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Analysis of 1000 Genomes Pilot data 

We analyzed data from all three of the 1000 Genomes pilot projects (2). Briefly, these data-sets 

consisted of: 

• low-coverage (2-4x) whole-genome sequence data from 179 individuals from four populations; 

• high-coverage (>60x) whole-genome sequence data from six individuals from two families; and 

• high-coverage targeted sequencing of 8,140 protein-coding exons in 697 individuals. 

In all cases a combination of sequencing platforms was used to generate the data, which were then 

analyzed using an integrated read mapping and variant-calling pipeline to generate genotypes for single 

nucleotide variations (SNVs), small insertion/deletion variants (indels) and large deletions. These calls 

are publicly available at the 1000 Genomes FTP site, 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/. With the exception of applying 

additionally stringent filters to small indels in coding regions (see below), we used the final call-sets from 

the pilot projects to generate our initial catalogue of candidate LoF variants. 

Indel calling from low-coverage pilot 

We used the program Dindel (31) to call insertions and deletions shorter than 50 bp from both the high-

coverage trio and low-coverage pilots of the 1000 Genomes project. Dindel performs a probabilistic 

realignment of all reads mapped to a genomic region to a number of candidate haplotypes. Each 

candidate haplotype is a sequence of at least 120 bp that represents an alternative to the reference 

sequence and corresponds to the hypothesis of an indel event and potentially other candidate sequence 

variants such as SNVs. By assigning prior probabilities to the candidate haplotypes, the posterior 

probability of a haplotype and consequently an indel being present in the sample can be estimated.  

Although the false-discovery rate for the indels estimated from the low-coverage data was estimated to 

be lower than 5% genome-wide, we found that indels in coding regions appeared to be enriched for 

false-positives to an even greater extent than SNVs. We therefore applied a more stringent filter for the 

identification of LoF indels. The stringent filter requires that the range of positions where an indel would 

yield the same alternative haplotype sequence as the original called indel (for instance, in a repeat, the 

deletion of any repeat unit would give the same alternative haplotype), plus 4 bases of reference 

sequence on both sides of this region, was covered by at least one read on the forward strand, and at 

least one read on the reverse strand, with at most one mismatch between the read and the alternative 

haplotype sequence resulting from the indel (regardless of base qualities). This filter removed an excess 

of 1-bp frameshift insertions seen in CHB+JPT with respect to CEU seen in the less stringently filtered 

genome-wide indel call set, but it is also expected to have removed a significant number of true positive 

calls as well. 

For Dindel calls on the high-coverage trio pilot data we did not use read-based filters. However, calls 

were made jointly on all three members of each trio, and variants that failed to segregate as expected 

were removed prior to downstream analysis.   
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Deep analysis of a single individual genome 

To provide a more accurate picture of the LoF variants present in a “typical” genome we performed a 

systematic analysis of candidate LoF variants in the genome of NA12878, an anonymous female of 

European ancestry sequenced as part of the 1000 Genomes high-coverage pilot. We used the following 

sources of data:  

• genome-wide sequence data from three separate platforms (Illumina, SOLiD and 454) generated 

as part of the 1000 Genomes pilot (2); 

• high-coverage (64X) whole-genome sequence data from a single platform, the Illumina HiSeq 

2000 (6); 

• array hybridization intensity data from two published sources (23, 32); 

• published fosmid end-sequencing data (33). 

Read alignment and SNV calling from HiSeq data 

The genome of NA12878 was sequenced to a total coverage of ~64X using 100 bp reads from an Illumina 

HiSeq 2000 instrument. Raw sequence data was mapped using BWA, and GATK was used for quality 

score recalibration and realignment. SNVs were called from the realigned HiSeq data using GATK. Full 

details of the mapping and SNV-calling approaches are described in DePristo et al. 2011 (6). 

Indel calling from HiSeq data 

Dindel (31) was used to call indels from the HiSeq data for NA12878 assuming a diploid model. Given the 

high coverage, long reads, and high expected quality we applied a similar but more stringent filter as for 

the LoF indels from the 1000 Genomes low-coverage pilot (see above): we required no mismatches in at 

least one read on the forward strand and one read on the reverse strand. All indels passing this filter 

were taken forward for further analysis. 

To generate the final set of candidate LoF indels for NA12878, we took the union of Dindel calls from the 

HiSeq data and calls made from the 1000 Genomes pilot data on the same individual. This union was 

then subjected to manual inspection and validation as described below. 

Multi-nucleotide polymorphism calling from HiSeq data 

Most current SNV-calling and functional annotation methods are not explicitly designed to process block 

substitutions of two or more adjacent bases, known as multi-nucleotide polymorphisms (MNPs). While 

relatively rare, such polymorphisms can have dramatic effects on coding sequence function. 

Importantly, incorrectly calling and annotating MNPs as independent SNVs can result in both false LoF 

variants and in missing true LoF variants. 

We took two separate approaches to identify MNPs from the NA12878 HiSeq data. The first approach 

began with the SNV calls described above, but without applying the standard SNV cluster filter. A 

Bayesian framework (Fromer and Garimella et al., in preparation) was then applied to determine the 

most probable local haplotype given the sequencing reads.  Next, phased SNVs within a genomic 

distance of 2 base pairs were merged into single multi-nucleotide polymorphism (MNP) records.  The 
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RefSeq codon annotations were then compared between the unmerged SNVs and the corresponding 

MNP, and putative coding changes that required proper identification of the MNP to be recognized were 

tabulated.  This analysis was performed using publicly available tools written within the Genome 

Analysis Toolkit (GATK) (6, 34). Secondly, we called MNPs using the algorithm FreeBayes 

(http://bioinformatics.bc.edu/marthlab/FreeBayes) on the same set of pre-aligned BAM files. 

These two call-sets were merged, and MNPs functionally annotated relative to Gencode using a 

modified version of ANNOVAR (35). We manually examined six candidate MNPs from the union of the 

two call sets that were predicted to produce premature stop codons; all of these variants were found to 

correspond to either mapping or annotation artifacts. 

Calling of large deletions in NA12878 

To determine all LOF deletions for NA12878 the following data sets were taken into account: previously 

published deletions using array (23, 32) and fosmid end-sequencing (36) data, deletions detected in the 

1000 Genomes Project (10) and de novo calling of deletions detected in the HiSeq data using 

BreakDancer (37) and Pindel (38). Collating all deletion sets resulted in 69690 candidate LOF deletions. 

For each of these candidates we searched for any overlap with coding sequences as annotated by the 

GENCODE project for NCBI36. Of the 8318 deletions with at least 1 bp overlap with any coding region, 

5375 were predicted to result in LoF for the affected gene using the definitions described below. 

To remove redundancy we then created 3709 regions of interest by clustering deletions which had at 

least 1 bp overlap with each other. We carefully analyzed each cluster and considered additional 

information such as GC content, raw read depth using reads with mapping quality zero and greater than 

zero, and evidence from the log2 ratio generated by CNV discovery experiments (Conrad 2009).  

Finally, we manually reassigned breakpoints in each candidate region, using assembly information 

where available and a combination of read-pair and read depth information in other cases. After 

breakpoints had been assigned for each deletion, we determined whether the variants would still be 

predicted to cause LoF in order to arrive at a final LoF candidate set. 

Using this approach we detected 31 candidate LoF deletions in NA12878, of which 5 were homozygous 

and 26 were heterozygous. The genes within these candidate regions were then subjected to manual 

reannotation as described below to examine the evidence supporting the existence of a functional 

transcript that would be disrupted by the predicted deletion.  

Identification of candidate LoF variants 

Functional annotation of SNVs and short indels was performed with reference to the GENCODE v3b 

annotation release (7) using the annotation algorithm VAT (http://vat.gersteinlab.org/). Variants were 

mapped on to transcripts annotated as “protein_coding” and containing an annotated START codon, 

and classified as synonymous, missense, nonsense (stop codon-introducing), stop codon-disrupting or 

splice site-disrupting (canonical splice sites). Transcripts labelled as NMD (predicted to be subject to 

nonsense-mediated mRNA decay) were not used. 
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We used a custom algorithm to annotate large deletions as gene-disrupting if they fulfilled the following 

criteria: 

1. Removal of >50% of the coding sequence; or 

2. Removal of the gene’s transcriptional start site or start codon; or 

3. Removal of an odd number of internal splice sites; or 

4. Removal of one or more internal coding exons that would be predicted to generate a frameshift. 

For large deletions with imprecise breakpoints, we conservatively required that the deletions defined by 

both the inner and outer confidence intervals would have the same predicted effect on gene function. 

For cases with microhomology at the break-point we treated the breakpoint as falling to the right-hand 

side of the region of microhomology. 

We did not perform functional annotation for large duplications due to the challenges of inferring 

functional consequences. We also did not pursue small indels overlapping splice sites, as these were 

observed to have a relatively high rate of annotation errors. The numbers stated in the text should thus 

be regarded as a lower bound for the number of observed loss-of-function variants per individual 

genome.  

Experimental genotyping of LoF variants 

A variety of approaches were taken to obtain independent experimental validation that candidate LoF 

variants represented genuinely polymorphic sites. 

Firstly, 276 LoF SNVs reported to be polymorphic by the HapMap project were regarded as 

independently validated. Secondly, we obtained raw intensity data from three separate custom Illumina 

genotyping arrays (1KG-P12, ImmunoChip and Omni2.5) that had each been run on all or most of the 

1000 Genomes low-coverage pilot samples, providing genotype data for 1,135 SNVs. Finally, we 

designed custom Sequenom assays to genotype 243 SNVs and 537 indels identified by the 1000 

Genomes Project that were not included either in the HapMap project or any of the custom arrays 

described above, and ran these assays on all 185 individuals analyzed by the low-coverage and high-

coverage pilots of the Project.  

Intensity data from both the Illumina arrays and the Sequenom assays were manually examined using 

the program Evoker (39) to determine whether the variant had support for polymorphism in the assayed 

samples, and also whether there was evidence for one or more individuals homozygous for the LoF 

allele. These intensity data were also used to provide accurate genotypes for both SNVs and indels for 

use in allele-specific expression analysis (see below). 

