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Analysis of 1000 Genomes Pilot data
We analyzed data from all three of the 1000 Genomes pilot projects (2). Briefly, these data-sets
consisted of:

* |ow-coverage (2-4x) whole-genome sequence data from 179 individuals from four populations;
¢ high-coverage (>60x) whole-genome sequence data from six individuals from two families; and

® high-coverage targeted sequencing of 8,140 protein-coding exons in 697 individuals.

In all cases a combination of sequencing platforms was used to generate the data, which were then
analyzed using an integrated read mapping and variant-calling pipeline to generate genotypes for single
nucleotide variations (SNVs), small insertion/deletion variants (indels) and large deletions. These calls
are publicly available at the 1000 Genomes FTP site,

ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/pilot data/release/2010 07/. With the exception of applying
additionally stringent filters to small indels in coding regions (see below), we used the final call-sets from

the pilot projects to generate our initial catalogue of candidate LoF variants.

Indel calling from low-coverage pilot

We used the program Dindel (31) to call insertions and deletions shorter than 50 bp from both the high-
coverage trio and low-coverage pilots of the 1000 Genomes project. Dindel performs a probabilistic
realignment of all reads mapped to a genomic region to a number of candidate haplotypes. Each
candidate haplotype is a sequence of at least 120 bp that represents an alternative to the reference
sequence and corresponds to the hypothesis of an indel event and potentially other candidate sequence
variants such as SNVs. By assigning prior probabilities to the candidate haplotypes, the posterior
probability of a haplotype and consequently an indel being present in the sample can be estimated.

Although the false-discovery rate for the indels estimated from the low-coverage data was estimated to
be lower than 5% genome-wide, we found that indels in coding regions appeared to be enriched for
false-positives to an even greater extent than SNVs. We therefore applied a more stringent filter for the
identification of LoF indels. The stringent filter requires that the range of positions where an indel would
yield the same alternative haplotype sequence as the original called indel (for instance, in a repeat, the
deletion of any repeat unit would give the same alternative haplotype), plus 4 bases of reference
sequence on both sides of this region, was covered by at least one read on the forward strand, and at
least one read on the reverse strand, with at most one mismatch between the read and the alternative
haplotype sequence resulting from the indel (regardless of base qualities). This filter removed an excess
of 1-bp frameshift insertions seen in CHB+JPT with respect to CEU seen in the less stringently filtered
genome-wide indel call set, but it is also expected to have removed a significant number of true positive
calls as well.

For Dindel calls on the high-coverage trio pilot data we did not use read-based filters. However, calls
were made jointly on all three members of each trio, and variants that failed to segregate as expected
were removed prior to downstream analysis.



Deep analysis of a single individual genome

To provide a more accurate picture of the LoF variants present in a “typical” genome we performed a
systematic analysis of candidate LoF variants in the genome of NA12878, an anonymous female of
European ancestry sequenced as part of the 1000 Genomes high-coverage pilot. We used the following
sources of data:

¢ genome-wide sequence data from three separate platforms (Illumina, SOLID and 454) generated
as part of the 1000 Genomes pilot (2);

* high-coverage (64X) whole-genome sequence data from a single platform, the Illumina HiSeq
2000 (6);

® array hybridization intensity data from two published sources (23, 32);

® published fosmid end-sequencing data (33).

Read alignment and SNV calling from HiSeq data
The genome of NA12878 was sequenced to a total coverage of ~64X using 100 bp reads from an Illlumina

HiSeq 2000 instrument. Raw sequence data was mapped using BWA, and GATK was used for quality
score recalibration and realignment. SNVs were called from the realigned HiSeq data using GATK. Full
details of the mapping and SNV-calling approaches are described in DePristo et al. 2011 (6).

Indel calling from HiSeq data

Dindel (31) was used to call indels from the HiSeq data for NA12878 assuming a diploid model. Given the
high coverage, long reads, and high expected quality we applied a similar but more stringent filter as for
the LoF indels from the 1000 Genomes low-coverage pilot (see above): we required no mismatches in at
least one read on the forward strand and one read on the reverse strand. All indels passing this filter
were taken forward for further analysis.

To generate the final set of candidate LoF indels for NA12878, we took the union of Dindel calls from the
HiSeq data and calls made from the 1000 Genomes pilot data on the same individual. This union was
then subjected to manual inspection and validation as described below.

Multi-nucleotide polymorphism calling from HiSeq data

Most current SNV-calling and functional annotation methods are not explicitly designed to process block
substitutions of two or more adjacent bases, known as multi-nucleotide polymorphisms (MNPs). While
relatively rare, such polymorphisms can have dramatic effects on coding sequence function.
Importantly, incorrectly calling and annotating MNPs as independent SNVs can result in both false LoF
variants and in missing true LoF variants.

We took two separate approaches to identify MNPs from the NA12878 HiSeq data. The first approach
began with the SNV calls described above, but without applying the standard SNV cluster filter. A
Bayesian framework (Fromer and Garimella et al., in preparation) was then applied to determine the
most probable local haplotype given the sequencing reads. Next, phased SNVs within a genomic
distance of 2 base pairs were merged into single multi-nucleotide polymorphism (MNP) records. The



RefSeq codon annotations were then compared between the unmerged SNVs and the corresponding
MNP, and putative coding changes that required proper identification of the MNP to be recognized were
tabulated. This analysis was performed using publicly available tools written within the Genome
Analysis Toolkit (GATK) (6, 34). Secondly, we called MNPs using the algorithm FreeBayes
(http://bioinformatics.bc.edu/marthlab/FreeBayes) on the same set of pre-aligned BAM files.

These two call-sets were merged, and MNPs functionally annotated relative to Gencode using a
modified version of ANNOVAR (35). We manually examined six candidate MNPs from the union of the
two call sets that were predicted to produce premature stop codons; all of these variants were found to
correspond to either mapping or annotation artifacts.

Calling of large deletions in NA12878

To determine all LOF deletions for NA12878 the following data sets were taken into account: previously
published deletions using array (23, 32) and fosmid end-sequencing (36) data, deletions detected in the
1000 Genomes Project (10) and de novo calling of deletions detected in the HiSeq data using
BreakDancer (37) and Pindel (38). Collating all deletion sets resulted in 69690 candidate LOF deletions.
For each of these candidates we searched for any overlap with coding sequences as annotated by the
GENCODE project for NCBI36. Of the 8318 deletions with at least 1 bp overlap with any coding region,
5375 were predicted to result in LoF for the affected gene using the definitions described below.

To remove redundancy we then created 3709 regions of interest by clustering deletions which had at
least 1 bp overlap with each other. We carefully analyzed each cluster and considered additional
information such as GC content, raw read depth using reads with mapping quality zero and greater than
zero, and evidence from the log2 ratio generated by CNV discovery experiments (Conrad 2009).

Finally, we manually reassigned breakpoints in each candidate region, using assembly information
where available and a combination of read-pair and read depth information in other cases. After
breakpoints had been assigned for each deletion, we determined whether the variants would still be
predicted to cause LoF in order to arrive at a final LoF candidate set.

Using this approach we detected 31 candidate LoF deletions in NA12878, of which 5 were homozygous
and 26 were heterozygous. The genes within these candidate regions were then subjected to manual
reannotation as described below to examine the evidence supporting the existence of a functional
transcript that would be disrupted by the predicted deletion.

Identification of candidate LoF variants
Functional annotation of SNVs and short indels was performed with reference to the GENCODE v3b
annotation release (7) using the annotation algorithm VAT (http://vat.gersteinlab.org/). Variants were

mapped on to transcripts annotated as “protein_coding” and containing an annotated START codon,
and classified as synonymous, missense, nonsense (stop codon-introducing), stop codon-disrupting or
splice site-disrupting (canonical splice sites). Transcripts labelled as NMD (predicted to be subject to
nonsense-mediated mRNA decay) were not used.



We used a custom algorithm to annotate large deletions as gene-disrupting if they fulfilled the following

criteria:
1. Removal of >50% of the coding sequence; or
2. Removal of the gene’s transcriptional start site or start codon; or
3. Removal of an odd number of internal splice sites; or
4. Removal of one or more internal coding exons that would be predicted to generate a frameshift.

For large deletions with imprecise breakpoints, we conservatively required that the deletions defined by
both the inner and outer confidence intervals would have the same predicted effect on gene function.
For cases with microhomology at the break-point we treated the breakpoint as falling to the right-hand
side of the region of microhomology.

We did not perform functional annotation for large duplications due to the challenges of inferring
functional consequences. We also did not pursue small indels overlapping splice sites, as these were
observed to have a relatively high rate of annotation errors. The numbers stated in the text should thus
be regarded as a lower bound for the number of observed loss-of-function variants per individual

genome.

Experimental genotyping of LoF variants
A variety of approaches were taken to obtain independent experimental validation that candidate LoF
variants represented genuinely polymorphic sites.

Firstly, 276 LoF SNVs reported to be polymorphic by the HapMap project were regarded as
independently validated. Secondly, we obtained raw intensity data from three separate custom lllumina
genotyping arrays (1KG-P12, ImmunoChip and Omni2.5) that had each been run on all or most of the
1000 Genomes low-coverage pilot samples, providing genotype data for 1,135 SNVs. Finally, we
designed custom Sequenom assays to genotype 243 SNVs and 537 indels identified by the 1000
Genomes Project that were not included either in the HapMap project or any of the custom arrays
described above, and ran these assays on all 185 individuals analyzed by the low-coverage and high-
coverage pilots of the Project.

Intensity data from both the lllumina arrays and the Sequenom assays were manually examined using
the program Evoker (39) to determine whether the variant had support for polymorphism in the assayed
samples, and also whether there was evidence for one or more individuals homozygous for the LoF
allele. These intensity data were also used to provide accurate genotypes for both SNVs and indels for
use in allele-specific expression analysis (see below).

