattice trusses.

Fig. 23.7 Triangular lattice trusses supporting terminal roof, Liverpool John 
Lennon Airport.
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need to span greater distances. In such cases we need to use suspension 
or cable-stayed structures. The principle behind these is that if support 
cannot be provided from below, it can be provided from above by means 
of cables which run over supporting masts to an anchorage point in the 
ground.

Concrete
Reinforced concrete

As discussed in Chapter 21, structural concrete is always reinforced – i.e. 
it has steel bars embedded in it – for strength purposes. Unfortunately, the 
span/depth ratios required of reinforced concrete are not very desirable 
to designers: if a reinforced concrete beam is required to span a long dis-
tance, its depth will be inconveniently great.

Prestressed concrete

Prestressed concrete beams (i.e. those containing embedded steel bars or 
cables subjected to large tensile forces) can be much more slender than 
reinforced concrete beams and therefore are a popular choice when long 
spans are required. Prestressed concrete beams are often visible in multi-
storey car parks.

Timber
Timber beams and joists

The material aspects of timber were discussed in Chapter 21, where we 
saw that timber beams cannot span great distances because of their lim-
ited strength. The cross-sectional size is also limited by the size of the tree 
from which the timber was obtained.

Glued-laminated (‘glulam’) beams

Longer spans are possible with timber if glued laminated beams are used. 
As mentioned in Chapter 21, such beams are formed by building up layers 
from thin slices of timber glued together.

Glulam beams are not common in the United Kingdom due to their 
high cost, but are sometimes seen supporting the roofs of swimming pools 
– timber being less susceptible to the corrosive action of chlorine gas than 
other materials.

Masonry
As discussed in Chapter 21, masonry is weak in tension and is therefore 
not really suitable as a spanning material. This is why the columns in 
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 ancient Greek and Egyptian temples are so close together: the stone beams 
that span between them can span only a short distance.

Masonry arch structures

Masonry, being strong in compression, is suitable for use in arch struc-
tures, which are in compression throughout. Masonry arches can span 
reasonable distances and a series of masonry arches can be used to form a 
viaduct, as can be seen in Roman stone aqueduct structures (for example, 
at Nimes in the south of France) and in Victorian brick railway viaducts at 
many locations in the United Kingdom and elsewhere.

Spans and depths: some rules of thumb
A question I am commonly asked by students of architecture is: ‘How far 
can I span and how deep would the beam have to be?’ If only it were that 
simple.

As mentioned earlier, in broad terms, the greater the span, the greater 
the depth. It follows that rule of thumb span-to-depth ratios can be gener-
ated and these are given in Table 23.1. These should be used with caution 
and the following points should be noted:

• The possible spans, and associated depths, depend on the loading to 
which the beam is subjected. The fi gures in Table 23.1 assume ‘normal’ 
commercial building loads. They do not apply to more heavily loaded 
situations (e.g. plant rooms) or to unconventional loading scenarios.

• This information is given without prejudice and is for guidance pur-
poses only. It is suitable for initial sizing of structural elements for 
architectural scheme or costing purposes.

• For actual building projects the size of structural elements must be 
verifi ed through detailed design by a qualifi ed structural engineer.
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Table 23.1 Span ranges and span/depth ratios

Type of element
Span range 
(metres)

Typical span/depth
ratio

CONCRETE

Beam: simply supported Up to 8 m 15–20

Beam: continuous Up to 12 m 20–27

Beam: cantilever Up to 5 m 1–7

Slab: one-way: simply supported Up to 6 m 20–30

Slab: one-way: continuous Up to 6 m 20–30

Slab: one-way: cantilever Up to 3 m 5–11

Slab: two way: simply supported Up to 6 m 30–35

Slab: two way: continuous Up to 6 m 30–35

Profi led steel decking/concrete composite Up to 6 m 35–40

Ribbed slab Up to 11 m 35–40

Waffl e slab Up to 15 m 18–25

Column Storey height 10–17

Strip foundation 0.8–2.0 m wide

Pad foundation 1.5–3.0 m square

TIMBER

Joist fl ooring Up to 6 m 10–20

Glulam beam Up to 30 m 15–20

Plyweb beam Up to 20 m 10–15

STEEL

Primary beams (supported by columns) Up to 12 m 15–20

Secondary beams (supported by other beams) Up to 7 m 15–20

Portal frame Up to 60 m 35–40
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Introduction
In the earlier chapters of this book you were shown how to calculate such 
things as shear force, bending moment and stresses. In worked examples 
you were presented with loads to work with. Unfortunately, real-life struc-
tural problems are not as neatly packaged as examples you might encoun-
ter in textbooks or in university lecture theatres. You have to calculate the 
loads yourself. This chapter tells you how.