For the NA12878 HiSeq variant calls we were able to use genome-wide 454 data generated as part of 

the 1000 Genomes high-coverage pilot for orthogonal validation. All predicted LoF SNVs and indels were 
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manually examined with Integrated Genomics Viewer (40) for evidence of polymorphism in the 1000 

Genomes 454 data. As Illumina and 454 are subject to different forms of systematic error, we regarded 

the presence of a single 454 read supporting the same non-reference allele as the HiSeq data as 

sufficient to regard the variant as validated. 

For 34 candidate indel sites in NA12878 there was insufficient 454 coverage to confidently call the 

genotype at that location. We attempted to design independent assays at all of these sites using PCR 

followed by capillary sequencing. These regions were nearly all extremely repetitive, so genome-unique 

PCR primers were only able to be designed for 24/32 variants; of these variants only 17 produced a band 

of the expected size, and upon sequencing only 8 reactions produced traces corresponding to a single 

sequence mapping to the expected region. We examined the resulting traces for NA12878 and both of 

her parents to confirm transmission of the candidate variants.  

It is important to note that certain forms of error (particularly mapping error due to large duplicated 

regions) will have survived validation using some or all of these methods, so there will be some residual 

false positives within the validated set. 

Filtering of candidate LoF variants 

Read-based filters 

We complemented the experimental genotyping data with two read-based filters designed to capture a 

variety of common sources of sequencing error in SNVs. Firstly, we compared the distribution of base 

quality scores between reference and non-reference alleles; a genuine polymorphism would be 

expected to have similar quality score distributions for the two alleles, whereas significantly different 

quality score distributions between the two alleles is suggestive of a sequencing error. Secondly, we 

looked for SNVs where non-reference base calls were found disproportionately in the 5 bp at either end 

of spanning reads; such cases are strongly indicative of mapping errors due to either repetitive sequence 

or proximity to an undetected indel. Both filters produce a rank sum P value for each variant, which we 

then compared to our experimental genotype data to determine appropriate thresholds for filtering 

ungenotyped variants. Both filters were found to be highly predictive of genotyping errors when using 

our independent genotyping data as a training set.  

To lower the number of false positive indel calls in the 1000 Genomes pilot data we applied more 

stringent filters to the subset of indels that were called in the genome-wide set and were predicted to 

fall into the LoF class. The stringent filter requires that the range of positions where an indel would yield 

the same alternative haplotype sequence as the original called indel (for instance, in a repeat, the 

deletion of any repeat unit would give the same alternative haplotype), plus 4 bases of reference 

sequence on both sides of this region, was covered by at least one read on the forward strand, and at 

least one read on the reverse strand, with at most one mismatch between the read and the alternative 

haplotype sequence resulting from the indel (regardless of base-qualities). This filter removed an excess 

of 1-bp frameshift insertions seen in CHB+JPT with respect to CEU in the less stringently filtered 
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genome-wide indel call set, although it is expected to remove a significant number of true positive calls 

as well. The indels that pass these stringent filters have been annotated in the project’s VCF files (2). 

Annotation filters 

Nonsense and splice-disrupting SNVs were flagged as likely representing reference error or annotation 

artifacts if the inferred loss-of-function (LoF) allele was also the ancestral state (see below), or if the 

reference (non-LoF) allele was not observed in any individual in that population. Splice-disrupting SNVs 

in non-canonical splice sites were also discarded, as these were found to frequently correspond to small 

artificial introns added during the gene annotation process to account for reference sequence errors or 

indels in the model transcripts relative to the reference. 

For nonsense SNVs and frameshift indels, we calculated the fraction of the coding sequence of the 

longest affected transcript that would be disrupted by the variant. Both classes of variant showed a 

striking enrichment towards the 3’ end of the coding sequence of affected genes (Fig. 1C,D). Putative 

stop and frameshift variants predicted to disrupt less than 5% of the coding sequence were excluded 

from further analysis. This analysis was not performed in an automated fashion for splice site SNVs due 

to the uncertainty in inferring the effects of splice site disruption on final transcript structure. A single 

frameshift falling within the final 5% of the affected CDS (in the NOD2 gene) was manually rescued from 

this filter as it is a known functional variant. 

Inference of ancestral state for SNVs and indels 

An additional approach to identify LoF variants that are likely to represent gene annotation artifacts 

and/or reference sequence errors is to examine the inferred ancestral state at the site, using 

comparison with outgroup species. Variants where the putative LoF allele is confidently inferred to be 

ancestral should be regarded with suspicion: such cases must either represent an evolutionary “gain of 

function” mutation (that is, the loss of a stop codon, creation of a novel splice site or extension of a 

reading frame) that happens to be carried in the reference sequence or, much more commonly, are the 

result of sequencing errors present in the reference that have resulted in a mis-specification of the gene 

model at this location. 

The ancestral state of both SNVs and indels were inferred using comparison of the human NCBI36 

reference with three non-human primate species, the chimpanzee Pan troglodytes, orang utan Pongo 

pygmaeus abelii and rhesus macaque Macaca mulatta. For SNVs, we relied on ancestral state 

assignments generated for the 1000 Genomes pilot project (2) using alignments of NCBI36 to the 

CHIMP2.1, PPYG2 and MMUL_1 reference genomes with Enredo and Pecan (41).  

For indels, ancestral states were freshly calculated for this project, using alignments of NCBI36 with the 

panTro2, ponAbe2 and rheMac2 reference genomes.  An indel was polarized if (i) at least two of the 

three primate outgroups had aligning sequence present at the variant site in the relevant UCSC BlastZ 

two-way alignment, (ii) either all aligning sequence showed a matching indel at the variant site, or no 

aligning sequence showed a matching indel at the variant site, and (iii) no non-matching indel was found 

at the variant site in any of the primate outgroups. 
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Provided these criteria were fulfilled, when no aligning sequence showed a matching indel at the variant 

site, the indel was annotated as “derived”.  Otherwise, the indel was annotated as “ancestral”. Indels 

were deemed to match if their length and type (deletion or insertion with respect to the reference) 

matched.  To allow for substitutions, the inserted or deleted sequences themselves were not required to 

be identical. To allow for alignment ambiguity and possible substitutions in any of the primate 

sequences, the site of any indel was defined to be the segment of possible positions of the gap 

characters in a consistent alignment of the two sequences, plus 5 bp on either end. 

Manual inspection was also used to classify a number of very high frequency indels and SNVs for which 

ancestral state could not be inferred (typically due to missing non-human primate sequence at these 

locations). 

For both SNVs and indels, cases where the ancestral state could not be reliably inferred were not 

filtered. 

A total of 80 SNVs and 154 indels were found to have an ancestral LoF allele and were thus excluded 

from further analysis. In support of the notion that these variants frequently represent errors in the 

reference sequence, there was a striking enrichment of very high-frequency variants in this filtered class 

relative to other LoF variants (indel mean derived allele frequency 0.64 vs 0.09; SNV average DAF 0.42 vs 

0.06). This enrichment can be explained partly by sequencing errors in the reference that are 

consequently called as non-reference in all (or nearly all, depending on genotyping power) of the 

individuals in the sample. 

Sequence context filters 

We excluded variants that were present in a segmental duplication, as well as SNVs found within a 

variable number tandem repeat, based on annotation from the UCSC Genome Browser. Candidate LoF 

SNVs were also excluded if they were found within 3bp of the location of a known indel (seen either in 

dbSNP or in the 1000 Genomes pilot calls), as manual inspection of read data indicated that the majority 

of these represented read mapping artifacts. 

Analysis of multi-nucleotide polymorphisms 

Multi-nucleotide polymorphisms (MNPs) are events in which variations from the reference genome are 

present on the same haplotype at multiple adjacent bases. When an MNP affects multiple bases within 

the same codon it can have substantially different functional effects than its component SNVs annotated 

individually. We explored the effects of MNPs in two ways: firstly, for all stop codon SNVs identified in 

this project, we looked for evidence that the variant was actually part of an MNP that would result in a 

different functional outcome; and secondly, we systematically called and tested the functional effects of 

all candidate MNPs in the genome of NA12878. 

To identify “stop-disrupting” MNPs we looked for additional SNV calls either 1 or 2 bases away from 

each candidate stop-gain SNV (2 bases being the maximum distance within which an additional variant 

could still affect the same codon) in any 1000 Genomes pilot sample. For all cases where a neighboring 

SNV was present we then manually examined the read data in the relevant population to determine if 
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reads carrying the stop-gain SNVs also always carried the neighboring SNV. Finally, we determined the 

overall outcome for manually validated MNPs in terms of effects on protein sequence. This process 

identified 33 cases where an apparent stop-gain SNV was in fact a component of an MNP, all of which 

resulted in a missense rather than nonsense prediction overall (see example, Fig. S2A). Of the 28 of 

these SNVs that had been subjected to experimental genotyping there were nine failures, presumably 

due to interference with genotyping probes by the neighboring SNV. 

We manually inspected the evidence for seven autosomal candidate MNPs identified in the HiSeq data 

from NA12878 and annotated as creating a stop codon in either the Gencode v3b or RefSeq gene sets. 

Four of these were likely mapping errors: two in MHC genes HLA-B and HLA-DPB1, one in the artifact-

rich gene CDC27, and one in NBPF9. One MNP in the IRF2BP1 gene had very weak read evidence in the 

HiSeq data, had no support from either 454 or GA2 data from NA12878 or her parents, and was 

excluded as a likely variant-calling error. Finally, two MNPs were annotation artifacts: one was identified 

in the gene RAB36, but in a transcript with an in-frame upstream stop codon; a second, in the predicted 

gene AL122127, was found in a weakly-supported exon flanked by non-canonical splice sites. 

Manual reannotation 

Full manual annotation was undertaken on loci containing 884 candidate LoF variants. The purpose of 

this exercise was twofold; firstly to confirm the validity of the annotation of the protein-coding model on 

which the LoF variants were called (i.e. to reduce the number of false-positive LoF calls made on loci and 

splice variants for which either the structure of the model or the annotated CDS was incorrect), and 

secondly to fully characterize the locus in terms of its alternative splicing and functional potential of any 

splice variants (i.e. to place true positive LoF calls in their context with regard to whether the exon 

affected by a LoF variant is constitutive or alternatively spliced and to try and predict the effect of the 

SNV on the functional potential of the locus). 