For the NA12878 HiSeq variant calls we were able to use genome-wide 454 data generated as part of
the 1000 Genomes high-coverage pilot for orthogonal validation. All predicted LoF SNVs and indels were
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manually examined with Integrated Genomics Viewer (40) for evidence of polymorphism in the 1000
Genomes 454 data. As lllumina and 454 are subject to different forms of systematic error, we regarded
the presence of a single 454 read supporting the same non-reference allele as the HiSeq data as
sufficient to regard the variant as validated.

For 34 candidate indel sites in NA12878 there was insufficient 454 coverage to confidently call the
genotype at that location. We attempted to design independent assays at all of these sites using PCR
followed by capillary sequencing. These regions were nearly all extremely repetitive, so genome-unique
PCR primers were only able to be designed for 24/32 variants; of these variants only 17 produced a band
of the expected size, and upon sequencing only 8 reactions produced traces corresponding to a single
sequence mapping to the expected region. We examined the resulting traces for NA12878 and both of
her parents to confirm transmission of the candidate variants.

It is important to note that certain forms of error (particularly mapping error due to large duplicated
regions) will have survived validation using some or all of these methods, so there will be some residual
false positives within the validated set.

Filtering of candidate LoF variants

Read-based filters

We complemented the experimental genotyping data with two read-based filters designed to capture a
variety of common sources of sequencing error in SNVs. Firstly, we compared the distribution of base
quality scores between reference and non-reference alleles; a genuine polymorphism would be
expected to have similar quality score distributions for the two alleles, whereas significantly different
quality score distributions between the two alleles is suggestive of a sequencing error. Secondly, we
looked for SNVs where non-reference base calls were found disproportionately in the 5 bp at either end
of spanning reads; such cases are strongly indicative of mapping errors due to either repetitive sequence
or proximity to an undetected indel. Both filters produce a rank sum P value for each variant, which we
then compared to our experimental genotype data to determine appropriate thresholds for filtering
ungenotyped variants. Both filters were found to be highly predictive of genotyping errors when using
our independent genotyping data as a training set.

To lower the number of false positive indel calls in the 1000 Genomes pilot data we applied more
stringent filters to the subset of indels that were called in the genome-wide set and were predicted to
fall into the LoF class. The stringent filter requires that the range of positions where an indel would yield
the same alternative haplotype sequence as the original called indel (for instance, in a repeat, the
deletion of any repeat unit would give the same alternative haplotype), plus 4 bases of reference
sequence on both sides of this region, was covered by at least one read on the forward strand, and at
least one read on the reverse strand, with at most one mismatch between the read and the alternative
haplotype sequence resulting from the indel (regardless of base-qualities). This filter removed an excess
of 1-bp frameshift insertions seen in CHB+JPT with respect to CEU in the less stringently filtered
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genome-wide indel call set, although it is expected to remove a significant number of true positive calls
as well. The indels that pass these stringent filters have been annotated in the project’s VCF files (2).

Annotation filters

Nonsense and splice-disrupting SNVs were flagged as likely representing reference error or annotation
artifacts if the inferred loss-of-function (LoF) allele was also the ancestral state (see below), or if the
reference (non-LoF) allele was not observed in any individual in that population. Splice-disrupting SNVs
in non-canonical splice sites were also discarded, as these were found to frequently correspond to small
artificial introns added during the gene annotation process to account for reference sequence errors or
indels in the model transcripts relative to the reference.

For nonsense SNVs and frameshift indels, we calculated the fraction of the coding sequence of the
longest affected transcript that would be disrupted by the variant. Both classes of variant showed a
striking enrichment towards the 3’ end of the coding sequence of affected genes (Fig. 1C,D). Putative
stop and frameshift variants predicted to disrupt less than 5% of the coding sequence were excluded
from further analysis. This analysis was not performed in an automated fashion for splice site SNVs due
to the uncertainty in inferring the effects of splice site disruption on final transcript structure. A single
frameshift falling within the final 5% of the affected CDS (in the NOD2 gene) was manually rescued from
this filter as it is a known functional variant.

Inference of ancestral state for SNVs and indels

An additional approach to identify LoF variants that are likely to represent gene annotation artifacts
and/or reference sequence errors is to examine the inferred ancestral state at the site, using
comparison with outgroup species. Variants where the putative LoF allele is confidently inferred to be
ancestral should be regarded with suspicion: such cases must either represent an evolutionary “gain of
function” mutation (that is, the loss of a stop codon, creation of a novel splice site or extension of a
reading frame) that happens to be carried in the reference sequence or, much more commonly, are the
result of sequencing errors present in the reference that have resulted in a mis-specification of the gene
model at this location.

The ancestral state of both SNVs and indels were inferred using comparison of the human NCBI36
reference with three non-human primate species, the chimpanzee Pan troglodytes, orang utan Pongo
pygmaeus abelii and rhesus macaque Macaca mulatta. For SNVs, we relied on ancestral state
assignments generated for the 1000 Genomes pilot project (2) using alignments of NCBI36 to the
CHIMP2.1, PPYG2 and MMUL_1 reference genomes with Enredo and Pecan (41).

For indels, ancestral states were freshly calculated for this project, using alignments of NCBI36 with the
panTro2, ponAbe2 and rheMac2 reference genomes. An indel was polarized if (i) at least two of the
three primate outgroups had aligning sequence present at the variant site in the relevant UCSC BlastZ
two-way alignment, (ii) either all aligning sequence showed a matching indel at the variant site, or no
aligning sequence showed a matching indel at the variant site, and (iii) no non-matching indel was found
at the variant site in any of the primate outgroups.



Provided these criteria were fulfilled, when no aligning sequence showed a matching indel at the variant
site, the indel was annotated as “derived”. Otherwise, the indel was annotated as “ancestral”. Indels
were deemed to match if their length and type (deletion or insertion with respect to the reference)
matched. To allow for substitutions, the inserted or deleted sequences themselves were not required to
be identical. To allow for alignment ambiguity and possible substitutions in any of the primate
sequences, the site of any indel was defined to be the segment of possible positions of the gap
characters in a consistent alignment of the two sequences, plus 5 bp on either end.

Manual inspection was also used to classify a number of very high frequency indels and SNVs for which
ancestral state could not be inferred (typically due to missing non-human primate sequence at these
locations).

For both SNVs and indels, cases where the ancestral state could not be reliably inferred were not
filtered.

A total of 80 SNVs and 154 indels were found to have an ancestral LoF allele and were thus excluded
from further analysis. In support of the notion that these variants frequently represent errors in the
reference sequence, there was a striking enrichment of very high-frequency variants in this filtered class
relative to other LoF variants (indel mean derived allele frequency 0.64 vs 0.09; SNV average DAF 0.42 vs
0.06). This enrichment can be explained partly by sequencing errors in the reference that are
consequently called as non-reference in all (or nearly all, depending on genotyping power) of the
individuals in the sample.

Sequence context filters

We excluded variants that were present in a segmental duplication, as well as SNVs found within a
variable number tandem repeat, based on annotation from the UCSC Genome Browser. Candidate LoF
SNVs were also excluded if they were found within 3bp of the location of a known indel (seen either in
dbSNP or in the 1000 Genomes pilot calls), as manual inspection of read data indicated that the majority
of these represented read mapping artifacts.

Analysis of multi-nucleotide polymorphisms

Multi-nucleotide polymorphisms (MNPs) are events in which variations from the reference genome are
present on the same haplotype at multiple adjacent bases. When an MNP affects multiple bases within
the same codon it can have substantially different functional effects than its component SNVs annotated
individually. We explored the effects of MNPs in two ways: firstly, for all stop codon SNVs identified in
this project, we looked for evidence that the variant was actually part of an MNP that would result in a
different functional outcome; and secondly, we systematically called and tested the functional effects of
all candidate MNPs in the genome of NA12878.

To identify “stop-disrupting” MNPs we looked for additional SNV calls either 1 or 2 bases away from

each candidate stop-gain SNV (2 bases being the maximum distance within which an additional variant

could still affect the same codon) in any 1000 Genomes pilot sample. For all cases where a neighboring

SNV was present we then manually examined the read data in the relevant population to determine if
9



reads carrying the stop-gain SNVs also always carried the neighboring SNV. Finally, we determined the
overall outcome for manually validated MNPs in terms of effects on protein sequence. This process
identified 33 cases where an apparent stop-gain SNV was in fact a component of an MNP, all of which
resulted in a missense rather than nonsense prediction overall (see example, Fig. S2A). Of the 28 of
these SNVs that had been subjected to experimental genotyping there were nine failures, presumably
due to interference with genotyping probes by the neighboring SNV.

We manually inspected the evidence for seven autosomal candidate MNPs identified in the HiSeq data
from NA12878 and annotated as creating a stop codon in either the Gencode v3b or RefSeq gene sets.
Four of these were likely mapping errors: two in MHC genes HLA-B and HLA-DPB1, one in the artifact-
rich gene CDC27, and one in NBPF9. One MNP in the IRF2BP1 gene had very weak read evidence in the
HiSeq data, had no support from either 454 or GA2 data from NA12878 or her parents, and was
excluded as a likely variant-calling error. Finally, two MNPs were annotation artifacts: one was identified
in the gene RAB36, but in a transcript with an in-frame upstream stop codon; a second, in the predicted
gene AL122127, was found in a weakly-supported exon flanked by non-canonical splice sites.