As you learned in Chapter 5, there are two types of loading:

(1) dead (or permanent) loads;
(2) live (or imposed) loads.

We will discuss the calculation of each of these in turn, then look at some 
examples.

Dead load
Unit weights of common building materials are given in Appendix 1. (Brit-
ish Standard BS 648 gives the unit weights of a much wider range of ma-
terials.) These loads are expressed in kN/m3 and represent the weight of 
a cubic metre of the material. For example, the unit weight of reinforced 
concrete is 24 kN/m3, which means that a cubic metre of concrete weighs 
24 kN. This is almost two-and-a-half times the weight of water. So if, in the 
early stages of your career, you have to carry buckets full of wet concrete 
short distances on construction sites (as I did), you’ll fi nd they’re consider-
ably heavier than the buckets of water you use when cleaning your car!

If you want to calculate the weight of a reinforced concrete beam which 
is 200 mm (or 0.2 metres) wide, 400 mm (or 0.4 metres) deep and 6 metres 
long, you fi rst need to calculate the volume of the beam, then multiply it by 
the unit weight to get the total weight.
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Volume of beam  = length × breadth × height
= 6 m × 0.2 m × 0.4 m
= 0.48 m3

Total weight of beam  = volume × unit weight
= 0.48 m3 × 24 kN/m3

= 11.52 kN.

Live load
As you will recall from Chapter 5, these are loads due to people and fur-
niture. By their very nature, these are variable. To simplify matters, live 
loads are assigned certain values depending on the use of the building or 
area concerned. These loads are expressed in kN/m2 and typically fall in 
the range 1.5–5.0 kN/m2. Values for some common cases are given in Ap-
pendix 1.

For example, the live load relevant to classrooms is 3.0 kN/m2. So, for a 
classroom which has a fl oor area 10 metres × 10 metres:

Total live load  = 10 m × 10 m × 3.0 kN/m2

= 300 kN.

Example 24.1: Loading on a reinforced concrete 
beam

A reinforced concrete beam spans 6 metres between supporting col-
umns. The beam is 250 mm wide and 450 mm deep and supports a 5 
metre wide portion of slab 175 mm deep. There is a 40 mm deep con-
crete topping layer on top of the slab. The fl oor supports offi ces. There 
is also a non-loadbearing masonry (blockwork) wall directly above the 
beam and running along the line of the beam. This blockwork wall is 
2.5 metres high, 200 mm thick and is fi nished on both sides with plaster 
of weight 0.5 kN/m2. See Fig. 24.1.

Calculate the total load on the concrete beam per metre length. (Note: 
don’t forget to include the weight of the beam itself.)

Solution
Unit weight of concrete = 24 kN/m3. (Appendix 1)

Unit weight of blockwork = 22 kN/m3 (Appendix 1)

Live load due to offi ces = 2.5 kN/m2 (Appendix 1)

Note that you are asked to calculate the total load per metre length of 
concrete beam. There will be a number of contributions to this total 
load. They come from the blockwork wall, the plaster on it, the topping 
layer on top of the slab, the slab itself, the beam’s own weight and the 
live load (due to people and furniture) on the slab. One of the basic 
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260  Basic Structures for Engineers and Architects

mistakes students sometimes make with this sort of calculation is in 
forgetting one or more of these contributions.

Considering these contributions one by one:
Blockwork wall:
This is simply a matter of multiplying the volume of the wall (length 

× breadth × height) by its unit weight:

Load due to blockwork wall  = 2.5 m × 0.2 m × 1.0 m × 22 kN/m3 
= 11 kN

Plaster on blockwork wall:
The unit weight of plaster has been expressed in units of kN/m2 – in 

other words, load per unit area. This means that we must calculate the 
total plastered area per metre length of wall and multiply this area by 
the unit weight of plaster given above. Remember, the wall is plastered 
on both sides, so the number 2 in the calculation below represents two 
sides:

Load due to plaster = 2 × 2.5 m × 1m × 0.5 kN/m2 = 2.5 kN

Concrete slab:
As with the blockwork wall, we multiply the volume of the slab (per 

metre length of beam) by the unit weight of reinforced concrete. Re-
member: the beam is supporting a 5 metre wide portion of slab.