Manual annotation was performed according to the guidelines of the HAVANA (Human And Vertebrate 

Analysis and Annotation) group; the current set can be accessed at 

ftp://ftp.sanger.ac.uk/pub/annotation. In summary, the HAVANA group produces annotation of protein-

coding genes, pseudogenes, and non-coding transcripts largely based on the alignment of transcriptomic 

(ESTs and mRNAs) and proteomic data from GenBank and Uniprot. These data were aligned to the 

individual BAC clones that make up the reference genome sequence using BLAST (42), with a 

subsequent realignment of transcript data by Est2Genome (43). Gene models were manually 

extrapolated from the alignments by annotators using the otterlace annotation interface (44). 

Alignments were navigated using the Blixem alignment viewer (45). Visual inspection of the dot-plot 

output from the Dotter tool [4] was used to resolve any alignment with the genomic sequence that was 

unclear or absent from Blixem. Short alignments (<15 bases) that cannot be visualized using Dotter were 

detected using Zmap DNA Search (essentially a pattern matching tool). The construction of exon-intron 

boundaries required the presence of canonical splice sites and any deviations from this rule were given 

clear explanatory tags. All non-redundant splicing transcripts at an individual locus were used to build 
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transcript models, and all splice variants were assigned an individual biotype based on their putative 

functional potential. Once the correct transcript structure had been ascertained the protein-coding 

potential of the transcript was determined on the basis of similarity to known protein sequences, the 

sequences or orthologous and paralogous proteins, the presence of Pfam functional domains (46) 

possible alternative ORFs, the presence of retained intronic sequence and the likely susceptibility of the 

transcript to nonsense-mediated mRNA decay (NMD) (47). The biotype of the locus was derived from 

the individual biotypes of the splice variants it incorporates. 

The geneset created by the GENCODE consortium will ultimately include manually annotated transcripts 

for all human genes, but this process is not yet complete; hence the GENCODE geneset is currently 

represented by merge of HAVANA manual annotation and automated Ensembl gene predictions (48) to 

achieve a better coverage of loci and alternative splice variants (including all CCDSs (49)). Consequently, 

checking and reannotation of manually annotated loci and complete annotation of automatically 

curated loci is advantageous to ensure calling of LoF variants is made on consistent, high quality 

annotation. 

Errors leading to miscalling of LoF variants 

Reference errors. Where manual annotation identifies likely errors in the reference human genome 

sequence in the same position a LoF variant is called, the variant is flagged as a genome sequence error 

and excluded from subsequent analysis. Where a genome sequence error that affects the annotation of 

the locus is identified, but it is still possible to annotate gene models with sufficient information to fully 

interpret the functional impact of the LoF variant, these variants are included in analysis. Putative 

genome sequence errors are initially identified on the basis of their disruptive effects on CDSs and splice 

junctions, and subsequently on their lack of transcriptional support, lack of cross-species support i.e. the 

human sequence is different to all other primate and mammalian genomes, and lack of a high 

confidence SNV called at the position. All suspected genome sequence errors were reassessed to 

determine whether SNVs could be confidently called using data from the 1000 genomes project. Those 

that were found to be true LoF variants were analyzed in this light; those that were not were reported to 

the Genome Reference Consortium (GRC) for further investigation with the view of correcting the 

human reference genome where necessary. 

Gene annotation errors. Where re-annotation reveals that a locus or splice variant has a misannotated 

CDS, the annotation was corrected and the new annotation affects the interpretation of a putative LoF 

variant, the variant is flagged as being unlikely to have any functional effect. At the locus level cases 

often result from a change of interpretation e.g. the locus is now believed to represent either a 

pseudogene of a protein-coding parent or functional non-coding gene (lncRNA). At the transcript level, 

changes are made where an individual transcript variant initially possesses a CDS that does not fulfill the 

requirements for annotation according to our manual annotation guidelines. Sources of such errors 

include problems with the alignment of supporting evidence and the quality of the supporting evidence 

itself. 
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Predicted incomplete reduction in functional potential. The potential effect on functional potential of all 

putative LoF variants that were confirmed to affect valid coding gene models were assessed. Nonsense 

SNVs and small frameshift-inducing indels introduce alternative stop codons into the CDS. Novel stop 

codons result in either truncations or, rarely, extensions of the reference CDS. Truncations that possess 

the positional characteristics signaling their targeting by the NMD pathway (47) are likely to lead to a 

significant reduction in the amount/stability of the transcript and suggest the protein it encodes is likely 

to be non-functional. The functional effect of truncations that do not induce NMD are more difficult to 

characterize, however, we have used the disruption of a Pfam A domain (46) as a second proxy for loss 

of function. Where a truncation led to the loss of >=1 residue of a Pfam domain it was considered to be 

disrupted. Where no Pfam A domains were disrupted, or the reference CDS possessed no Pfam A 

domains, a third criterion was used; by which truncation and extension were characterized by the 

proportion of the reference sequence lost (or gained) in the variant CDS. Truncations were grouped 

according to whether they lost >50%, 50%-5%, or <5% of the length of the reference CDS. Intuitively 

CDSs with larger truncations seem more likely to have lost the function of the reference CDS than those 

with smaller losses, however, there are many well characterized examples where a small terminal 

truncation leads to abolition of protein function e.g. olfactory receptors (50). 

Splice junction SNVs. Variation at both donor and acceptor splice sites affects the complex dynamics of 

splicing can and potentially lead to loss of function due to erroneous exon skipping or inclusion of non-

exonic sequence which can lead to inclusion of a premature stop codon either directly or via a 

frameshift (see (5) for summary). Predicting the consequences of splice site disruption can be difficult, 

particularly in the case of splice donor site disruption) (51-54). As such, all predictions of the effect of 

splice junction SNVs on the functional potential of a transcript were conservative where no additional 

evidence for novel splice sites was available. For splice acceptor SNVs, the next confidently identifiable 

splice acceptor is presumed to be used. Practically, this equates to a prediction that the exon 

immediately proceeding the affected splice acceptor being skipped unless there is transcriptional 

support for the use of an alternative downstream splice acceptor within that exon. The impact of splice 

donor SNVs are more difficult to predict as they can have an effect on the splicing of 5’ as well as 3’ 

exons. As such where a splice donor variant was identified it was deemed that any attempt to evaluate 

its impact on the functional potential of the locus would be unreliable. The one exception to this is 

where transcriptional evidence possessing the disrupted donor site can be used to support an 

alternative splice model e.g. where the disrupted splice donor is read through and the transcript either 

reads through the intron completely or utilizes a cryptic downstream splice donor. 

Alternative splicing. Consideration of alternative splicing is of great importance in assessing the 

functional impact of a potential LoF variant. Where an affected exon, or part of an exon, is alternatively 

spliced it is very likely that the LoF SNV will only affect the function of those transcripts that contain it. If 

the transcripts that do not contain the LoF SNV are unaffected it is reasonable to assume that they 

possess the same functional potential as the same variant with the reference allele. As such, where an 

affected exon is alternatively spliced the effect on function can only be considered at the level of the 

transcript rather than the locus, complicating any assessment of its impact. In the simplest example, if 
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the affected the locus is subject to tissue specific alternative splicing, any loss of function would 

obviously affect only those cells where the LoF variant containing exon was included. The manual 

annotation of putative LoF loci ensured that all supported alternative splice variants were built, giving 

some context to the analysis of functional potential. Some indication as to the proportion of transcripts 

including/excluding the affected exon/portion of an exon is given in the spreadsheets, however, this 

information should be taken as indicative at best due to uneven coverage of tissues, conditions and 

developmental stages in the transcript databases. More transcriptomic data will be required in order to 

more precisely refine the predictions for those loci flagged. 

Classification of LoF variants 

In summary, LoF SNVs were grouped as follows according to the impact of the variant on the CDS: 

severe impact (NMD, Pfam A domain break, >50% truncation), moderate impact (50%-5% truncation), 

minor impact (<5% truncation), uncertain impact (splice donor SNVs with no transcriptional data, final 

exon splice acceptor SNVs) and mixed impact (variant had different effects on different transcripts e.g. 

rescuing NMD variants). Furthermore, all potential LoF variants were classified according to whether 

they were mapped to a constitutive exon or an exon (or part of an exon) skipped by at least one piece of 

transcript data. 

Results 

The genes affected by 884 putative LoF variants were fully reannotated, comprising 296 SNVs and 213 

indels from the 1000 Genomes pilot data and 375 variants from NA12878. Variants selected for 

annotation were not uniformly ascertained, with the pilot SNVs in particular being drawn predominantly 

from the higher end of the frequency spectrum, so the results below should not be regarded as 

representative of genome-wide error rates for such variants.  

Detailed manual annotation led to the identification of 44 genome sequence errors and 243 errors in 

gene models, fewer than 5% of which affected previously manually annotated gene models.  

Of the 597 putative LoF variants confirmed to affect protein-coding gene models 213 (~36%) were found 

to be present in exons that were subject to alternative splicing capable of excluding the LoF variant from 

the final transcript. In total 315 LoF variants at both constitutive and alternatively spliced loci led to 

changes in the CDS that broke a Pfam A domain, generated a transcript likely to be targeted by the NMD 

pathway, or truncated the CDS by more than 50%. This category represented the largest set for both 

constitutive and alternatively spliced variants in every set investigated. Overall, 114 variants led to a 

truncation of the CDS of between 5 and 50% while 101 variants introduced at truncation or extension to 

the CDS of less than 5% compared to the reference genome.  