Manual reannotation

Full manual annotation was undertaken on loci containing 884 candidate LoF variants. The purpose of
this exercise was twofold; firstly to confirm the validity of the annotation of the protein-coding model on
which the LoF variants were called (i.e. to reduce the number of false-positive LoF calls made on loci and
splice variants for which either the structure of the model or the annotated CDS was incorrect), and
secondly to fully characterize the locus in terms of its alternative splicing and functional potential of any
splice variants (i.e. to place true positive LoF calls in their context with regard to whether the exon
affected by a LoF variant is constitutive or alternatively spliced and to try and predict the effect of the
SNV on the functional potential of the locus).

Manual annotation was performed according to the guidelines of the HAVANA (Human And Vertebrate
Analysis and Annotation) group; the current set can be accessed at
ftp://ftp.sanger.ac.uk/pub/annotation. In summary, the HAVANA group produces annotation of protein-
coding genes, pseudogenes, and non-coding transcripts largely based on the alignment of transcriptomic
(ESTs and mRNAs) and proteomic data from GenBank and Uniprot. These data were aligned to the
individual BAC clones that make up the reference genome sequence using BLAST (42), with a
subsequent realignment of transcript data by Est2Genome (43). Gene models were manually
extrapolated from the alignments by annotators using the otterlace annotation interface (44).
Alignments were navigated using the Blixem alignment viewer (45). Visual inspection of the dot-plot
output from the Dotter tool [4] was used to resolve any alignment with the genomic sequence that was
unclear or absent from Blixem. Short alignments (<15 bases) that cannot be visualized using Dotter were
detected using Zmap DNA Search (essentially a pattern matching tool). The construction of exon-intron
boundaries required the presence of canonical splice sites and any deviations from this rule were given
clear explanatory tags. All non-redundant splicing transcripts at an individual locus were used to build
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transcript models, and all splice variants were assigned an individual biotype based on their putative
functional potential. Once the correct transcript structure had been ascertained the protein-coding
potential of the transcript was determined on the basis of similarity to known protein sequences, the
sequences or orthologous and paralogous proteins, the presence of Pfam functional domains (46)
possible alternative ORFs, the presence of retained intronic sequence and the likely susceptibility of the
transcript to nonsense-mediated mRNA decay (NMD) (47). The biotype of the locus was derived from
the individual biotypes of the splice variants it incorporates.

The geneset created by the GENCODE consortium will ultimately include manually annotated transcripts
for all human genes, but this process is not yet complete; hence the GENCODE geneset is currently
represented by merge of HAVANA manual annotation and automated Ensembl gene predictions (48) to
achieve a better coverage of loci and alternative splice variants (including all CCDSs (49)). Consequently,
checking and reannotation of manually annotated loci and complete annotation of automatically
curated loci is advantageous to ensure calling of LoF variants is made on consistent, high quality
annotation.

Errors leading to miscalling of LoF variants

Reference errors. Where manual annotation identifies likely errors in the reference human genome
sequence in the same position a LoF variant is called, the variant is flagged as a genome sequence error
and excluded from subsequent analysis. Where a genome sequence error that affects the annotation of
the locus is identified, but it is still possible to annotate gene models with sufficient information to fully
interpret the functional impact of the LoF variant, these variants are included in analysis. Putative
genome sequence errors are initially identified on the basis of their disruptive effects on CDSs and splice
junctions, and subsequently on their lack of transcriptional support, lack of cross-species support i.e. the
human sequence is different to all other primate and mammalian genomes, and lack of a high
confidence SNV called at the position. All suspected genome sequence errors were reassessed to
determine whether SNVs could be confidently called using data from the 1000 genomes project. Those
that were found to be true LoF variants were analyzed in this light; those that were not were reported to
the Genome Reference Consortium (GRC) for further investigation with the view of correcting the
human reference genome where necessary.

Gene annotation errors. Where re-annotation reveals that a locus or splice variant has a misannotated
CDS, the annotation was corrected and the new annotation affects the interpretation of a putative LoF
variant, the variant is flagged as being unlikely to have any functional effect. At the locus level cases
often result from a change of interpretation e.g. the locus is now believed to represent either a
pseudogene of a protein-coding parent or functional non-coding gene (IncRNA). At the transcript level,
changes are made where an individual transcript variant initially possesses a CDS that does not fulfill the
requirements for annotation according to our manual annotation guidelines. Sources of such errors
include problems with the alignment of supporting evidence and the quality of the supporting evidence
itself.
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Predicted incomplete reduction in functional potential. The potential effect on functional potential of all
putative LoF variants that were confirmed to affect valid coding gene models were assessed. Nonsense
SNVs and small frameshift-inducing indels introduce alternative stop codons into the CDS. Novel stop
codons result in either truncations or, rarely, extensions of the reference CDS. Truncations that possess
the positional characteristics signaling their targeting by the NMD pathway (47) are likely to lead to a
significant reduction in the amount/stability of the transcript and suggest the protein it encodes is likely
to be non-functional. The functional effect of truncations that do not induce NMD are more difficult to
characterize, however, we have used the disruption of a Pfam A domain (46) as a second proxy for loss
of function. Where a truncation led to the loss of >=1 residue of a Pfam domain it was considered to be
disrupted. Where no Pfam A domains were disrupted, or the reference CDS possessed no Pfam A
domains, a third criterion was used; by which truncation and extension were characterized by the
proportion of the reference sequence lost (or gained) in the variant CDS. Truncations were grouped
according to whether they lost >50%, 50%-5%, or <5% of the length of the reference CDS. Intuitively
CDSs with larger truncations seem more likely to have lost the function of the reference CDS than those
with smaller losses, however, there are many well characterized examples where a small terminal
truncation leads to abolition of protein function e.g. olfactory receptors (50).

Splice junction SNVs. Variation at both donor and acceptor splice sites affects the complex dynamics of
splicing can and potentially lead to loss of function due to erroneous exon skipping or inclusion of non-
exonic sequence which can lead to inclusion of a premature stop codon either directly or via a
frameshift (see (5) for summary). Predicting the consequences of splice site disruption can be difficult,
particularly in the case of splice donor site disruption) (51-54). As such, all predictions of the effect of
splice junction SNVs on the functional potential of a transcript were conservative where no additional
evidence for novel splice sites was available. For splice acceptor SNVs, the next confidently identifiable
splice acceptor is presumed to be used. Practically, this equates to a prediction that the exon
immediately proceeding the affected splice acceptor being skipped unless there is transcriptional
support for the use of an alternative downstream splice acceptor within that exon. The impact of splice
donor SNVs are more difficult to predict as they can have an effect on the splicing of 5’ as well as 3’
exons. As such where a splice donor variant was identified it was deemed that any attempt to evaluate
its impact on the functional potential of the locus would be unreliable. The one exception to this is
where transcriptional evidence possessing the disrupted donor site can be used to support an
alternative splice model e.g. where the disrupted splice donor is read through and the transcript either
reads through the intron completely or utilizes a cryptic downstream splice donor.

Alternative splicing. Consideration of alternative splicing is of great importance in assessing the
functional impact of a potential LoF variant. Where an affected exon, or part of an exon, is alternatively
spliced it is very likely that the LoF SNV will only affect the function of those transcripts that contain it. If
the transcripts that do not contain the LoF SNV are unaffected it is reasonable to assume that they
possess the same functional potential as the same variant with the reference allele. As such, where an
affected exon is alternatively spliced the effect on function can only be considered at the level of the
transcript rather than the locus, complicating any assessment of its impact. In the simplest example, if
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the affected the locus is subject to tissue specific alternative splicing, any loss of function would
obviously affect only those cells where the LoF variant containing exon was included. The manual
annotation of putative LoF loci ensured that all supported alternative splice variants were built, giving
some context to the analysis of functional potential. Some indication as to the proportion of transcripts
including/excluding the affected exon/portion of an exon is given in the spreadsheets, however, this
information should be taken as indicative at best due to uneven coverage of tissues, conditions and
developmental stages in the transcript databases. More transcriptomic data will be required in order to
more precisely refine the predictions for those loci flagged.

Classification of LoF variants

In summary, LoF SNVs were grouped as follows according to the impact of the variant on the CDS:
severe impact (NMD, Pfam A domain break, >50% truncation), moderate impact (50%-5% truncation),
minor impact (<5% truncation), uncertain impact (splice donor SNVs with no transcriptional data, final
exon splice acceptor SNVs) and mixed impact (variant had different effects on different transcripts e.g.
rescuing NMD variants). Furthermore, all potential LoF variants were classified according to whether
they were mapped to a constitutive exon or an exon (or part of an exon) skipped by at least one piece of
transcript data.

Results
The genes affected by 884 putative LoF variants were fully reannotated, comprising 296 SNVs and 213

indels from the 1000 Genomes pilot data and 375 variants from NA12878. Variants selected for
annotation were not uniformly ascertained, with the pilot SNVs in particular being drawn predominantly
from the higher end of the frequency spectrum, so the results below should not be regarded as
representative of genome-wide error rates for such variants.

Detailed manual annotation led to the identification of 44 genome sequence errors and 243 errors in
gene models, fewer than 5% of which affected previously manually annotated gene models.

Of the 597 putative LoF variants confirmed to affect protein-coding gene models 213 (~36%) were found
to be present in exons that were subject to alternative splicing capable of excluding the LoF variant from
the final transcript. In total 315 LoF variants at both constitutive and alternatively spliced loci led to
changes in the CDS that broke a Pfam A domain, generated a transcript likely to be targeted by the NMD
pathway, or truncated the CDS by more than 50%. This category represented the largest set for both
constitutive and alternatively spliced variants in every set investigated. Overall, 114 variants led to a
truncation of the CDS of between 5 and 50% while 101 variants introduced at truncation or extension to
the CDS of less than 5% compared to the reference genome.