Load due to reinforced concrete slab  = 5 m × 0.175 m × 1 m × 24 kN/m3 
= 21 kN

(a) Long section through beam    (b) Section A-A 

25
00

40
0

40
17

5

250
6000

All dimensions are in 
millimetres 

centrelines of 
supporting
columns

blockwork
wall

200

Fig. 24.1 Concrete beam featured in example 24.1.
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Calculating those loads  261

Topping layer:
It is reasonable to assume that the unit weight of the topping layer is 

the same as that for the structural reinforced concrete. As with the slab 
proper, we multiply the volume of the topping by the unit weight. To 
make calculations easier, we shall pretend that the topping continues 
underneath the blockwork wall – even though it doesn’t. This means 
our calculation will be slightly conservative (i.e. an over-estimate).

Load due to topping layer = 5 m × 0.04 m × 1 m × 24 kN/m3 = 4.8 kN

Concrete beam:
We have already considered the top part of the beam (i.e. the top 175 

millimetres of the beam’s depth) when we were calculating the load due 
to the slab. We now need to calculate the loading due to the bottom 225 
mm (i.e. 400–175) of the beam.

Load due to reinforced concrete beam  = 0.175 m × 0.250 m × 1m 
  × 24 kN/m3 
 = 1.05 kN

Live load:
This was expressed above as a load per unit area of fl oor slab (2.5 

kN/m2). Again, for simplicity we’ll ignore the presence of the block-
work wall when calculating this load. The live load will be the surface 
area of the slab multiplied by the load per unit area, as follows:

Live load = 5 m × 1 m × 2.5 kN/m2 = 12.5 kN

So:

Total dead load = (11 + 2.5 + 21 + 4.8 + 1.05) = 40.4 kN

Total live load = 12.5 kN

This gives a total load of 52.9 kN per metre length of the beam.

Example 24.2: Loading at the base of a column

A four-storey reinforced concrete-framed building has a plan area of 
18 metres × 25 metres. Supporting columns are arranged on a grid of 6 
metres × 5 metres, as shown in Fig. 24.2. At each level, fl oor slabs span 
5 metres onto supporting beams, which in turn span 6 metres between 
columns. The 6 metre span beam considered in Example 24.1 is a typical 
supporting beam.

If the ground fl oor slab is ground-bearing (in other words, it is sup-
ported directly on the ground underneath) and the live load on the fl at 
roof is the same as on the fl oors, calculate the total load at the base of 
a typical internal supporting column if the columns are 400 mm × 400 
mm in plan.
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262  Basic Structures for Engineers and Architects

Solution
At each level, a typical column will support an area of beam and slab as 
shown by the hatched zone in Fig. 24.2. In Example 24.1 we have already 
calculated the total load on a typical 1 metre length of beam, so if we 
multiply this fi gure by 6 metres, we have the total load supported by a 
typical column at each level. We then need to multiply the result by 4 
to represent the four fl oors (excluding the ground-bearing ground fl oor 
slab but including the roof slab).

Total load on typical column from beams  = 52.9 kN/m × 6 m 
  × 4 storeys 
= 1270 kN

(a) Section A-A 

(b) Plan 

6 m 6 m 6 m

5 
m

 
5 

m
 

5 
m

 
5 

m
 

column

beam

A A

1st floor 

2nd floor 

3rd floor 

roof

Fig. 24.2 General arrangement of 4-storey offi ce building.
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Calculating those loads  263

We now need to add on the weight of the column. If the total height 
of the building (and thus of the column) is 14 metres, the weight of the 
column is:

Column self-weight = 14 m × 0.4 m × 0.4 m × 24 kN/m2 = 53.8 kN

(Again, this is obtained by working out the volume of the column 
and multiplying it by the unit weight of concrete.)

So:

Total load at base of a typical internal column is:  1270 + 53.8 
= 1323.8 kN

Example 24.3: Sizing of a pad foundation

Typically, a column in a building will be supported by a pad founda-
tion. The function of a pad foundation – indeed, any foundation type 
– is to transmit the loads from the building’s superstructure (that is, the 
above ground part) safely into the ground beneath.