In 53 cases the effect of the LoF variant could not be established because the variant represented either 

a splice donor SNV without specific transcript evidence that confirmed its effect or a splice acceptor SNV 

at the final exon of the locus where the next reasonable splice acceptor could not be determined due to 

lack of transcript evidence or uncertainty over candidates. A further 11 SNVs had potentially mixed 

effects i.e. the presence of the putative LoF variant affected different alternative splice variants in 
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different way e.g. a splice junction skip could predict the exclusion of an exon, the result of which would 

be to knock all annotated coding variants at the locus out of frame, leading to inclusion of a premature 

stop codon and NMD, but the same exon skipping event could shift one or more models predicted to be 

subject to NMD in the reference genome back into frame, enabling them to encode a full-length CDS. 

Identification of known and predicted severe disease-causing mutations 

We compared our high-confidence LoF variants to the largest currently available database of known 

Mendelian disease-causing mutations, the Human Gene Mutation Database (HGMD). HGMD missense, 

nonsense, regulatory, splice site and coding indel variants tagged as “damaging mutations” and 

confidently associated with disease were included (entries with a question mark in the “disease” field, 

representing low-confidence disease associations, were excluded). The final HGMD set consisted of 

91,193 variants in 2,375 genes, all obtained by manual curation of the disease literature, and all with 

positional coordinates available relative to the reference genome. 

Firstly, we identified high-confidence LoF variants that were also annotated as disease-causing by 

HGMD. We found 26 overlapping sites, but manual inspection revealed 3 of these (in the MST1R, HTN3 

and RAGE genes) to have unconvincing associations with disease phenotypes. In addition, we identified 

two known disease-causing mutations from our own surveys of the literature that were not present in 

HGMD: a stop SNV in PCSK9 associated with low LDL cholesterol levels, and a frameshift insertion in 

NOD2 associated with the risk of Crohn’s disease. The surviving 26 disease-causing mutations are 

summarized in Table S5. Only one of these variants was identified in a homozygous state: a frameshift 

deletion in the P2RX5 gene associated with graft-versus-host disease in bone marrow transplant 

patients. 

Secondly, we looked for novel candidate disease-causing mutations by inspecting high-confidence LoF 

variants in genes annotated as carrying disease mutations in HGMD. In total we found 223 LoF variants 

in HGMD disease genes, but only 89 of these survived filtering (including the 25 LoF sites annotated as 

disease-causing noted above). We manually inspected the evidence for potential disease causation for 

the 29 of these variants that were predicted to cause loss-of-function for all known transcripts of the 

affected gene, investigating both the strength of the predicted effects on gene function and the 

literature supporting a role for the gene in disease causation. After removing variants in genes with 

weak evidence of disease causation we were left with 21 LoF variants we regard as strong candidates for 

novel Mendelian disease-causing mutations (Table S6).  

While none of the strong candidate mutations were seen in the homozygous state, two were identified 

with relatively high allele frequencies in at least one population: in one case the disease in question only 

manifests itself in response to drug exposure (pravastatin-induced myopathy due to mutations in the 

SLCO1B1 gene), while in the second case the disease phenotype is relatively mild (congenital stationary 

night blindness, associated with mutations in the TRPM1 gene). 
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Allele-specific expression analysis using RNA sequencing data 

To quantify the effect of putative LoF variants on RNA expression from the affected gene, we used 

previously published (24, 25) lymphoblastoid cell line RNA sequencing data from 60 CEU and 59 YRI 

individuals also included in the 1000 Genomes low-coverage pilot to examine allele-specific expression 

(ASE) from the LoF and reference alleles in heterozygous individuals. 

This analysis was performed only for stop SNVs: SNVs in splice sites by definition fall outside exonic 

sequences and are thus not included in transcriptomic data, and analysis of indels was complicated by 

mapping bias (that is, a strong tendency for reads corresponding to the non-reference allele to not be 

correctly placed during read mapping) for these polymorphisms. To ensure the genotypes used in this 

analysis were of high confidence, only stop SNVs that had been genotyped on an independent platform 

(either one of the custom Illumina arrays or Sequenom assays analyzed in this study, or as part of the 

HapMap project) were used. For SNVs genotyped on the custom arrays or the Sequenom assays, 

heterozygous individuals were identified by manual inspection of genotype intensity data using custom 

software (Pyvoker) provided by T. Shah. 

In total, of 598 SNVs that passed all of the validation, annotation and informatic filters described above, 

we were able to obtain independent genotype data for 388, of which 347 possessed at least one 

independently validated heterozygous individual. For SNVs where data were available from both chip 

intensity and HapMap data, we used the manual chip-based calls; where data were available from 

multiple chips, we favored the chip with the highest number of genotyped individuals.  

For each stop variant we predicted whether the variant was likely to trigger nonsense-mediated decay 

using the rule proposed by Nagy and Maquat (26): if a stop variant was found more than 50 bp upstream 

of the final exon-exon boundary in a transcript it was regarded as an NMD-predicted variant. To define 

exon boundaries we used the longest transcript for which the variant would be predicted to cause loss-

of-function. 

The RNA expression of these variants was then assessed. Briefly, RNA sequencing in both of these 

studies was performed using the Illumina GAII, and reads were mapped to the reference genome using 

either BWA v.0.5.8 (YRI) or MAQ v.0.6.6 (CEU). For each heterozygous individual, reads mapping to the 

reference and non-reference allele were counted, and these numbers were then summed across all 

experimentally validated heterozygotes to give a global read count for each allele. Only variants with a 

total read count ≥ 5 were included in downstream analysis, as illustrated in Fig. 2B. In this figure (and 

below), the Wilson score interval method (55) was used to estimate the most likely proportion and the 

95% confidence interval for each variant. 

Two variants had sufficient read counts for analysis in both populations, and showed high consistency 

between the two samples: alternate read count fractions were 0.423-0.602 in CEU and 0.444-0.620 in 

YRI for the CARD8 stop variant rs2043211; and 0.356-0.518 in CEU and 0.428-0.593 in YRI. We thus 

merged the data from the two populations into a single combined analysis. 
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Predicted NMD and non-NMD variants showed no significant difference in total read coverage (Mann-

Whitney U test, P = 0.96), but, as expected, NMD-predicted variants had significantly lower proportions 

of reads mapping to the LoF allele (mean 27.8% vs 47.5% for NMD-predicted and non-predicted variants 

respectively, MWU P = 0.0023). For each variant we examined the probability of obtaining that 

proportion of reads under a binomial distribution with a true sampling proportion of 0.5; variants 

showing a significant P value with a one-tailed binomial test were classified as showing evidence for 

NMD. Using a nominal P value of 0.05, 14 variants showed reduced expression of the stop allele: 11/28 

NMD-predicted (39.3%) and 3/21 non-predicted variants (14.3%). Using a Bonferroni-corrected P value 

of 0.00102, eight variants showed evidence for reduced expression of the stop allele: 7/28 NMD-

predicted (25.0%) and 1/21 non-predicted variants (4.8%). 

Given the poor accuracy of the standard NMD prediction method, we explored whether the addition of 

information about the fraction of the coding sequence truncated by a variant could provide additional 

predictive information. Contrary to this hypothesis, we found no significant correlation between the 

position of the stop variant within the coding sequence and the proportion of reads mapping to the 

alternate allele. However, we note that our power to detect such an association here is small, and that 

combining genome and RNA sequencing information from larger samples will be required to definitively 

test this hypothesis. 

Imputation-based association analysis of LoF variants in complex 

disease cohorts 
To assess whether LoF variants were enriched for effects on complex disease risk, we imputed all SNVs 

and indels genotyped in the CEU population in the 1000 Genomes low-coverage pilot into the complete 

Wellcome Trust Case Control Consortium 1 (WTCCC1) data-set (22), comprising 3,004 controls and 

13,990 cases from seven complex disease cohorts, of which 2,938 controls and 13,241 cases remained 

following sample QC.  

Genotypes for CEU SNVs and indels were obtained from the July 2010 release 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/release/2010_07/), and were merged with SNV 

genotypes from HapMap3 release 2. Imputation of these variants into the WTCCC1 data-set was 

performed using impute2 version 2.1.0, using a k value of 80 and an effective population size (Ne) of 

14000.  The data were split up into segments of either 5Mb or 20K reference SNVs (whichever was 

smaller), with a 500Kb buffer on either side of each segment.  

We investigated potential associations with complex disease risk for 625 high-confidence LoF variants 

identified as polymorphic in the CEU population. Of these variants, 417 imputed well enough in both 

controls and at least one cohort to go ahead with association (using an info score threshold of 0.2), 

resulting in a total of 2901 association tests in the seven disease cohorts. Only 3 variants were close 

enough to the threshold to be assessed in some cohorts but not others. 



17 

 

We performed a frequentist association analysis using the program SNPTest, version 2.2.0. We used an 

additive model of risk, and a likelihood score test to account for uncertainty in imputed genotypes. 

Matched synonymous and missense sets were calculated using allele frequencies in controls, taking 

random draws without replacement of synonymous and missense variants from the same 1% frequency 

bin as each LoF variant. In both cases, five random draws were made; the values plotted in Fig. 2B are 

the median values from the 5 draws. 

The major caveat of this analysis is that the systematically low frequencies of LoF variants result in a 

decrease in imputation accuracy, and a subsequent drop in power to detect association. However, we 

note that the NOD2 frameshift indel, with an allele frequency of <3% and an odds ratio of approximately 

4, achieved a P value of 1.78 x 10
-14

 for association with Crohn’s disease despite having a relatively low 

info score for imputation (0.25). This suggests that our analysis would have successfully identified other 

LoF variants with large effects, even where allele frequency and imputation accuracy was relatively low.  

There were no significant detectable enrichments of associations for LoF variants compared to missense 

variants at P value thresholds of 10
-5

, 10
-4

 or 10
-3

 (Fisher's exact P values 0.4994, 0.1245 and 0.8034, 

respectively), suggesting that common LoF variants are not substantially over-represented among 

complex disease risk variants compared to other functional coding polymorphisms.  