In 53 cases the effect of the LoF variant could not be established because the variant represented either
a splice donor SNV without specific transcript evidence that confirmed its effect or a splice acceptor SNV
at the final exon of the locus where the next reasonable splice acceptor could not be determined due to
lack of transcript evidence or uncertainty over candidates. A further 11 SNVs had potentially mixed
effects i.e. the presence of the putative LoF variant affected different alternative splice variants in
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different way e.g. a splice junction skip could predict the exclusion of an exon, the result of which would
be to knock all annotated coding variants at the locus out of frame, leading to inclusion of a premature
stop codon and NMD, but the same exon skipping event could shift one or more models predicted to be
subject to NMD in the reference genome back into frame, enabling them to encode a full-length CDS.

Identification of known and predicted severe disease-causing mutations
We compared our high-confidence LoF variants to the largest currently available database of known
Mendelian disease-causing mutations, the Human Gene Mutation Database (HGMD). HGMD missense,
nonsense, regulatory, splice site and coding indel variants tagged as “damaging mutations” and
confidently associated with disease were included (entries with a question mark in the “disease” field,
representing low-confidence disease associations, were excluded). The final HGMD set consisted of
91,193 variants in 2,375 genes, all obtained by manual curation of the disease literature, and all with
positional coordinates available relative to the reference genome.

Firstly, we identified high-confidence LoF variants that were also annotated as disease-causing by
HGMD. We found 26 overlapping sites, but manual inspection revealed 3 of these (in the MST1R, HTN3
and RAGE genes) to have unconvincing associations with disease phenotypes. In addition, we identified
two known disease-causing mutations from our own surveys of the literature that were not present in
HGMD: a stop SNV in PCSK9 associated with low LDL cholesterol levels, and a frameshift insertion in
NOD2 associated with the risk of Crohn’s disease. The surviving 26 disease-causing mutations are
summarized in Table S5. Only one of these variants was identified in a homozygous state: a frameshift
deletion in the P2RX5 gene associated with graft-versus-host disease in bone marrow transplant
patients.

Secondly, we looked for novel candidate disease-causing mutations by inspecting high-confidence LoF
variants in genes annotated as carrying disease mutations in HGMD. In total we found 223 LoF variants
in HGMD disease genes, but only 89 of these survived filtering (including the 25 LoF sites annotated as
disease-causing noted above). We manually inspected the evidence for potential disease causation for
the 29 of these variants that were predicted to cause loss-of-function for all known transcripts of the
affected gene, investigating both the strength of the predicted effects on gene function and the
literature supporting a role for the gene in disease causation. After removing variants in genes with
weak evidence of disease causation we were left with 21 LoF variants we regard as strong candidates for
novel Mendelian disease-causing mutations (Table S6).

While none of the strong candidate mutations were seen in the homozygous state, two were identified
with relatively high allele frequencies in at least one population: in one case the disease in question only
manifests itself in response to drug exposure (pravastatin-induced myopathy due to mutations in the
SLCO1B1 gene), while in the second case the disease phenotype is relatively mild (congenital stationary
night blindness, associated with mutations in the TRPM1 gene).
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Allele-specific expression analysis using RNA sequencing data

To quantify the effect of putative LoF variants on RNA expression from the affected gene, we used
previously published (24, 25) lymphoblastoid cell line RNA sequencing data from 60 CEU and 59 YRI
individuals also included in the 1000 Genomes low-coverage pilot to examine allele-specific expression
(ASE) from the LoF and reference alleles in heterozygous individuals.

This analysis was performed only for stop SNVs: SNVs in splice sites by definition fall outside exonic
sequences and are thus not included in transcriptomic data, and analysis of indels was complicated by
mapping bias (that is, a strong tendency for reads corresponding to the non-reference allele to not be
correctly placed during read mapping) for these polymorphisms. To ensure the genotypes used in this
analysis were of high confidence, only stop SNVs that had been genotyped on an independent platform
(either one of the custom Illumina arrays or Sequenom assays analyzed in this study, or as part of the
HapMap project) were used. For SNVs genotyped on the custom arrays or the Sequenom assays,
heterozygous individuals were identified by manual inspection of genotype intensity data using custom
software (Pyvoker) provided by T. Shah.

In total, of 598 SNVs that passed all of the validation, annotation and informatic filters described above,
we were able to obtain independent genotype data for 388, of which 347 possessed at least one
independently validated heterozygous individual. For SNVs where data were available from both chip
intensity and HapMap data, we used the manual chip-based calls; where data were available from
multiple chips, we favored the chip with the highest number of genotyped individuals.

For each stop variant we predicted whether the variant was likely to trigger nonsense-mediated decay
using the rule proposed by Nagy and Maquat (26): if a stop variant was found more than 50 bp upstream
of the final exon-exon boundary in a transcript it was regarded as an NMD-predicted variant. To define
exon boundaries we used the longest transcript for which the variant would be predicted to cause loss-
of-function.

The RNA expression of these variants was then assessed. Briefly, RNA sequencing in both of these
studies was performed using the lllumina GAll, and reads were mapped to the reference genome using
either BWA v.0.5.8 (YRI) or MAQ v.0.6.6 (CEU). For each heterozygous individual, reads mapping to the
reference and non-reference allele were counted, and these numbers were then summed across all
experimentally validated heterozygotes to give a global read count for each allele. Only variants with a
total read count 2 5 were included in downstream analysis, as illustrated in Fig. 2B. In this figure (and
below), the Wilson score interval method (55) was used to estimate the most likely proportion and the
95% confidence interval for each variant.

Two variants had sufficient read counts for analysis in both populations, and showed high consistency
between the two samples: alternate read count fractions were 0.423-0.602 in CEU and 0.444-0.620 in
YRI for the CARDS stop variant rs2043211; and 0.356-0.518 in CEU and 0.428-0.593 in YRI. We thus
merged the data from the two populations into a single combined analysis.
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Predicted NMD and non-NMD variants showed no significant difference in total read coverage (Mann-
Whitney U test, P = 0.96), but, as expected, NMD-predicted variants had significantly lower proportions
of reads mapping to the LoF allele (mean 27.8% vs 47.5% for NMD-predicted and non-predicted variants
respectively, MWU P = 0.0023). For each variant we examined the probability of obtaining that
proportion of reads under a binomial distribution with a true sampling proportion of 0.5; variants
showing a significant P value with a one-tailed binomial test were classified as showing evidence for
NMD. Using a nominal P value of 0.05, 14 variants showed reduced expression of the stop allele: 11/28
NMD-predicted (39.3%) and 3/21 non-predicted variants (14.3%). Using a Bonferroni-corrected P value
of 0.00102, eight variants showed evidence for reduced expression of the stop allele: 7/28 NMD-
predicted (25.0%) and 1/21 non-predicted variants (4.8%).

Given the poor accuracy of the standard NMD prediction method, we explored whether the addition of
information about the fraction of the coding sequence truncated by a variant could provide additional
predictive information. Contrary to this hypothesis, we found no significant correlation between the
position of the stop variant within the coding sequence and the proportion of reads mapping to the
alternate allele. However, we note that our power to detect such an association here is small, and that
combining genome and RNA sequencing information from larger samples will be required to definitively
test this hypothesis.

Imputation-based association analysis of LoF variants in complex

disease cohorts

To assess whether LoF variants were enriched for effects on complex disease risk, we imputed all SNVs
and indels genotyped in the CEU population in the 1000 Genomes low-coverage pilot into the complete
Wellcome Trust Case Control Consortium 1 (WTCCC1) data-set (22), comprising 3,004 controls and
13,990 cases from seven complex disease cohorts, of which 2,938 controls and 13,241 cases remained
following sample QC.

Genotypes for CEU SNVs and indels were obtained from the July 2010 release
(ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/pilot data/release/2010 07/), and were merged with SNV
genotypes from HapMap3 release 2. Imputation of these variants into the WTCCC1 data-set was

performed using impute2 version 2.1.0, using a k value of 80 and an effective population size (N.) of
14000. The data were split up into segments of either 5Mb or 20K reference SNVs (whichever was
smaller), with a 500Kb buffer on either side of each segment.

We investigated potential associations with complex disease risk for 625 high-confidence LoF variants
identified as polymorphic in the CEU population. Of these variants, 417 imputed well enough in both
controls and at least one cohort to go ahead with association (using an info score threshold of 0.2),
resulting in a total of 2901 association tests in the seven disease cohorts. Only 3 variants were close
enough to the threshold to be assessed in some cohorts but not others.
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We performed a frequentist association analysis using the program SNPTest, version 2.2.0. We used an
additive model of risk, and a likelihood score test to account for uncertainty in imputed genotypes.
Matched synonymous and missense sets were calculated using allele frequencies in controls, taking
random draws without replacement of synonymous and missense variants from the same 1% frequency
bin as each LoF variant. In both cases, five random draws were made; the values plotted in Fig. 2B are
the median values from the 5 draws.

The major caveat of this analysis is that the systematically low frequencies of LoF variants result in a
decrease in imputation accuracy, and a subsequent drop in power to detect association. However, we
note that the NOD2 frameshift indel, with an allele frequency of <3% and an odds ratio of approximately
4, achieved a P value of 1.78 x 10™ for association with Crohn’s disease despite having a relatively low
info score for imputation (0.25). This suggests that our analysis would have successfully identified other
LoF variants with large effects, even where allele frequency and imputation accuracy was relatively low.

There were no significant detectable enrichments of associations for LoF variants compared to missense
variants at P value thresholds of 10°, 10 or 107 (Fisher's exact P values 0.4994, 0.1245 and 0.8034,
respectively), suggesting that common LoF variants are not substantially over-represented among
complex disease risk variants compared to other functional coding polymorphisms.