In order to determine a foundation size, two things need to be 
known:

• The total load on the foundation.

• The permissible ground-bearing pressure.

The permissible ground-bearing pressure – in other words, the maxi-
mum pressure that the ground can sustain without deforming – can 
only be determined from a ground investigation relating to the site of 
the proposed building.

If a ground investigation has been done for the site of the building 
discussed in Example 24.2 and the permissible ground-bearing pres-
sure has been found to be 200 kN/m2, calculate the pad foundation size 
required.

Solution

Minimum pad size required = 
Total column load

Permissible ground bearing pressure

Minimum pad size required = 
1323.8 kN

 = 6.62 m2

200 kN/m2

Normally, pad foundations are square, except when practical constraints 
– for example, the presence of obstructions – mean that they have to be 
rectangular. So, if a square pad has to have a minimum plan area of 6.62 
m2, the minimum length of one of its sides is the square root of 6.62, i.e. 
2.57 metres.

We shall round up this value to 2.7 metres, for the following reason. 
The self-weight of the base also acts on the ground below of course. But 
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we cannot calculate the weight of the base until we know its size. By 
rounding up the base side length to 2.7 metres, we are increasing the 
base size to allow for the extra load due to the base itself. Let’s assume 
that the depth of the foundation is 0.5 metres. We then need to check 
that the actual ground-bearing pressure is less than 200 kN/m2:

Total load in column = 1323.8 kN (calculated above)

Weight of 2.7 m square base  = 24 kN/m3 × 0.5 m × 2.7 m × 2.7 m 
= 87.5 kN

Total Load = 1323.8 + 87.5 = 1411.3 kN

So:

Actual ground bearing pressure = 
Load

 =
1411.3 kN

Base area 2.7 m × 2.7 m

 = 193.6 kN/m2

As this is less than 200 kN/m2, a pad foundation of plan dimensions 
2.7 m × 2.7 m is satisfactory.

Example 24.4: Loads in timber joist fl ooring

Due to its relatively low strength, timber fl ooring tends to be used in do-
mestic construction where loading is light and spans are comparatively 
short. Timber fl ooring comprises timber beams (or joists, as they are 
usually known) at fairly close centres (typically 400, 450 or 600 mm).

For example, if a timber fl oor comprises 50 × 200 (width × depth in 
millimetres) timber joists, spaced 400 mm apart, supporting 10 mm 
thick timber boarding, the load on every metre length of joist (see Fig. 
24.3 (a)) is as calculated below. Assume an imposed load of 1.5 kN/m2 
(normal in domestic construction) and that the unit weight of softwood 
is 5.9 kN/m3 (see Appendix 1).

Self-weight of joist per metre length  = (0.05 m × 0.2 m × 1.0 m 
  × 5.9 kN/m3)
= 0.059 kN

Self-weight of boarding per metre of joist  = (1.0 m × 0.4 m × 0.01 m 
  × 5.9 kN/m3)
= 0.024 kN

Live load per metre length of joist  = (1.0 m × 0.4 m × 1.5 kN/m2) 
= 0.6 kN

So

Total load per metre length of joist = (0.059 + 0.024 + 0.6) = 0.683 kN

Now let’s suppose we wanted to calculate the load per square metre of 
fl ooring. A square metre of fl ooring with joists at 400 mm spacing will 
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Calculating those loads  265

contain 1/0.4 = 2.5 metres of timber joist (see Fig. 24.3 (b)). The total load 
per square metre of fl ooring is calculated as follows:

Self-weight of 2.5 length of joist  = (0.05 m × 0.2 m × 2.5 m 
  × 5.9 kN/m3)
= 0.148 kN

Self-weight of one square metre of boarding  = (1.0 m × 1.0 m 
  × 0.01 m × 5.9 kN/m3)
= 0.059 kN

Live load on one square metre of boarding = 1.5 kN

Therefore

Total load per square metre of timber fl ooring  = (0.148 + 0.059 + 1.5)
= 1.71 kN

From inspection it can be seen that the dead load for timber fl ooring is 
usually a lot less than the associated live load.

The dead load part of the above calculation is (0.148 + 0.059) = 0.207 
kN/m2.

In general, a total dead load of 0.25 kN/m2 is a convenient fi gure to 
use when performing calculations involving timber fl ooring.