In addition to the NOD2 variant that achieved genome-wide significance, two LoF variants achieved 

Bonferroni-corrected significance: rs16380, a frameshift indel in ZNF3 (associated in type 1 diabetes), 

and a novel frameshift indel at chr1:152018423 in the gene SLC27A3 (associated in hypertension). We 

pursued the evidence for association for the ZNF3 variant using data from a meta-analysis of genome-

wide association studies of type 1 diabetes incorporating 7,514 cases and 9,045 controls (56). We 

identified 3 SNVs in strong linkage disequilibrium with rs16380 based on 1000 Genomes pilot data that 

were also examined in the meta-analysis; these showed only nominal significance in the meta-analysis (P 

= 0.03-0.04), and this association was driven entirely by the samples overlapping with the WTCCC1 

analysis: looking only at samples that were not overlapping with WTCCC1, the P value was 0.4012. This 

suggests that the marginally significant association in the WTCCC1 samples is a chance finding rather 

than a genuine association. 

Comparison with signals of positive selection 

To test the hypothesis that loss of gene function has played a major role in the recent evolutionary 

history of modern humans we explored the overlap between our high-confidence LoF variants and 

signals of positive selection derived from the 1000 Genomes low-coverage pilot. We reasoned that 

under a model of adaptive gene loss, LoF variants with a high derived allele frequency should frequently 

be associated with signals of recent positive selection. 

The approaches used to identify candidate regions of recent positive selection have been described 

previously (2). Briefly, we applied several allele frequency spectrum-based tests – Tajima’s D (57), Fay 

and Wu’s H (58) and Nielsen’s Composite Likelihood Ratio (CLR) (59) – to the sequence data generated 
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by the low-coverage pilot to identify regions showing deviations from the expectations under a neutral 

model of evolution. Simulations under best-fit demographic models (60) for European, East Asian and 

African populations were used to identify appropriate P value cut-offs to identify candidate selected 

regions, using 10 kb bins. The P values from the three tests were calculated based on the distribution of 

1,000 neutral simulations in each population, and then the scores for all three tests were combined into 

a single P value using Fisher’s method. Finally, we classified a region as a candidate for positive selection 

if two or more significant bins were seen within a 150 kb interval, a criterion estimated to produce a 2% 

false discovery rate based on our simulations. 

We next looked at the overlap between these candidate regions and our final high-confidence set of LoF 

variants. As frequency spectrum-based tests have very limited power to detect selected variants at a low 

frequency, we restricted our analysis to the 36 high-confidence LoF variants with a derived allele 

frequency greater than 0.5 in at least one population. Of these variants, a total of 11 were found in 

regions overlapping with signals of selection. 

To assess signals of positive selection derived from haplotype-based tests, we first retrieved all 

autosomal SNPs with known phase from the 1000 Genomes Pilot Project for the CEU, CHBJPT and YRI 

populations. Using these data we calculated two tests of haplotype homozygosity, XP-EHH (61) and iHS 

(62) as previously described using tools provided by J. Pickrell (available at http://hgdp.uchicago.edu). 

XP-EHH was calculated for all three possible population pairs, while iHS was calculated independently 

for all three populations. Physical and genetic distances were retrieved from the 1000 Genomes Pilot 

Project data; cM distances between SNPs were averaged across all three population-specific 

recombination maps to avoid biasing test calculations towards any given population. Ancestral and 

derived states for each SNP were determined using the same procedure described in the “Inference of 

ancestral state for SNVs and indels” section above. Scores for each test and population were normalized 

to have a mean of 0 and an SD of 1. We considered regions in the 2.5% tail at either end of the genome-

wide distributions to show nominal evidence of positive selection. 

Analysis of the properties of LoF-containing and LoF-tolerant genes 

Here we define “LoF-tolerant” genes as genes for which at least one individual in the 1000 Genomes 

cohort was homozygous for a high-confidence LoF variant; in other words, genes that can apparently be 

entirely inactivated without causing a fatal early-onset disease.  

We compared the functional and evolutionary properties of 1,035 LoF-containing and 253 LoF-tolerant 

genes with a set of 858 known recessive disease genes obtained from the OMIM database, as well as 

with a set of 18,797 protein-coding genes from the Gencode annotation set.  

Evolutionary properties 

dN/dS data for chimp, macaque and mouse were downloaded from Ensembl. Genomic Evolutionary 

Rate Profiling (GERP) (63) score was downloaded from EBI. Two summed GERP values, one for coding 

sequence and the other for promoter region, defined as bases within [-100, 100) window centered at 
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transcription start site, were then calculated for all human protein-coding transcripts according to 

Ensembl annotations and summarized by gene using the median values. We also calculated the GERP 

score for conserved non-coding elements (CNCs) obtained from Ensembl within 50 kb of a protein-

coding gene; for this calculation, CNCs that overlapped with any protein-coding annotation were 

excluded. The number and sequence identity of paralogs were downloaded from Ensembl. 

Network properties 

Two interaction networks were used. One is a binary protein-protein interaction network integrated 

from a number of sources (64-67). The other is a probabilistic gene interaction network (a network of 

470,217 links among 16,375 human genes calculated using methods previously described for yeast (68) 

and worm (69) and derived from 22 publicly available genomics datasets including DNA microarray data, 

protein-protein interactions, genetic interactions, literature mining, comparative genomics, and 

orthologous transfer of gene-gene functional associations from fly, worm, and yeast where the weight 

of a link is the log likelihood score of the interaction (68). Measures of centrality (degree, betweenness) 

and modularity (cluster coefficient) were calculated using MCL (70). Shortest path distance and sum of 

weight of interactions (69) were calculated as measures of proximity to a group of ‘seed’ genes. We note 

that the inclusion of both human and non-human data in the interaction data may have introduced 

some non-conservative bias in the comparison between LoF-tolerant and known recessive disease genes 

in the event that there is unequal conservation of orthologues between these two categories, so the 

network results should be treated with some caution. However, this caveat does not affect the 

interpretation of the results of the predictive model described below. 

Comparison of gene sets 

For continuous variables, the two-tailed Mann-Whitney U test was performed to assess if positive 

(haploinsufficient) and negative (haplosufficient) training data have the same median value for potential 

predictor variables. For two-class categorical features, Fisher’s exact tests were performed. Statistical 

tests were performed using R (http://www.r-project.org). 

Generation of a predictive model 

We assessed different potential sets of predictor variables for input into the predictive model using the 

following criteria: (i) they allowed prediction for at least half the genes in the genome, (ii) the Spearman 

correlation between all pairs of predictor variables was less than 0.3, (iii) they were drawn from 

different broad categories (genomic, evolutionary, functional and network), and iv) they achieved best 

performance in model assessment (see below). 

The sensitivity of the prediction was plotted against (1 - specificity) and the area under the ROC curve 

(AUC) [44] was used as quantitative measure of the performance of the model, where sensitivity = 

TP TP + FN( ), and specificity = TN TN + FP( ). The other measure used is the Matthews correlation 

coefficients (MCC) [45], defined as: 

TP × TN − FP × FN

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )
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To avoid over-fitting, the sensitivity and specificity were calculated using 10-fold cross-validation. To 

overcome the variability caused by random partition involved in 10-fold cross-validation, each such 

assessment was repeated 30 times and the mean values were reported. 

We tested the model both including and excluding olfactory receptor genes from the LoF-tolerant set; 

both results are shown in Fig. 3C. 

Statistical analysis 

Except where otherwise specified, we used the Mann-Whitney-Wilcoxon test implemented in R 

(wilcox.test) for all comparisons between continuous variables. To assess the effect of ties in the analysis 

of network connectivity data we also used the wilcox.exact test from the R package exactRankTests; 

none of the associations that were significant in our initial analysis lost their significance with the use of 

the exact test. 
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Table S1. Candidate nonsense SNVs that are in fact components of multi-nucleotide variants (MNVs) 

with weaker predicted effects on function.  

Bases altered by the MNVs are indicated in upper case in the “actual codon change” field. In all cases the 

overall result of the MNV was a missense substitution. Note that in some cases the MNV is interrupted 

by a single unaltered base. 

chr pos 
LoF reference 

allele 

LoF non-ref 

allele 

actual codon 

change 

actual protein 

change 

1 45845948 C T CAg>TGg Gln>Trp 

1 159742828 C T CAg>TGg Gln>Trp 

1 171793211 C T TGg>CAg Trp>Gln 

1 226536526 A T AGa>TTa Arg>Leu 

3 195543601 C T TGg>CAg Trp>Gln 

5 41097472 C T TGg>CAg Trp>Gln 

6 71345909 C T CAg>TGg Gln>Trp 

6 111694003 T A tTA>tAT Leu>Tyr 

7 21549488 G T GAg>TTg Glu>Leu 

7 100402871 G A TgG>AgA Trp>Arg 

8 599879 A C tAT>tGG Tyr>Trp 

8 144593530 G T TCa>AAa Ser>Lys 

9 133375256 C T CAg>TGg Gln>Trp 

11 5963847 C T TGg>CAg Trp>Gln 

11 122437120 A C TaT>CaG Tyr>Gln 

14 44044862 G T TCa>GAa Tyr>Glu 

16 82541393 C T TGg>CAg Trp>Gln 

19 63065900 A T AGa>TTa Arg>Leu 

22 17292677 C T TGg>CAg Trp>Gln 

1 40545737 G A CAg>TGg Gln>Trp 

2 26553793 C A GAg>TTg Glu>Leu 

2 220127584 G A CAg>TGg Gln>Trp 

2 241204534 G A tGG>tCA Trp>Ser 

4 114494796 C G TCa>AGa Ser>Arg 

6 30019219 T A TTg>CAg Leu>Gln 

6 155619409 T A TTg>CAg Leu>Gln 

9 37767620 C A tAC>tTA Tyr>Leu 

11 59237528 G A CAg>TGg Gln>Trp 

14 62827368 T A TTg>AAg Leu>Lys 

14 63629845 G A TGg>CAg Trp>Gln 

19 13861171 G A CAg>TGg Gln>Trp 
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Table S2. Homozygous high-confidence LoF variants in the anonymous European individual NA12878.  

variant type gene notes 

stop FUT2 
known nonsense variant, associated with protection 

against viral infection 

stop ACTN3 
known nonsense variant in muscle gene, associated with 

reduced strength and sprint performance 

splice HTR3B type 3 serotonin receptor subunit 

frameshift CYP4B1 
known null variant in gene involved in inflammation and 

xenobiotic metabolism 

frameshift SMPDL3B sphingomyelin phosphodiesterase 

frameshift TIGD6 tigger transposable element-derived protein 

frameshift MS4A14 likely membrane protein of unknown function 

frameshift CELA1 
chymotrypsin-like elastase, only reported to be expressed 

in skin keratinocytes 

frameshift P2RX5 
associated with graft-versus-host disease in bone marrow 

transplant recipient 

frameshift ZNF681 zinc finger protein of unknown function 

frameshift, 

stop 

OR2T4, OR11G2, 

OR5K4, OR2L8, 

OR4X1 

olfactory receptors 

large 

deletion 
LCE1D known to create fusion gene with LCE1E 

large 

deletion 
TUBA3E alpha-tubulin protein primarily expressed in testis 

large 

deletion 
SPINK14 possible serine protease inhibitor 

large 

deletion 

KRTAP9-6, 

KRTAP9-7 

may create fusion gene between two single-exon genes 

encoding keratin-associated proteins 
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Table S3. Genes containing 5 or more independent candidate LoF variants.  