In addition to the NOD2 variant that achieved genome-wide significance, two LoF variants achieved
Bonferroni-corrected significance: rs16380, a frameshift indel in ZNF3 (associated in type 1 diabetes),
and a novel frameshift indel at chr1:152018423 in the gene SLC27A3 (associated in hypertension). We
pursued the evidence for association for the ZNF3 variant using data from a meta-analysis of genome-
wide association studies of type 1 diabetes incorporating 7,514 cases and 9,045 controls (56). We
identified 3 SNVs in strong linkage disequilibrium with rs16380 based on 1000 Genomes pilot data that
were also examined in the meta-analysis; these showed only nominal significance in the meta-analysis (P
= 0.03-0.04), and this association was driven entirely by the samples overlapping with the WTCCC1
analysis: looking only at samples that were not overlapping with WTCCC1, the P value was 0.4012. This
suggests that the marginally significant association in the WTCCC1 samples is a chance finding rather
than a genuine association.

Comparison with signals of positive selection

To test the hypothesis that loss of gene function has played a major role in the recent evolutionary
history of modern humans we explored the overlap between our high-confidence LoF variants and
signals of positive selection derived from the 1000 Genomes low-coverage pilot. We reasoned that
under a model of adaptive gene loss, LoF variants with a high derived allele frequency should frequently
be associated with signals of recent positive selection.

The approaches used to identify candidate regions of recent positive selection have been described
previously (2). Briefly, we applied several allele frequency spectrum-based tests — Tajima’s D (57), Fay
and Wu'’s H (58) and Nielsen’s Composite Likelihood Ratio (CLR) (59) — to the sequence data generated
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by the low-coverage pilot to identify regions showing deviations from the expectations under a neutral
model of evolution. Simulations under best-fit demographic models (60) for European, East Asian and
African populations were used to identify appropriate P value cut-offs to identify candidate selected
regions, using 10 kb bins. The P values from the three tests were calculated based on the distribution of
1,000 neutral simulations in each population, and then the scores for all three tests were combined into
a single P value using Fisher’s method. Finally, we classified a region as a candidate for positive selection
if two or more significant bins were seen within a 150 kb interval, a criterion estimated to produce a 2%
false discovery rate based on our simulations.

We next looked at the overlap between these candidate regions and our final high-confidence set of LoF
variants. As frequency spectrum-based tests have very limited power to detect selected variants at a low
frequency, we restricted our analysis to the 36 high-confidence LoF variants with a derived allele
frequency greater than 0.5 in at least one population. Of these variants, a total of 11 were found in
regions overlapping with signals of selection.

To assess signals of positive selection derived from haplotype-based tests, we first retrieved all
autosomal SNPs with known phase from the 1000 Genomes Pilot Project for the CEU, CHBJPT and YRI
populations. Using these data we calculated two tests of haplotype homozygosity, XP-EHH (61) and iHS
(62) as previously described using tools provided by J. Pickrell (available at http://hgdp.uchicago.edu).
XP-EHH was calculated for all three possible population pairs, while iHS was calculated independently
for all three populations. Physical and genetic distances were retrieved from the 1000 Genomes Pilot
Project data; cM distances between SNPs were averaged across all three population-specific
recombination maps to avoid biasing test calculations towards any given population. Ancestral and
derived states for each SNP were determined using the same procedure described in the “Inference of
ancestral state for SNVs and indels” section above. Scores for each test and population were normalized
to have a mean of 0 and an SD of 1. We considered regions in the 2.5% tail at either end of the genome-
wide distributions to show nominal evidence of positive selection.

Analysis of the properties of LoF-containing and LoF-tolerant genes

Here we define “LoF-tolerant” genes as genes for which at least one individual in the 1000 Genomes
cohort was homozygous for a high-confidence LoF variant; in other words, genes that can apparently be
entirely inactivated without causing a fatal early-onset disease.

We compared the functional and evolutionary properties of 1,035 LoF-containing and 253 LoF-tolerant
genes with a set of 858 known recessive disease genes obtained from the OMIM database, as well as
with a set of 18,797 protein-coding genes from the Gencode annotation set.

Evolutionary properties

dN/dS data for chimp, macaque and mouse were downloaded from Ensembl. Genomic Evolutionary
Rate Profiling (GERP) (63) score was downloaded from EBI. Two summed GERP values, one for coding
sequence and the other for promoter region, defined as bases within [-100, 100) window centered at
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transcription start site, were then calculated for all human protein-coding transcripts according to
Ensembl annotations and summarized by gene using the median values. We also calculated the GERP
score for conserved non-coding elements (CNCs) obtained from Ensembl within 50 kb of a protein-
coding gene; for this calculation, CNCs that overlapped with any protein-coding annotation were
excluded. The number and sequence identity of paralogs were downloaded from Ensembl.

Network properties

Two interaction networks were used. One is a binary protein-protein interaction network integrated
from a number of sources (64-67). The other is a probabilistic gene interaction network (a network of
470,217 links among 16,375 human genes calculated using methods previously described for yeast (68)
and worm (69) and derived from 22 publicly available genomics datasets including DNA microarray data,
protein-protein interactions, genetic interactions, literature mining, comparative genomics, and
orthologous transfer of gene-gene functional associations from fly, worm, and yeast where the weight
of a link is the log likelihood score of the interaction (68). Measures of centrality (degree, betweenness)
and modularity (cluster coefficient) were calculated using MCL (70). Shortest path distance and sum of
weight of interactions (69) were calculated as measures of proximity to a group of ‘seed’ genes. We note
that the inclusion of both human and non-human data in the interaction data may have introduced
some non-conservative bias in the comparison between LoF-tolerant and known recessive disease genes
in the event that there is unequal conservation of orthologues between these two categories, so the
network results should be treated with some caution. However, this caveat does not affect the
interpretation of the results of the predictive model described below.

Comparison of gene sets

For continuous variables, the two-tailed Mann-Whitney U test was performed to assess if positive
(haploinsufficient) and negative (haplosufficient) training data have the same median value for potential
predictor variables. For two-class categorical features, Fisher’s exact tests were performed. Statistical
tests were performed using R (http://www.r-project.org).

Generation of a predictive model

We assessed different potential sets of predictor variables for input into the predictive model using the
following criteria: (i) they allowed prediction for at least half the genes in the genome, (ii) the Spearman
correlation between all pairs of predictor variables was less than 0.3, (iii) they were drawn from
different broad categories (genomic, evolutionary, functional and network), and iv) they achieved best
performance in model assessment (see below).

The sensitivity of the prediction was plotted against (1 - specificity) and the area under the ROC curve
(AUC) [44] was used as quantitative measure of the performance of the model, where sensitivity =
TP/(TP + FN), and specificity = TN/(TN+ FP). The other measure used is the Matthews correlation

coefficients (MCC) [45], defined as:

TP X TN — FP X FN
(TP + FP)(TP+ FNYTN + FP)IN + FN)
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To avoid over-fitting, the sensitivity and specificity were calculated using 10-fold cross-validation. To
overcome the variability caused by random partition involved in 10-fold cross-validation, each such
assessment was repeated 30 times and the mean values were reported.

We tested the model both including and excluding olfactory receptor genes from the LoF-tolerant set;
both results are shown in Fig. 3C.

Statistical analysis

Except where otherwise specified, we used the Mann-Whitney-Wilcoxon test implemented in R
(wilcox.test) for all comparisons between continuous variables. To assess the effect of ties in the analysis
of network connectivity data we also used the wilcox.exact test from the R package exactRankTests;
none of the associations that were significant in our initial analysis lost their significance with the use of
the exact test.
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Table S1. Candidate nonsense SNVs that are in fact components of multi-nucleotide variants (MNVs)
with weaker predicted effects on function.

Bases altered by the MNVs are indicated in upper case in the “actual codon change” field. In all cases the
overall result of the MNV was a missense substitution. Note that in some cases the MNV is interrupted
by a single unaltered base.

LoF reference  LoF non-ref actual codon actual protein
chr pos

allele allele change change
1 45845948 C T CAg>TGg GIn>Trp
1 159742828 C T CAg>TGg GIn>Trp
1 171793211 C T TGg>CAg Trp>GlIn
1 226536526 A T AGa>TTa Arg>Leu
3 195543601 C T TGg>CAg Trp>GlIn
5 41097472 C T TGg>CAg Trp>Gln
6 71345909 C T CAg>TGg GIn>Trp
6 111694003 T A tTASTAT Leu>Tyr
7 21549488 G T GAg>TTg Glu>Leu
7 100402871 G A TgG>AgA Trp>Arg
8 599879 A C tAT>tGG Tyr>Trp
8 144593530 G T TCa>AAa Ser>Lys
9 133375256 C T CAg>TGg GIn>Trp
11 5963847 C T TGg>CAg Trp>GlIn
11 122437120 A C TaT>CaG Tyr>GIn
14 44044862 G T TCa>GAa Tyr>Glu
16 82541393 C T TGg>CAg Trp>GlIn
19 63065900 A T AGa>TTa Arg>Leu
22 17292677 C T TGg>CAg Trp>GlIn
1 40545737 G A CAg>TGg GIn>Trp
2 26553793 C A GAg>TTg Glu>Leu
2 220127584 G A CAg>TGg GIn>Trp
2 241204534 G A tGG>tCA Trp>Ser
4 114494796 C G TCa>AGa Ser>Arg
6 30019219 T A TTg>CAg Leu>Gln
6 155619409 T A TTg>CAg Leu>GlIn
9 37767620 C A tAC>tTA Tyr>Leu
11 59237528 G A CAg>TGg GIn>Trp
14 62827368 T A TTg>AAg Leu>Lys
14 63629845 G A TGg>CAg Trp>Gln
19 13861171 G A CAg>TGg GIn>Trp
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Table S2. Homozygous high-confidence LoF variants in the anonymous European individual NA12878.