Section A-A 

(a) Load per metre of joist    (b) Load per square metre 
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Fig. 24.3 Loads on timber joist fl ooring.
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266  Basic Structures for Engineers and Architects

Example 24.5: Loads due to steel beams

Structural steel beams come in standard sizes, each of which is desig-
nated by three fi gures multiplied together. The fi rst fi gure is the nomi-
nal width, the second fi gure is the nominal overall depth and the third 
fi gure is the steel beam’s own weight expressed in kg per metre length.

For example, the universal beam section designated 203 × 133 × 23 
has a depth of approximately 203 mm, a width of around 133 mm and 
each metre of it weighs 23 kg.

Therefore, if we know the specifi c steel beam that is being used in 
a given situation, we know the self-weight in kg/m – which can be 
 converted to kN/m by dividing by 100. For example, 23 kg/m = 0.23 
kN/m.

If we don’t know the specifi c steel beam size that is being used in 
a given situation, we can estimate the self-weight using the following 
rules of thumb:

• For steel beams up to 360 mm deep, self-weight (in kg/m) is about 
one-sixth of the depth (e.g. a 203 mm deep beam weighs 203/6 = 
34 kg/m).

• For steel beams 360 to 800 mm deep, self-weight (in kg/m) is about 
one-quarter of the depth (e.g. a 533 mm deep beam weighs 533/4 = 
133 kg/m).

• For steel beams over 800 mm deep, self-weight (in kg/m) is about 
one-half of the depth (e.g. a 914 mm deep beam weighs 914/2 = 
457 kg/m).

Example 24.6: Loads on the supports of timber joist 
fl ooring

A timber fl oor comprises 50 × 200 timber joists spanning 4 metres from 
a central supporting beam to loadbearing walls on either side, as shown 
in Fig. 24.4. The central supporting beam, labelled ‘Beam A’, is a 203 mm 
deep steel beam and is supported by steel columns – labelled ‘Column 
B’ – at each end of its 6.0 metre span. If the dead load of the timber fl oor-
ing is 0.25 kN/m2 and the live load is 1.5 kN/m2, calculate:

• the total load per metre length of beam A;

• the total load on each of the two columns B.

As the span of the fl ooring is 4.0 metres, half of that span (i.e. 2 metres) is 
supported by beam B. But it is 2 metres on each side of the beam, so the 
total portion of fl ooring supported by the beam = 2 × 2 m = 4  metres.

Total load per square metre of fl ooring = (0.25 + 1.5) = 1.75 kN/m2
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Calculating those loads  267

Estimated self-weight of 203 mm deep steel beam (see example 24.5 
above)  = 203/6 = 34 kg/m 

= 0.34 kN/m

Total load on beam B (per metre) from fl ooring   = (4 m × 1 m 
  × 1.75 kN/m2) 
= 7.0 kN

Self-weight of beam B per metre = 0.34 kN

Therefore

Total load per metre length of beam B = (7.0 + 0.34) = 7.34 kN

Total load on each supporting column = 
7.34 kN × 6 m

 = 22 kN
2

Figure 24.5 shows an atrium. Atriums are becoming increasingly common 
and feature large areas of glass (which may be horizontal, vertical or in-
clined). The glass needs to be supported and the supporting structure may 
be substantial.

Figure 24.6 shows the base of a modern high-rise offi ce building. Note 
the inclined supports.

Plan view of timber joist flooring 

4 m 4 m 

6 
m

 

be
am

 A
 

column B 

Fig. 24.4 Loads on supports of timber joist fl ooring.
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Fig. 24.5 Atrium, Learning Centre, Leeds Metropolitan University.

Fig. 24.6 Offi ce building, Deansgate, Manchester.

1405120533_4_024.indd   2681405120533_4_024.indd   268 23/02/2005   21:09:5823/02/2005   21:09:58



1Weights of common building materials

A full list is given in British Standard BS 648. The more commonly used 
materials are discussed below. (Please note that these fi gures are ‘typical’ 
only, as the strength of any material varies according to the type or grade 
of material.)

Reinforced concrete
Unit weight: 24 kN/m3 (2400 kg/m3)

Therefore a 100 mm thick concrete wall weighs 2.4 kN/m2 (240 kg/m2).

Blockwork
Unit weight: 22 kN/m3 (2200 kg/m3)

Therefore a 100 mm thick blockwork wall weighs 2.2 kN/m2 (220 kg/
m2).