Numbers are the sum of all independent candidate LoF variants seen across the three 1000 Genomes 

pilot projects and in the high-depth NA12878 genome. In most cases the observed LoF variants are a 

consequence of large-scale read-mapping errors. 

gene name 
LoF variants 

before filtering 

LoF variants 

after filtering 

AC131157.4 16 0 

SSPO 15 0 

AC092143.1 12 0 

MAN1B1 12 0 

CDC27 10 0 

MUC19 10 0 

AC009063.1 7 0 

AC073957.1 7 0 

C17orf57 7 0 

C11orf40 6 0 

OR4C5 6 2 

ABCA10 5 0 

AC009113.1 5 0 

AC010634.1 5 0 

AC073995.1 5 0 

AC091435.2 5 0 

C6orf10 5 0 

PKD1L3 5 3 
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Table S4. Known LoF variants found in 1000 Genomes samples associated with non-Mendelian phenotypes.  

All coordinates are relative to the GRCh36 reference build. 

chr pos dbSNP ref alt type gene phenotype hets homs notes 

1 
25464555- 

25534879
a
 

. + - 
large 

del 
RHD Rhesus negative blood group 38 all  10 all  ~70 kb deletion 

1 
110024361- 

110046935
a
 

. + - 
large 

del 
GSTM1 

loss of enzyme activity; many 

reported trait associations 
66 all  73 all  ~22 kb deletion 

1 
110024361-

110046935
a . + - 

large 

del 

LCE3B, 

LCE3C 
susceptibility to psoriasis 79 all  44 all  ~32 kb deletion 

2 162832842 rs35732034 C T splice IFIH1 protection from type 1 diabetes 2 CEU 0  

2 162844751 rs35337543 C G splice IFIH1 protection from type 1 diabetes 1 CEU 0  

3 38323747 rs753331 A C splice SLC22A14 confirmed effects on mRNA splicing 
22 

CHB+JPT 

6 

CHB+JPT 
 

4 
69076626-

69093238 
. + - 

large 

del 
UGT2B17 altered metabolism of testosterone 58 all 53 all  ~16 kb deletion 

4 70933511 rs17147990 T A stop HTN3 truncated histatin protein 19 YRI 2 YRI  

4 154844848 rs62323857 C T stop TLR2 decrease in TLR2 protein function 1 JPT 0  

10 96530400 rs4986893 G A stop CYP2C19 altered drug metabolism 5 JPT 1 JPT  

11 66084671 rs1815739 C T stop ACTN3 altered muscle function 75 all 31 all LoF in reference  

17 36804625 . C T splice KRT31 truncated (functional) keratin  2 CEU 0  

19 53898835 rs1799761 AC A del FUT2 non-secretion of ABO/Lewis antigens 2 YRI 0  

19 56226942 rs3745540 A G splice KLK12 loss of protease activity 61 all 63 all  

a
 Approximate coordinates provided for large deletions 
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Table S5. Known Mendelian disease-causing mutations identified in our high-confidence LoF set. 

Disease-causing mutations identified using the Human Gene Mutation Database and additional literature searches. All coordinates are relative to the 

GRCh36 reference build. 

chr pos dbSNP ref alt type gene disease hets homs notes 

1 42997627 . G A stop LEPRE1 osteogenesis imperfecta 1 CEU 0  

1 55284810 . C G stop PCSK9 low LDL cholesterol 2 YRI 0  

1 150551510 . G A stop FLG atopic dermatitis 2 YRI 0 Chinese proband 

1 195657157 . C T stop CRB1 Leber congenital amaurosis 1 CHD
b 

0 Korean proband 

2 166556297 . G A stop SCN1A Myoclonic epilepsy of infancy 1 CEU 0  

2 215560703 . G A stop ABCA12 harlequin ichthyosis 1 CEU 0  

3 33146467 . C T stop CRTAP osteogenesis imperfecta 1 LWK
b 

0 
African-American 

proband 

5 39377971 rs34000044 G T stop C9 complement C9 deficiency 1 CEU 0  

5 41185792 . A G splice C6 complement C6 deficiency, partial 1 CEU 0  

5 41194621 rs61469168 TC T del C6 complement C6 deficiency 2 YRI 0  

6 161006077 rs41272114 C T splice LPA Lp(a) deficiency 7 CEU 0  

8 94867689 . C T stop TMEM67 Meckel-Gruber syndrome 1 JPT
b 

0  

9 138689082 . T C splice AGPAT2 Berardinelli-Seip lipodystrophy 2 YRI 0  

11 6594961 rs56144125 C T splice TPP1 
Neuronal ceroid lipofuscinosis, late 

infantile 
2 CEU 0 

father/daughter 

in CEU trio 

11 7017553 . A T stop NLRP14 spermatogenic failure 
1 CHB, 3 

JPT 
0  

11 64275394 . G A stop PYGM McArdle’s disease 1 CHD
b 

0  

11 64283799 . G A stop PYGM McArdle’s disease 1 CEU 0  
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chr pos dbSNP ref alt type gene disease hets homs notes 

11 73392519 rs45476292 C T splice UCP3 severe obesity with diabetes 10 YRI 0 weak evidence 

11 73394537 . G A stop UCP3 severe obesity with diabetes 1 YRI 0 weak evidence  

11 76545663 rs4129813 C T stop MYO7A Usher syndrome 1b 1 CEU 0  

12 42453038 . C T stop IRAK4 
predisposition to childhood bacterial 

infections 
1 YRI

b
 0  

15 70427442 . C T splice HEXA Tay-Sachs disease 2 CEU 0  

16 
163705-

167490
a . + - 

large 

del 
HBA1 alpha thalassaemia 3 YRI 0 

~3.8 kb deletion 

removing last 

three exons 

16 49321279 rs2066847 G GC ins NOD2 Crohn’s disease 2 CEU 0  

17 3541025 rs5818907 TG T del P2RX5 
graft-versus-host disease in bone 

marrow transplant recipient 
69 all  66 all   

21 18607163 . G C stop PRSS7 enteropeptidase deficiency 1 CEU 0  
a
 Approximate coordinates; 

b 
Mutation found in exon capture pilot samples only  
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Table S6. Likely disease-causing mutations identified in our high-confidence LoF set.  

Table shows all high-confidence LoF variants predicted to affect all known transcripts of a known recessive disease-causing gene. All coordinates are relative 

to the GRCh36 reference build. 

chr pos dbSNP ref alt type gene disease hets homs notes 

1 150554463 . C A stop FLG ichthyosis vulgaris 1 CEU 0  

1 152514361 rs41313932 G A splice HAX1 severe congenital neutropenia 1 CEU 0  

1 158519357 . C T splice PEX19 peroxisomal biogenesis disorder 1 CEU 0  

2 31443356 . A AT ins XDH xanthinuria, type 1 1 YRI 0  

2 
71758199-

71760693
a
 

. + - 
large 

del 
DYSF 

adult-onset limb-girdle muscular 

dystrophy 
1 CEU 0 

2.5 kb deletion 

removing exon 52 

3 112825290 . G A splice CD96 Opitz trigonocephaly 1 YRI 0  

4 25287192 . C A stop SLC34A2 pulmonary alveolar microlithiasis 1 CHD
b
 0 relatively benign  

8 134177729 . G A stop TG goitre and hypothyroidism 1 YRI
b
 0  

10 100370456 . C T splice HPSE2 urofacial syndrome 1 CEU 0  

11 95235137 . G A stop MTMR2 Charcot-Marie-Tooth type 4B 1 CHD
b
 0  

12 21221099 . G T splice SLCO1B1 pravastatin-induced myopathy 6 YRI 0 
environmentally-

induced disorder 

12 38990629 . C T stop LRRK2 Parkinson disease 1 YRI 0  

12 52105535 . C T stop AMHR2 persistent Müllerian duct syndrome 1 LWK
b
 0  

12 94905063 rs34457757 G A stop HAL histidinemia 2 YRI 0 relatively benign  
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chr pos dbSNP ref alt type gene disease hets homs notes 

12 94912841 . C T splice HAL histidinemia 1 CEU 0 relatively benign  

12 122805039 . T C splice ATP6V0A2 cutis laxa type 2 1 JPT 0  

15 29082006 rs3784589 C A stop TRPM1 stationary night blindness 
8 CEU, 4 

YRI 
0 relatively benign  

15 87648098 . G A splice FANCI Fanconi anaemia 1 CEU 0  

16 1352535 . A AG ins GNPTG mucolipidosis III 1 CHB 0  

17 36276396 . A G splice KRT12 Meesmann corneal dystrophy 1 CEU 0 relatively benign  

18 27247215 . C T stop DSG4 disorders of hair structure 1 CEU 0 relatively benign  

a
 Approximate coordinates; 

b 
Mutation found in exon capture pilot samples only 
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Table S7. Allele-specific expression of premature stop codon variants, using RNA sequencing data from genotype-confirmed heterozygous individuals.  