variant type gene notes
stop FUT2 known nonsense v;?rlant., ass;ouatgd with protection
against viral infection
stop ACTN3 known nonsense variant in musc!e gene, associated with
reduced strength and sprint performance
splice HTR3B type 3 serotonin receptor subunit
frameshift CYP4B1 known null variant in g‘en? involved !n inflammation and
xenobiotic metabolism
frameshift SMPDL3B sphingomyelin phosphodiesterase
frameshift TIGD6 tigger transposable element-derived protein
frameshift MS4A14 likely membrane protein of unknown function
frameshift CELAL chymotrypsin-like (.alast.ase, onl}/ reported to be expressed
in skin keratinocytes
frameshift PIRXS associated with graft—versus—host. dllsease in bone marrow
transplant recipient
frameshift ZNF681 zinc finger protein of unknown function
trameshift OR2T4, OR11G2,
sto ! OR5K4, OR2LS, olfactory receptors
P OR4X1
large . .
. LCEID known to create fusion gene with LCEIE
deletion
large TUBA3E alpha-tubulin protein primarily expressed in testis
deletion P P P yexp
large . . S
. SPINK14 possible serine protease inhibitor
deletion
large KRTAP9-6, may create fusion gene between two single-exon genes
deletion KRTAP9-7 encoding keratin-associated proteins
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Table S3. Genes containing 5 or more independent candidate LoF variants.
Numbers are the sum of all independent candidate LoF variants seen across the three 1000 Genomes

pilot projects and in the high-depth NA12878 genome. In most cases the observed LoF variants are a
consequence of large-scale read-mapping errors.

LoF variants LoF variants
gene name before filtering after filtering
AC131157.4 16 0

SSPO 15 0
AC092143.1 12 0
MAN1B1 12 0
cbcz7 10 0
MuCc19 10 0
AC009063.1 7 0
AC073957.1 7 0
C17orf57 7 0
Cllorf40 6 0
OR4C5 6 2
ABCA10 5 0
AC009113.1 5 0
AC010634.1 5 0
AC073995.1 5 0
AC091435.2 5 0
Cé6orf10 5 0
PKD1L3 5 3
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Table S4. Known LoF variants found in 1000 Genomes samples associated with non-Mendelian phenotypes.
All coordinates are relative to the GRCh36 reference build.

chr pos dbSNP ref alt type gene phenotype hets homs notes
25464555- large . - .
55534879 + - del RHD Rhesus negative blood group 38 all 10 all 70 kb deletion
110024361- large loss of enzyme activity; many - .
! 110046935° * i del GSTM1 reported trait associations 66 all 73all 22 kb deletion
110024361- large LCE3B, . . - .
1 110046935° + - del L CE3C susceptibility to psoriasis 79 all 44 all 32 kb deletion
2 162832842 rs35732034 C T splice IFIH1 protection from type 1 diabetes 2 CEU 0
2 162844751 rs35337543 C G splice IFIH1 protection from type 1 diabetes 1CEU 0
. ) . 22 6
3 38323747 rs753331 A C splice SLC22A14 confirmed effects on mRNA splicing CHB+JPT CHB+IPT
69076626- large . - .
4 69093238 + - del UGT2B17 altered metabolism of testosterone 58 all 53 all 16 kb deletion
4 70933511 rs17147990 T A stop HTN3 truncated histatin protein 19 YRI 2 YRI
4 154844848 rs62323857 C T stop TLR2 decrease in TLR2 protein function 1JPT 0
10 96530400 rs4986893 G A stop CYP2C19 altered drug metabolism 5JPT 1JPT
11 66084671 rs1815739 C T stop ACTN3 altered muscle function 75 all 31all LoF in reference
17 36804625 C T splice KRT31 truncated (functional) keratin 2 CEU 0
19 53898835 rs1799761 AC A del FUT2 non-secretion of ABO/Lewis antigens 2 YRI 0
19 56226942 rs3745540 A G splice KLK12 loss of protease activity 61 all 63 all

® Approximate coordinates provided for large deletions
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Table S5. Known Mendelian disease-causing mutations identified in our high-confidence LoF set.
Disease-causing mutations identified using the Human Gene Mutation Database and additional literature searches. All coordinates are relative to the

GRCh36 reference build.

chr pos dbSNP ref alt type gene disease hets homs notes
1 42997627 G A stop LEPRE1 osteogenesis imperfecta 1 CEU 0
1 55284810 C G stop PCSK9 low LDL cholesterol 2 YRI 0
1 150551510 G A stop FLG atopic dermatitis 2 YRI 0 Chinese proband
1 195657157 C T stop CRB1 Leber congenital amaurosis 1 CHD® 0 Korean proband
2 166556297 G A stop SCN1A Myoclonic epilepsy of infancy 1CEU 0
2 215560703 G A stop ABCA12 harlequin ichthyosis 1CEU 0
3 33146467 C T stop CRTAP osteogenesis imperfecta 1LWK® 0 Afric;rnc-)ﬁ;r:;rican
5 39377971 rs34000044 G T stop c9 complement C9 deficiency 1 CEU 0
5 41185792 A G splice c6 complement C6 deficiency, partial 1CEU 0
5 41194621 rs61469168 TC T del c6 complement C6 deficiency 2 YRI 0
6 161006077  rs41272114 C T splice LPA Lp(a) deficiency 7 CEU 0
8 94867689 T stop TMEM67 Meckel-Gruber syndrome 1JPT° 0
9 138689082 T C splice AGPAT2 Berardinelli-Seip lipodystrophy 2 YRI 0
11 6594961  rs56144125 C T  splice TPP1 Neuronal Cer?;?;;iﬁi”SCInOSiS' late 5 ceu 0 fatr:gg‘j’:ﬁ?er
11 7017553 A T stop NLRP14 spermatogenic failure ! CJI;;%’ 3 0
11 64275394 G A stop PYGM McArdle’s disease 1 CHD® 0
11 64283799 A stop PYGM McArdle’s disease 1 CEU 0
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chr pos dbSNP ref alt type gene disease hets homs notes
11 73392519 rs45476292 C T splice uce3 severe obesity with diabetes 10 YRI 0 weak evidence
11 73394537 stop uce3 severe obesity with diabetes 1YRI 0 weak evidence
11 76545663 rs4129813 T stop MYO7A Usher syndrome 1b 1CEU 0
12 42453038 c T stop IRAKA pred|sp05|t|or.1 to chlldhood bacterial 1YRPP 0
infections

15 70427442 C T splice HEXA Tay-Sachs disease 2 CEU 0

~3.8 kb deletion
16 12328; + - Izregle HBA1 alpha thalassaemia 3 YRI 0 removing last

three exons
16 49321279 rs2066847 G GC ins NOD2 Crohn’s disease 2 CEU 0
17 3541025  rs5818907 TG T del P2RX5 graft-versus-host disease inbone g9 gg
marrow transplant recipient

21 18607163 G C stop PRSS7 enteropeptidase deficiency 1CEU 0

® Approximate coordinates; ® Mutation found in exon capture pilot samples only
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Table S6. Likely disease-causing mutations identified in our high-confidence LoF set.
Table shows all high-confidence LoF variants predicted to affect all known transcripts of a known recessive disease-causing gene. All coordinates are relative
to the GRCh36 reference build.

chr pos dbSNP ref alt type gene disease hets homs notes
1 150554463 . C A stop FLG ichthyosis vulgaris 1 CEU 0
1 152514361 rs41313932 G A splice HAX1 severe congenital neutropenia 1 CEU 0
1 158519357 . C T splice PEX19 peroxisomal biogenesis disorder 1CEU 0
2 31443356 . A AT ins XDH xanthinuria, type 1 1YRI 0
, mSL L gy cwesummensesr g, sk
3 112825290 . G A splice CD96 Opitz trigonocephaly 1YRI 0
4 25287192 . C A stop SLC34A2 pulmonary alveolar microlithiasis 1 CHD® 0 relatively benign
8 134177729 . G A stop TG goitre and hypothyroidism 1YRI 0
10 100370456 . C T splice HPSE2 urofacial syndrome 1 CEU 0
11 95235137 . G A stop MTMR2 Charcot-Marie-Tooth type 4B 1 CHD® 0

environmentally-

12 21221099 . G T splice SLCO1B1 pravastatin-induced myopathy 6 YRI 0 induced disorder
12 38990629 . C T stop LRRK2 Parkinson disease 1YRI 0
12 52105535 . C T stop AMHR2 persistent Mullerian duct syndrome 1LWK® 0
12 94905063 rs34457757 G A stop HAL histidinemia 2 YRI 0 relatively benign
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chr pos dbSNP ref alt type gene disease hets homs notes

12 94912841 . C T splice HAL histidinemia 1 CEU 0 relatively benign
12 122805039 . T C splice  ATP6VOA2 cutis laxa type 2 1JPT 0
15 29082006 rs3784589 C A stop TRPM1 stationary night blindness 8 Cf;:’ 4 0 relatively benign
15 87648098 . G A splice FANCI Fanconi anaemia 1CEU 0
16 1352535 . A AG ins GNPTG mucolipidosis IlI 1 CHB 0
17 36276396 . A G splice KRT12 Meesmann corneal dystrophy 1 CEU 0 relatively benign
18 27247215 . C T stop DSG4 disorders of hair structure 1 CEU 0 relatively benign

2 Approximate coordinates; ° Mutation found in exon capture pilot samples only
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Table S7. Allele-specific expression of premature stop codon variants, using RNA sequencing data from genotype-confirmed heterozygous individuals.
P value calculated using a one-tailed binomial test of deviation from a proportion of 0.5. All coordinates are relative to the GRCh36 reference build.