Lightweight (aerated) blockwork can weigh considerably less (as low as 
6 kN/m3).

Brickwork
Approximately the same weight as blockwork (see above).

Steel
Unit weight: 78.5 kN/m3 (7850 kg/m3)

Steel beams weigh between 0.2 and 2.0 kN/m (20–200 kg/m) depending 
on size.

Appendix
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270  Appendix 1

Aluminium
Unit weight: 27.7 kN/m3 (2771 kg/m3)

Timber
Unit weight: Softwood: 5.9 kN/m3 (590 kg/m3). Hardwood: 12.5 kN/m3 
(1250 kg/m3)

Therefore a 50mm x 200mm (‘two by eight’) softwood joist weighs 0.06 
kN/m (6 kg/m).

Glass
Unit weight: 25 kN/m3 (2500 kg/m3)

Therefore the weight of glass is 0.025 kN (2.5 kg) per millimetre thick.

Water
Unit weight: 10 kN/m3 (1000 kg/m3)

Live loads
Live loads (i.e. non-permanent loads due to people and furniture in a room 
in a building) are assumed to be uniformly distributed and are expressed 
in kN/m2. Values of live load depend on the use of the building (or part of 
the building) concerned. A full listing appears in British Standard BS 6399 
Part 1. Some values are given below.

• Domestic: 1.5 kN/m2

• Offi ces: 2.5 kN/m2

• Cafes/restaurants: 2.0kN/m2

• Classrooms: 3.0 kN/m2

• Assembly: fi xed seating: 4.0 kN/m2

• Corridors/stairs in hotels, etc.: 4.0 kN/m2

• Exhibitions: 4.0 kN/m2

• Gyms: 5.0 kN/m2

• Bars, concert halls, etc.: 5.0 kN/m2

• Stages: 7.5 kN/m2

• Shops: 4.0 kN/m2

• Parking (cars): 2.5 kN/m2

• Plant rooms: 7.5 kN/m2.

*Note: British Standards can be viewed on the internet at www.athens.ac.uk. 
To access this site, an ‘Athens password’ is required, which can be obtained 
by students and staff at UK universities. See your university learning cen-
tre for details.
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2Conversions and relationships 
between units

Appendix

Inches, feet and metres
1 inch = 25.4 mm
1 foot = 304.8 mm = 0.3048 metres
1 metre = 3.281 feet
1m2 = 10.76 ft2

1 ft2 = 0.092 m2

Yards and metres
1 yard = 3 feet = 36 inches = 0.9144 metres
1 metre = 1.094 yards
1 yd2 = 0.836 m2

1 m2 = 1.196 yd2

Acres and hectares
1 acre = 4840 yd2 = 4047 m2

1 hectare = 10,000 m2 = 2.47 acres
1 acre = 0.405 hectares

Miles and kilometres
1 mile = 1760 yards = 1609.3 metres
1 km = 1000 metres
1 mile = 1.6093 km
1 km = 0.621 miles
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Litres and cubic metres
1 metre = 100 cm
1 m3 = 106 cm3

1 millilitre = 1 cm3

1 litre = 1000 millilitres = 1000 cm3

1000 litres = 1 m3

Pounds, kilograms and stones
1 lb = 0.454 kg = 454 g
1 kg = 2.203 lbs
1 stone = 14 lb = 6.356 kg

Kilograms, kN and tonnes
10 N = 1 kg
1000 N = 1 kN
10kN = 1 tonne = 1000 kg

Tons and tonnes
1 ton =160 stone = 1017 kg
1 tonne = 0.983 tons
1 ton = 1.017 tonnes
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a

b

c

a2 + b2 = c2

So: c = �(a2 + b2)

Appendix

Fig. A1 Pythagoras’ theorem.

Pythagoras’ theorem
This states that ‘the square of the hypotenuse of a right-angled triangle is 
equal to the sum of the squares of the other two sides’. In plain English 
this means that if the length of any two sides of a right-angled triangle 
are known, then the length of the third side can be determined using the 
relationships shown in Fig. A1.

3Mathematics associated with 
right-angled triangles
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Basic trigonometry
With respect to a right-angled triangle, sines, cosines and tangents (nor-
mally abbreviated to sin, cos and tan respectively) are defi ned in Fig. A2. 
There is nothing ‘magic’ about this. A sine, cosine or tangent is simply the 
ratio of the lengths of two sides of a right-angled triangle.