P value calculated using a one-tailed binomial test of deviation from a proportion of 0.5. All coordinates are relative to the GRCh36 reference build. 

chr pos ref alt dbSNP gene NMD 

fraction 

of CDS 

disrupted 

reference 

reads 

non-ref 

reads 

fraction 

non-ref 

reads 

P value population 

18 648001 G A . C18orf56 0 0.331 9 15 0.625 0.920 YRI 

10 1055710 C T rs1044261 IDI2 0 0.367 4 6 0.600 0.830 CEU 

11 5733060 A T rs4910844 OR52N4 0 0.466 3 2 0.400 0.500 YRI 

12 8180728 G A . CLEC4A 0 0.257 10 8 0.444 0.410 YRI 

19 21505299 C T . ZNF429 0 0.902 1 4 0.800 0.970 YRI 

4 38452499 G A rs62617795 TLR10 0 0.545 21 16 0.432 0.260 YRI 

17 39609781 C T rs7224330 C17orf65 0 0.368 15 9 0.375 0.150 YRI 

19 42002191 G A rs1227794 ZNF790 0 0.531 3 4 0.571 0.770 YRI 

20 43944664 G A rs35972756 ZSWIM1 0 0.982 4 3 0.429 0.500 CEU 

6 57025866 C T rs61748913 KIAA1586 0 0.742 6 6 0.500 0.610 YRI 

19 57808623 C T rs17855778 ZNF83 0 0.349 19 10 0.345 0.068 YRI 

16 80591311 G A rs11542462 SDR42E1 0 0.925 3 5 0.625 0.860 CEU 

16 88638451 C T rs1048149 AC133919.7 0 0.867 28 26 0.481 0.450 YRI 

3 1.21E+08 C T . ADPRH 0 0.176 15 6 0.286 0.039 CEU 

7 1.5E+08 C T . C7orf29 0 0.880 19 8 0.296 0.026 YRI 

22 40666118 G A rs5758511 CENPM 0 0.960 56 20 0.263 2.2 x 10
-5

 CEU 

7 64076102 G A rs1404453 ZNF117 0 0.115 4 8 0.667 0.930 YRI 

15 72115043 C T . PML 0 0.120 9 10 0.526 0.680 YRI 

17 77664739 G A rs11653662 CCDC57 0 0.215 4 1 0.200 0.190 CEU 

16 87248714 C T . MVD 0 0.075 4 5 0.556 0.750 YRI 

12 1.19E+08 G C . COQ5 0 0.355 5 6 0.545 0.730 YRI 

11 2278405 C T . C11orf21 1 0.614 3 3 0.500 0.660 YRI 

19 4279755 G C . STAP2 1 0.624 24 0 0.000 6.0 x 10
-8

 CEU 

19 17698952 C T . MAP1S 1 0.446 5 3 0.375 0.360 YRI 
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chr pos ref alt dbSNP gene NMD 

fraction 

of CDS 

disrupted 

reference 

reads 

non-ref 

reads 

fraction 

non-ref 

reads 

P value population 

16 20699889 G A rs52817836 ACSM3 1 0.502 11 0 0.000 4.9 x 10
-4

 YRI 

14 23749768 G A . CHMP4A 1 0.327 31 0 0.000 4.7 x 10
-10

 CEU 

6 26077610 C T . TRIM38 1 0.649 6 0 0.000 0.016 CEU 

1 45735570 G A . 
RP11-

291L19.1 
1 0.425 6 1 0.143 0.063 YRI 

3 51980678 G A . ABHD14B 1 0.922 8 1 0.111 0.020 YRI 

12 52863985 G A rs2233919 SMUG1 1 0.991 2 4 0.667 0.890 YRI 

19 54861076 C T . BCL2L12 1 0.816 14 13 0.481 0.500 YRI 

17 77955236 G A . C17orf101 1 0.431 5 3 0.375 0.360 YRI 

4 1.14E+08 G A . ALPK1 1 0.522 5 1 0.167 0.110 YRI 

11 1.14E+08 G C . C11orf71 1 0.871 20 12 0.375 0.110 YRI 

4 1.3E+08 C T rs10009430 AC093826.1 1 0.280 11 3 0.214 0.029 YRI 

1 1.57E+08 G A . MNDA 1 0.126 17 0 0.000 7.6 x 10
-6

 YRI 

5 1.69E+08 C T . CCDC99 1 0.194 23 0 0.000 1.2 x 10
-7

 CEU 

11 6548630 C T . DNHD1 1 0.066 3 3 0.500 0.660 YRI 

22 25192041 G A rs3747129 HPS4 1 0.667 4 1 0.200 0.190 CEU 

6 31232828 C T rs3130453 CCHCR1 1 0.910 66 39 0.371 0.005 YRI 

21 43196789 C T rs4148974 NDUFV3 1 0.579 17 1 0.056 7.2 x 10
-5

 CEU 

19 53429518 A T rs2043211 CARD8 1 0.977 113 124 0.523 0.780 CEU+YRI 

15 66284651 G A rs11071990 CALML4 1 0.799 12 6 0.333 0.120 YRI 

17 71589392 C T rs1043149 ZACN 1 0.320 146 131 0.473 0.200 CEU+YRI 

6 74076059 G A rs16883571 KHDC1 1 0.859 3 2 0.400 0.500 CEU 

16 88172869 C G . CPNE7 1 0.757 6 5 0.455 0.500 YRI 

9 1.14E+08 C T rs3780513 SUSD1 1 0.958 8 9 0.529 0.690 YRI 

12 1.2E+08 G C . ANAPC5 1 0.956 25 25 0.500 0.560 CEU 

1 2.35E+08 T A rs2273865 LGALS8 1 0.410 93 3 0.031 2.2 x 10
-16

 YRI 
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Table S8. Gene Ontology (GO) categories significantly enriched or depleted in LoF-containing genes compared to the genome background.  

Corrected P values were generated by Bonferroni correction for multiple tests. * Indicates whether category was still Bonferroni-corrected significant when 

analysis was repeated excluding olfactory receptor genes. 

GO category 
number 

LoF genes 

number 

genome-

wide genes 

raw P corrected P direction 

significant 

without 

ORs* 

type category description 

GO:0007606 84/669 414/13911       5.35 x 10
-26

 9.62 x 10
-23

 enrichment 
no BP sensory perception of chemical 

stimulus 

GO:0005515 245/731 7501/14883     2.80 x 10
-19

 6.61 x 10
-17

 depletion yes MF protein binding 

GO:0004930 114/731 968/14883      1.10 x 10
-16

 2.59 x 10
-14

 enrichment no MF G-protein coupled receptor activity 

GO:0004888 144/731 1400/14883     2.19 x 10
-16

 5.12 x 10
-14

 enrichment no MF transmembrane receptor activity 

GO:0007600 99/669 779/13911       4.53 x 10
-17

 8.14 x 10
-14

 enrichment no BP sensory perception 

GO:0043231 267/721 7683/15296     4.13 x 10
-12

 5.82 x 10
-10

 depletion 
yes CC intracellular membrane-bounded 

organelle 

GO:0004872 163/731 1900/14883     5.34 x 10
-12

 1.24 x 10
-09

 enrichment no MF receptor activity 

GO:0007186 122/669 1307/13911     8.86 x 10
-12

 1.59 x 10
-08

 enrichment 
no BP G-protein coupled receptor protein 

signaling pathway 

GO:0044249 131/669 4171/13911     3.05 x 10
-9

 5.48 x 10
-6

 depletion no BP cellular biosynthetic process 

GO:0016021 309/721 5047/15296     7.18 x 10
-8

 1.01 x 10
-5

 enrichment no CC integral to membrane 

GO:0001653 48/731 389/14883       4.76 x 10
-8

 1.10 x 10
-5

 enrichment no MF peptide receptor activity 

GO:0008528 48/731 389/14883       4.76 x 10
-8

 1.10 x 10
-5

 enrichment 
no MF peptide receptor activity, G-protein 

coupled 

GO:0031224 314/721 5146/15296     8.14 x 10
-8

 1.13 x 10
-5

 enrichment no CC intrinsic to membrane 

GO:0005886 215/721 3301/15296     4.75 x 10
-7

 6.55 x 10
-5

 enrichment no CC plasma membrane 
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GO category 
number 

LoF genes 

number 

genome-

wide genes 

raw P corrected P direction 

significant 

without 

ORs* 

type category description 

GO:0071944 218/721 3365/15296     5.67 x 10
-7

 7.77 x 10
-5

 enrichment no CC cell periphery 

GO:0007166 151/669 2070/13911     2.66 x 10
-7

 4.77 x 10
-4

 enrichment 
no BP cell surface receptor linked signaling 

pathway 

GO:0009891 5/669 568/13911        3.87 x 10
-7

 6.94 x 10
-4

 depletion 
yes BP positive regulation of biosynthetic 

process 

GO:0016020 391/721 6962/15296     5.13 x 10
-6

 6.98 x 10
-4

 enrichment no CC membrane 

GO:0031328 5/669 560/13911        5.53 x 10
-7

 9.92 x 10
-4

 depletion 
yes BP positive regulation of cellular 

biosynthetic process 

GO:0006366 11/669 780/13911     7.10 x 10
-7

 1.27 x 10
-3

 depletion 
yes BP transcription from RNA polymerase II 

promoter 

GO:0045941 3/669 468/13911        8.53 x 10
-7

 1.53 x 10
-3

 depletion yes BP positive regulation of transcription 

GO:0044446 138/721 3986/15296     2.27 x 10
-5

 3.06 x 10
-3

 depletion no CC intracellular organelle part 

GO:0005654 12/721 702/15296       4.21 x 10
-5

 5.64 x 10
-3

 depletion yes CC nucleoplasm 

GO:0048856 67/669 2296/13911      3.51 x 10
-6

 6.28 x 10
-3

 depletion no BP anatomical structure development 

GO:0009893 11/669 737/13911       3.57 x 10
-6

 6.39 x 10
-3

 depletion 
no BP positive regulation of metabolic 

process 

GO:0044444 154/721 4305/15296     5.23 x 10
-5

 6.96 x 10
-3

 depletion no CC cytoplasmic part 

GO:0044428 35/721 1342/15296      1.02 x 10
-4

 0.014 depletion no CC nuclear part 

GO:0003676 111/731 3158/14883     6.01 x 10
-5

 0.014 depletion no MF nucleic acid binding 

GO:0051254 3/669 403/13911        1.06 x 10
-5

 0.019 depletion 
no BP positive regulation of RNA metabolic 

process 
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GO category 
number 

LoF genes 

number 

genome-

wide genes 

raw P corrected P direction 

significant 

without 

ORs* 

type category description 

GO:0045893 3/669 402/13911        1.06 x 10
-5

 0.019 depletion 
no BP positive regulation of transcription, 

DNA-dependent 

GO:0010604 11/669 695/13911       1.19 x 10
-5

 0.021 depletion 
no BP positive regulation of macromolecule 

metabolic process 

GO:0044451 5/721 419/15296        1.91 x 10
-4

 0.025 depletion no CC nucleoplasm part 

GO:0016563 3/731 334/14883        1.28 x 10
-4

 0.030 depletion no MF transcription activator activity 

GO:0048522 38/669 1470/13911      1.65 x 10
-5

 0.030 depletion no BP positive regulation of cellular process 

GO:0003723 15/731 718/14883       2.14 x 10
-4

 0.049 depletion no MF RNA binding 
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Table S9. Gene Ontology (GO) categories significantly enriched or depleted in homozygous LoF-tolerant genes compared to the genome background.  