fraction fraction
chr pos ref alt dbSNP gene NMD of CDS reference non-ref non-ref P value population
disrupted reads reads reads
18 648001 G A . C18orf56 0 0.331 9 15 0.625 0.920 YRI
10 1055710 C T rs1044261 IDI2 0 0.367 4 6 0.600 0.830 CEU
11 5733060 A T rs4910844 OR52N4 0 0.466 3 2 0.400 0.500 YRI
12 8180728 G A CLEC4A 0 0.257 10 8 0.444 0.410 YRI
19 21505299 C T . ZNF429 0 0.902 1 4 0.800 0.970 YRI
4 38452499 G A rs62617795 TLR10 0 0.545 21 16 0.432 0.260 YRI
17 39609781 C T rs7224330 C17orf65 0 0.368 15 9 0.375 0.150 YRI
19 42002191 G A rs1227794 ZNF790 0 0.531 3 4 0.571 0.770 YRI
20 43944664 G A rs35972756 ZSWIM1 0 0.982 4 3 0.429 0.500 CEU
6 57025866 C T rs61748913 KIAA1586 0 0.742 6 6 0.500 0.610 YRI
19 57808623 C T rs17855778 ZNF83 0 0.349 19 10 0.345 0.068 YRI
16 80591311 G A rs11542462 SDR42E1 0 0.925 3 5 0.625 0.860 CEU
16 88638451 C T rs1048149  AC133919.7 0 0.867 28 26 0.481 0.450 YRI
3 1.21E+08 C T ADPRH 0 0.176 15 6 0.286 0.039 CEU
7 1.5E+08 C T . C70rf29 0 0.880 19 8 0.296 0.026 YRI
22 40666118 G A rs5758511 CENPM 0 0.960 56 20 0.263 2.2x10° CEU
7 64076102 G A rs1404453 ZNF117 0 0.115 4 8 0.667 0.930 YRI
15 72115043 C T . PML 0 0.120 9 10 0.526 0.680 YRI
17 77664739 G A rs11653662 CCcDC57 0 0.215 4 1 0.200 0.190 CEU
16 87248714 C T MVD 0 0.075 4 5 0.556 0.750 YRI
12 1.19E+08 G C coaQs 0 0.355 5 6 0.545 0.730 YRI
11 2278405 C T Cllorf21 1 0.614 3 3 0.500 0.660 YRI
19 4279755 G C STAP2 1 0.624 24 0 0.000 6.0x10°® CEU
19 17698952 C T MAP1S 1 0.446 5 3 0.375 0.360 YRI
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fraction fraction
reference non-ref

chr pos ref alt dbSNP gene NMD of CDS non-ref Pvalue population
disrupted reads reads reads
16 20699889 G A rs52817836 ACSM3 1 0.502 11 0 0.000 49x10* YRI
14 23749768 G A CHMP4A 1 0.327 31 0 0.000 4.7x10™ CEU
6 26077610 C T TRIM38 1 0.649 6 0 0.000 0.016 CEU
RP11-
1 45735570 G A 291119.1 1 0.425 6 1 0.143 0.063 YRI
3 51980678 G A . ABHD14B 1 0.922 8 1 0.111 0.020 YRI
12 52863985 G A rs2233919 SMUG1 1 0.991 2 4 0.667 0.890 YRI
19 54861076 C T BCL2L12 1 0.816 14 13 0.481 0.500 YRI
17 77955236 G A C170rf101 1 0.431 5 3 0.375 0.360 YRI
4 1.14E+08 G A ALPK1 1 0.522 5 1 0.167 0.110 YRI
11 1.14E+08 G C Cllorf71 1 0.871 20 12 0.375 0.110 YRI
1.3E+08 C T rs10009430 AC093826.1 1 0.280 11 3 0.214 0.029 YRI
1 1.57E+08 G A MNDA 1 0.126 17 0 0.000 7.6x10° YRI
1.69E+08 C T CCDC99 1 0.194 23 0 0.000 1.2x107 CEU
11 6548630 C T . DNHD1 1 0.066 3 3 0.500 0.660 YRI
22 25192041 G A rs3747129 HPS4 1 0.667 4 1 0.200 0.190 CEU
6 31232828 C T rs3130453 CCHCR1 1 0.910 66 39 0.371 0.005 YRI
21 43196789 C T rs4148974 NDUFV3 1 0.579 17 1 0.056 7.2x10” CEU
19 53429518 A T rs2043211 CARD8 1 0.977 113 124 0.523 0.780 CEU+YRI
15 66284651 G A rs11071990 CALML4 1 0.799 12 6 0.333 0.120 YRI
17 71589392 C T rs1043149 ZACN 1 0.320 146 131 0.473 0.200 CEU+YRI
6 74076059 G A rs16883571 KHDC1 1 0.859 3 2 0.400 0.500 CEU
16 88172869 C G . CPNE7 1 0.757 6 5 0.455 0.500 YRI
9 1.14E+08 C T rs3780513 SusD1 1 0.958 8 9 0.529 0.690 YRI
12 1.2E+08 G C . ANAPC5 1 0.956 25 25 0.500 0.560 CEU
1 2.35E+08 T A rs2273865 LGALSS8 1 0.410 93 3 0.031 2.2x10™ YRI
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Table S8. Gene Ontology (GO) categories significantly enriched or depleted in LoF-containing genes compared to the genome background.
Corrected P values were generated by Bonferroni correction for multiple tests. * Indicates whether category was still Bonferroni-corrected significant when

analysis was repeated excluding olfactory receptor genes.

number number significant
GO category LoF zenes genome- raw P corrected P direction without type category description
& wide genes ORs*
GO:0007606  84/669  414/13911 535x10%° 9.62x10%  enrichment no BP sensory per;‘?sqtt'j‘l’;'s°f chemical
GO:0005515  245/731  7501/14883 2.80x10"° 6.61x10™" depletion yes MF protein binding
GO:0004930  114/731 968/14883  1.10x10™ 2.59x10™  enrichment no MF G-protein coupled receptor activity
G0:0004888 144/731 1400/14883 2.19x 10  5.12x10% enrichment no MF transmembrane receptor activity
G0:0007600 99/669 779/13911 4.53x10"  8.14x10™  enrichment no BP sensory perception
GO:0043231  267/721  7683/15296 4.13x10™% 5.82x10%  depletion yes cc intracellular membrane-bounded
organelle
GO:0004872  163/731  1900/14883 5.34x10™" 1.24x10%  enrichment no MF receptor activity
GO:0007186  122/669  1307/13911 8.86x10™2 1.59x10%  enrichment no BP G-protein coupled receptor protein
signaling pathway
G0:0044249 131/669 4171/13911 3.05x10° 5.48x10° depletion no BP cellular biosynthetic process
G0:0016021 309/721 5047/15296 7.18x10° 1.01x10° enrichment no CcC integral to membrane
G0:0001653 48/731 389/14883 476 x 10°® 1.10x 107 enrichment no MF peptide receptor activity
GO:0008528  48/731  389/14883  4.76x10° 1.10x10°  enrichment no MF peptide receng[j;f:'dv'ty' G-protein
G0:0031224 314/721 5146/15296 8.14x10°® 1.13x10° enrichment no CC intrinsic to membrane
G0:0005886 215/721 3301/15296  4.75x 107 6.55x 107 enrichment no CcC plasma membrane
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number number significant
GO category LoF genes genome- raw P corrected P direction without type category description
g wide genes ORs*
G0:0071944 218/721 3365/15296 5.67x107  7.77x10° enrichment no cC cell periphery
GO:0007166  151/669  2070/13911 2.66x107 4.77x10*  enrichment no BP cellsurface receptor linked signaling
pathway

G0:0009891  5/669 568/13911 3.87x107  6.94x10°  depletion yes BP positive reg”'s:'oc’cr;ssf biosynthetic

G0:0016020 391/721 6962/15296 5.13x10° 6.98 x 10™ enrichment no CcC membrane

GO:0031328  5/669 560/13911  5.53x107 9.92x10*  depletion yes BP positive regulation of cellular
biosynthetic process

GO:0006366  11/669  780/13911  7.10x107 1.27x10%  depletion yes BP transcription from RNA polymerase Il

promoter

G0:0045941 3/669 468/13911 8.53x107 1.53x10° depletion yes BP positive regulation of transcription

G0:0044446 138/721 3986/15296  2.27x10°  3.06x10° depletion no cC intracellular organelle part

G0:0005654 12/721 702/15296 4.21x10° 5.64x10° depletion yes cC nucleoplasm

G0:0048856 67/669 2296/13911 3.51x10° 6.28x10° depletion no BP anatomical structure development

GO:0009893  11/669  737/13911 3.57x10° 6.39x10°  depletion no BP positive regL:)'f;'cc;::f metabolic

G0:0044444 154/721 4305/15296 5.23x10°  6.96x10° depletion no cC cytoplasmic part

G0:0044428 35/721 1342/15296  1.02x10™ 0.014 depletion no cC nuclear part

G0:0003676 111/731 3158/14883 6.01x 107 0.014 depletion no MF nucleic acid binding

GO:0051254  3/669 403/13911  1.06x10° 0.019 depletion no BP positive regulation of RNA metabolic

process

32



number number significant
GO category LoF genes genome- raw P corrected P direction without type category description
g wide genes ORs*
GO:0045893  3/669 402/13911  1.06x10° 0.019 depletion no BP positive regulation of transcription,
DNA-dependent

G0O:0010604  11/669  695/13911 1.19x10°  0.021 depletion no BP positive regulation of macromolecule
metabolic process

G0:0044451 5/721 419/15296 1.91x10" 0.025 depletion no cC nucleoplasm part

G0:0016563 3/731 334/14883 1.28x10™ 0.030 depletion no MF transcription activator activity

G0:0048522 38/669 1470/13911  1.65x10° 0.030 depletion no BP positive regulation of cellular process

G0:0003723 15/731 718/14883 2.14x10* 0.049 depletion no MF RNA binding
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Table S9. Gene Ontology (GO) categories significantly enriched or depleted in homozygous LoF-tolerant genes compared to the genome background.
Corrected P values were generated by Bonferroni correction for multiple tests.