Suppose we are interested in the angle formed between two sides of the 
triangle. The angle is represented by the Greek letter θ and is measured 
in degrees. ‘Hypotenuse’ represents the length of the longest side of the 
right-angled triangle – which is always the side opposite the right angle. 
‘Opposite’ represents the length of the side opposite the angle θ. ‘Adjacent’ 
represents the length of the side adjacent to the angle θ.

For example, if the ‘opposite’ side is 2 metres long and the ‘hypotenuse’ 
is 2.5 metres long, then sin θ = 2.0/2.5 = 0.8.

The reader should refer to a basic mathematics textbook if further infor-
mation is required.

ADJACENT

O
PP

O
SI

TE

HYPOTENUSE

sin � = OPPOSITE / HYPOTENUSE 

cos � = ADJACENT / HYPOTENUSE 

tan � = OPPOSITE / ADJACENT 

�

Fig. A2 Sines, cosines and tangents.
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4Symbols

Appendix

The units normally used in structural mechanics are given in brackets 
after each defi nition.

A = cross-sectional area (mm2)
E = Young’s Modulus or Modulus of Elasticity (kN/mm2)
I = second moment of area (mm4)
L = length; span of beam or slab (millimetres or metres)
M = moment (kN.m) (Chapter 8)
P = force (kN)
R = reaction (kN)
V = shear force (kN)
w = uniformly distributed load per metre (kN/m)
W = total uniformly distributed load per metre (kN)
σ = stress (direct or bending) (N/mm2)
τ = shear stress (N/mm2)
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Index

aluminium  238
arches  22
area, second moment of  194
axial stress  181

beam  8
beam types  18
bending (defi nition)  16
bending, combined with axial stress  

214–27
Bending, Engineer’s Equation  194
bending moment  149
bending moment diagrams  152
bending stress  191

cable stayed structures  24
centroids  201
column  8, 19
components of force  56
compression  13
concrete  233–4, 255
contrafl exure  163
cross bracing  95
cross section types  25

dead loads  36
density  32
determinacy, statical  83
direct stress  181
durability  232

eccentricity  218
elastic modulus  195
Engineers’ Bending Equation  194
equilibrium  43–7

fi xed supports  79
fl oors  7
force (defi nition)  10, 29
force, components of  56
forces, resultant of  53
force diagram (graphical) method  

134–44
foundation, pad  21
foundation, raft  21
foundations, pressures under  225
foundation, strip  21
foundations  7, 21
framed structures  238

graphical method (for analysing pin 
jointed frames)  134–44

hogging  145
Hooke’s Law  186

imposed loads  36
indeterminacy, statical  83

lateral loads  37
lateral stability  94
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live loads  36
loads, dead  36
loads, lateral  37
loads, live  36
loads, calculation of  258–67
loads, nature of  38
load paths  40
long span structures  249

masonry  234–5, 255–6
mass  29
materials  229–41
mechanism  93
method of resolution at joints  105–125
method of sections  126–33
moments  11, 60–68

neutral axis  193
Newton (unit of force)  29

parallel axis theorem  204
perfect frame  92
pin jointed frames  100–104
pinned supports  78
pins  77
point load  39
portal frames  23

reaction (defi nition)  10
reactions  70–76
resolution of forces  51
restraints  80
resultants of forces  53
rigid joints  97
roller supports  78
roofs  6

safety  5
sagging  145
second moment of area  194
section modulus  195

serviceability  5
shear (defi nition)  17
shear force  148
shear force diagrams  152
shear stress  182
shear walls  94
slabs  18
span  249–57
span-to-depth ratio  256
stability  86–94
staircases  7
statical determinacy  83
statical indeterminacy  83
steel  236–7, 250–55
strain  183
stress (defi nition)  11
stress (introduction)  175–80
stress, axial  181
stress, bending  191
stress, combined bending and shear  

214–27
stress, direct  181
stress, shear  182
support types  78
suspension structures  24

tension  14
theory of bending  191
timber  236, 255
trusses  23

uniformly distributed load (UDL)  40
uniformly varying load   40
unit weight  32
units of measurement  32

walls  6, 20
weight  30
wind loads  37

Young’s modulus  186
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