Corrected P values were generated by Bonferroni correction for multiple tests. 

GO category 
number LoF-

tolerant genes 

number genome-

wide genes 
raw P corrected P direction category description 

GO:0007606 39/179 452/14496 3.54 x 10
-21

 6.61 x 10
-18

 enrichment sensory perception of chemical stimulus 

GO:0007600 40/179 840/14496 2.61 x 10
-13

 4.87 x 10
-10

 enrichment sensory perception 

GO:0007186 45/179 1361/14496 9.95 x 10
-10

 1.86 x 10
-6

 enrichment G-protein coupled receptor protein signaling pathway 

GO:0044249 19/179 4314/14496 1.51 x 10
-9

 2.82 x 10
-6

 depletion cellular biosynthetic process 

GO:0007165 62/179 2851/14496 2.95 x 10
-6

 5.50 x 10
-3

 enrichment signal transduction 

GO:0048856 9/179 2432/14496 3.84 x 10
-6

 7.15 x 10
-3

 depletion anatomical structure development 

GO:0007166 50/179 2165/14496 8.06 x 10
-6

 1.50 x 10
-2

 enrichment cell surface receptor linked signaling pathway 

GO:0009653 1/179 1104/14496 2.20 x 10
-5

 4.09 x 10
-2

 depletion anatomical structure morphogenesis 
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Table S10. Evidence from frequency spectrum and haplotype-based tests for positive selection on high-confidence LoF variants.  

All coordinates relative to the GRCh36 reference build. XP-EHH comparisons between pairs of populations are indicated in the last two columns (note 

different pair combinations are shown for the three different population groups). Note that the same allele can be shown multiple times if it is significant in 

multiple populations. For iHS and XP-EHH values, * indicates a value in the extreme 5% of the genome-wide distribution and ** indicates a value in the 

extreme 1%. iHS and XP-EHH values are not available (NA) for frameshift indels. NS, not significant. 

chr pos ref alt type gene 
derived allele frequency peak 

spectrum 

comb. P  

|iHS| XP-EHH XP-EHH 
CEU CHBJPT YRI 

Variants with significant evidence for selection in CEU CEU-YRI CEU-CHBJPT 

1 169379114 C T nonsense FMO6P 0.51 0.61 0.81 NS 3.258** 0.909 1.481 

5 131352149 C CTG frameshift ACSL6 0.77 0.44 0.00 6.20 x 10
-4

 NA NA NA 

9 124431062 G A nonsense OR1B1 0.31 0.51 0.03 2.33 x 10
-8

 0.499 -0.949 0.305 

9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 2.33 x 10
-8

 NA NA NA 

11 4747449 CG C frameshift OR51F1 0.17 0.00 0.54 6.43 x 10
-7

 NA NA NA 

11 5400712 C T nonsense OR51Q1 0.36 0.61 0.25 3.25 x 10
-4

 1.679 0.340 0.580 

11 60021578 C T nonsense MS4A12 0.46 0.43 0.57 4.66 x 10
-9

 0.989 -0.618 1.279 

11 123561942 T G nonsense OR10D3P 0.45 0.60 0.40 NS 1.895* 0.342 0.803 

16 79799649 GTT G frameshift PKD1L2 0.48 0.80 0.09 2.27 x 10
-6

 NA NA NA 

Variants with significant evidence for selection in CHBJPT CHBJPT-YRI CEU-CHBJPT 

9 124431062 G A nonsense OR1B1 0.31 0.51 0.03 6.83 x 10
-6

 0.430 -1.104 NA 

9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 6.83 x 10
-6

 NA NA NA 

9 138754316 G A nonsense LCN10 0.13 0.21 0.14 NS NA 2.242* -2.624 

11 4747449 CG C frameshift OR51F1 0.17 0.00 0.54 1.32 x 10
-8

 NA NA NA 

16 79799649 GTT G frameshift PKD1L2 0.48 0.80 0.09 1.22 x 10
-8

 NA NA NA 

19 17660246 T TG frameshift UNC13A 0.00 0.00 0.53 6.28 x 10
-6

 NA NA NA 

19 56787865 T A nonsense AC018755.8 0.08 0.63 0.14 2.52 x 10
-6

 NA -0.686 -0.070 



36 

 

chr pos ref alt type gene 
derived allele frequency peak 

spectrum 

comb. P  

|iHS| XP-EHH XP-EHH 
CEU CHBJPT YRI 

Variants with significant evidence for selection in YRI CEU-YRI CHBJPT-YRI 

1 156816116 C T nonsense OR10X1 0.47 0.58 0.64 4.54 x 10
-5

 1.080 -0.325 -0.308 

1 169379114 C T nonsense FMO6P 0.51 0.61 0.81 NS 2.104* 0.909 -1.191 

3 185236988 G C splice HTR3D 0.46 0.56 0.79 NS NA -1.947* -1.467 

5 131352149 C CTG frameshift ACSL6 0.77 0.44 0.00 6.20 x 10
-4

 NA NA NA 

6 31232828 C T nonsense CCHCR1 0.44 0.36 0.52 3.38 x 10
-9

 0.275 -0.577 -0.574 

9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 1.59 x 10
-6

 NA NA NA 

11 48223312 C G nonsense OR4X2 0.12 0.16 0.41 NS 2.089* -0.336 -0.681 

11 55096228 C T nonsense OR4C16 0.29 0.34 0.09 NS 0.573 -1.386 -1.990* 

11 55162598 C G nonsense OR4P4 0.09 0.37 0.14 NS 0.014 -1.612* -1.975* 

19 40410860 C T nonsense FAM187B 0.28 0.18 0.27 NS 0.451 -1.805* -1.855* 

22 15849049 C A nonsense GAB4 0.29 0.41 0.19 NS 0.427 -3.021** -3.828** 

 



37 

 

 

Figure S1. Filtering process for candidate LoF SNVs, indels and large deletions. Details of this process 

are described in the supplementary text. Note that candidate LoF large deletions had already been 

subjected to extensive informatic and experimental validation as part of the 1000 Genomes Project pilot 

analyses.
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Figure S2. Accurate functional interpretation requires integrating multiple variants on the same 

haplotype. A. A homozygous SNV annotated as a nonsense (GAG>TAG) polymorphism in the DNAH11 

gene is in fact part of a two-base substitution resulting in a missense change (GAG>TTG; Glu>Leu). B. 

Two apparent heterozygous frameshift coding deletions (1 bp and 17 bp long) are in fact present on the 

same haplotype, with the combined effect being an in-frame deletion of six amino acids. Both 

screenshots are taken from analysis of sequence data from NA12878 using Integrative Genomics Viewer; 

in each case the top panel shows 454 reads, while the bottom panel shows reads from the HiSeq 2000. 



39 

 

 

Figure S3. Putative frameshift indels close to or spanning exon splice sites can be rescued by 

alternative splice sites. A 4 bp deletion spanning a splice site in the CHIT1 gene creates an alternative 

splice site that maintains the reading frame and results in a synonymous (Leu>Leu) substitution. Top 

line: reference allele, with exonic bases in capitals and alternating codons indicated in dark and light 

blue. Deleted region is indicated with a horizontal line. Final effect of the deletion (including the 

restored reading frame) is shown on the bottom line. 

 

Figure S4. Systematic sequencing error at the site of a reported disease-causing mutation in the BBS7 

gene. An A>G splice mutation at this location has previously been reported as disease-causing in an 

Italian family (71). The 1000 Genomes low-coverage pilot called a A>C substitution at this location in 30 

CHB+JPT individuals, which failed to validate in two separate genotyping assays and also revealed an 

excess of low-quality base calls for the alternative allele (P = 2.7 x 10
-10

). Figure shows an IGV image of 

reads spanning this location in CHB (top), JPT (middle) and CEU (bottom), which supports widespread 

systematic error at this site in Illumina sequencing data. 



40 

 

 



41 

 

 



42 

 

 



43 

 

 

Figure S5. Plots showing evidence for the LoF deletions identified in NA12878. Purple dashed vertical 

lines indicate the predicted breakpoints of the deletion. Grey and red lines indicate mapped reads from 

the NA12878 HiSeq data, with the position on the Y axis indicating mapping quality; red lines indicate 
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mate pairs mapped with an anomalously large insert size, suggestive of a mate pair spanning a deletion. 

Blue lines towards the bottom of each plot show read depth in 500 bp windows, with the depth of reads 

with a mapping quality of 0 indicated in light blue, and non-zero quality mapped reads in dark blue. The 

aqua line across the middle of the plot shows the average intensity of the signal for high-resolution array 

CGH (42 million probes) analysis of NA12878 performed by Conrad et al. (2010). (Note that as this 

experiment involved comparative array hybridization with a reference sample, it will not provide 

support for deletions that are also present in the reference.) Green dashed line shows average GC 

content (in 200 bp windows) across the region. 
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