LoF- -
GO category tEI‘:: r:‘a':;rge:es nur:v?:; zz:::ne raw P corrected P direction category description
G0:0007606 39/179 452/14496 3.54x10%" 6.61x10"® enrichment sensory perception of chemical stimulus
G0:0007600 40/179 840/14496 2.61x10™ 4.87x10™ enrichment sensory perception
G0:0007186 45/179 1361/14496 9.95x10%° 1.86x10° enrichment G-protein coupled receptor protein signaling pathway
G0:0044249 19/179 4314/14496 1.51x10° 2.82x10° depletion cellular biosynthetic process
G0:0007165 62/179 2851/14496 2.95x 10° 5.50x 10%  enrichment signal transduction
G0:0048856 9/179 2432/14496 3.84x10° 7.15x 107 depletion anatomical structure development
G0:0007166 50/179 2165/14496 8.06x10° 1.50x10% enrichment cell surface receptor linked signaling pathway
G0:0009653 1/179 1104/14496 2.20x10°  4.09x10% depletion anatomical structure morphogenesis
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Table S10. Evidence from frequency spectrum and haplotype-based tests for positive selection on high-confidence LoF variants.

All coordinates relative to the GRCh36 reference build. XP-EHH comparisons between pairs of populations are indicated in the last two columns (note
different pair combinations are shown for the three different population groups). Note that the same allele can be shown multiple times if it is significant in
multiple populations. For iHS and XP-EHH values, * indicates a value in the extreme 5% of the genome-wide distribution and ** indicates a value in the
extreme 1%. iHS and XP-EHH values are not available (NA) for frameshift indels. NS, not significant.

derived allele frequency peak
chr pos ref alt type gene spectrum |iHS| XP-EHH XP-EHH
CEU CHBIPT YRI comb. P
Variants with significant evidence for selection in CEU CEU-YRI CEU-CHBIJPT

1 169379114 C T nonsense FMOG6P 0.51 0.61 0.81 NS 3.258** 0.909 1.481

5 131352149 C CTG frameshift ACSL6 0.77 0.44 0.00 6.20x10™ NA NA NA

9 124431062 G A nonsense OR1B1 0.31 0.51 0.03 2.33x10% 0.499 -0.949 0.305
9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 2.33x10% NA NA NA
11 4747449 CG C frameshift OR51F1 0.17 0.00 0.54 6.43x107 NA NA NA
11 5400712 T nonsense OR51Q1 0.36 0.61 0.25 3.25x10™ 1.679 0.340 0.580
11 60021578 T nonsense MS4A12 0.46 0.43 0.57 4.66 x10° 0.989 -0.618 1.279
11 123561942 G nonsense OR10D3P 0.45 0.60 0.40 NS 1.895* 0.342 0.803
16 79799649 GTT G frameshift PKD1L2 0.48 0.80 0.09 2.27x10° NA NA NA

Variants with significant evidence for selection in CHBJPT CHBJPT-YRI CEU-CHBIJPT

9 124431062 A nonsense OR1B1 0.31 0.51 0.03 6.83x10° 0.430 -1.104 NA

9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 6.83 x 10° NA NA NA

9 138754316 nonsense LCN10 0.13 0.21 0.14 NS NA 2.242* -2.624
11 4747449 CG C frameshift OR51F1 0.17 0.00 0.54 1.32x10% NA NA NA
16 79799649 GTT frameshift PKD1L2 0.48 0.80 0.09 1.22x10% NA NA NA
19 17660246 TG frameshift UNC13A 0.00 0.00 0.53 6.28 x 10° NA NA NA
19 56787865 T A nonsense AC018755.8 0.08 0.63 0.14 2.52x10° NA -0.686 -0.070
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derived allele frequency

peak

chr pos ref alt type gene spectrum |iHS| XP-EHH XP-EHH
CEU  CHBIPFT  YRI comb. P
Variants with significant evidence for selection in YRI CEU-YRI CHBIJPT-YRI

1 156816116 C T nonsense OR10X1 0.47 0.58 0.64 4.54x10° 1.080 -0.325 -0.308

1 169379114 C T nonsense FMO6P 0.51 0.61 0.81 NS 2.104* 0.909 -1.191

3 185236988 G C splice HTR3D 0.46 0.56 0.79 NS NA -1.947%* -1.467

5 131352149 C CTG frameshift ACSL6 0.77 0.44 0.00 6.20x 10™ NA NA NA

6 31232828 C T nonsense CCHCR1 0.44 0.36 0.52 3.38x10° 0.275 -0.577 -0.574
9 124431591 C CA frameshift OR1B1 0.53 0.43 0.40 1.59x 10°® NA NA NA
11 48223312 C G nonsense OR4X2 0.12 0.16 0.41 NS 2.089* -0.336 -0.681
11 55096228 C T nonsense OR4C16 0.29 0.34 0.09 NS 0.573 -1.386 -1.990*
11 55162598 C G nonsense OR4P4 0.09 0.37 0.14 NS 0.014 -1.612%* -1.975%*
19 40410860 C T nonsense FAM1878B 0.28 0.18 0.27 NS 0.451 -1.805* -1.855*
22 15849049 C A nonsense GAB4 0.29 0.41 0.19 NS 0.427 -3.021** -3.828%*
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2,809 candidate LoF 142 candidate LoF

SNVs/indels large deletions
likely mapping/ likely functional variant unlikely to cause validation and
sequencing errors: annotation errors: complete LoF: annotation filters:
702 removed 759 removed 313 removed 26 removed

| | | |

* monomorphic in * gene model error » found in last 5% of * multiple validation
genotyping data (manual coding sequence steps previously

* overlap with reannotation) » found close to start of applied by 1000G
segmental duplication * LoF allele is ancestral CDS with nearby * comparison of

* SNV call close to * stop SNV linked to downstream ATG NA12878 deletions
known indel other SNV in same * effect mimics a known with array CGH, read

* outlier in tail bias or codon functional transcript depth, read pair data
ref/non-ref quality * splice SNV in non- * splice variant creates * manual reannotation
distributions canonical splice site alternative splice site of deleted genes

* likely reference error

|
1,153 (41%) surviving LoF 116 surviving LoF
SNVs/indels large deletions

Figure S1. Filtering process for candidate LoF SNVs, indels and large deletions. Details of this process
are described in the supplementary text. Note that candidate LoF large deletions had already been
subjected to extensive informatic and experimental validation as part of the 1000 Genomes Project pilot

analyses.
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Figure S2. Accurate functional interpretation requires integrating multiple variants on the same
haplotype. A. A homozygous SNV annotated as a nonsense (GAG>TAG) polymorphism in the DNAH11
gene is in fact part of a two-base substitution resulting in a missense change (GAG>TTG; Glu>Leu). B.
Two apparent heterozygous frameshift coding deletions (1 bp and 17 bp long) are in fact present on the
same haplotype, with the combined effect being an in-frame deletion of six amino acids. Both
screenshots are taken from analysis of sequence data from NA12878 using Integrative Genomics Viewer;
in each case the top panel shows 454 reads, while the bottom panel shows reads from the HiSeq 2000.
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Figure S3. Putative frameshift indels close to or spanning exon splice sites can be rescued by
alternative splice sites. A 4 bp deletion spanning a splice site in the CHIT1 gene creates an alternative
splice site that maintains the reading frame and results in a synonymous (Leu>Leu) substitution. Top
line: reference allele, with exonic bases in capitals and alternating codons indicated in dark and light
blue. Deleted region is indicated with a horizontal line. Final effect of the deletion (including the
restored reading frame) is shown on the bottom line.
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Figure S4. Systematic sequencing error at the site of a reported disease-causing mutation in the BBS7
gene. An A>G splice mutation at this location has previously been reported as disease-causing in an
Italian family (71). The 1000 Genomes low-coverage pilot called a A>C substitution at this location in 30
CHB+JPT individuals, which failed to validate in two separate genotyping assays and also revealed an
excess of low-quality base calls for the alternative allele (P = 2.7 x 10™). Figure shows an IGV image of
reads spanning this location in CHB (top), JPT (middle) and CEU (bottom), which supports widespread
systematic error at this site in Illumina sequencing data.
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Figure S5. Plots showing evidence for the LoF deletions identified in NA12878. Purple dashed vertical
lines indicate the predicted breakpoints of the deletion. Grey and red lines indicate mapped reads from
the NA12878 HiSeq data, with the position on the Y axis indicating mapping quality; red lines indicate
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mate pairs mapped with an anomalously large insert size, suggestive of a mate pair spanning a deletion.
Blue lines towards the bottom of each plot show read depth in 500 bp windows, with the depth of reads
with a mapping quality of 0 indicated in light blue, and non-zero quality mapped reads in dark blue. The
aqua line across the middle of the plot shows the average intensity of the signal for high-resolution array
CGH (42 million probes) analysis of NA12878 performed by Conrad et al. (2010). (Note that as this
experiment involved comparative array hybridization with a reference sample, it will not provide
support for deletions that are also present in the reference.) Green dashed line shows average GC
content (in 200 bp windows) across the region.
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