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When it comes to modeling, this book is not just another pretty face! It guides you gently through the complexities of
UML, helps you adjust to the UML 2 standard, shows you how to extract key information from UML models, and more.
Before you know it, you'll be communicating and developing systems like never before.
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Introduction

If, like us, you're a software developer or computer professional of some sort, you probably have to deal with
the stereotype that developers can’t express themselves among normal humans about normal things.
Unfortunately, this book may not help you with that particular challenge, but it can help improve your ability to
communicate with other developers about technical matters. uML (Unified Modeling Language) is a graphical
language that is suit-able to express software or system requirements, architecture, and design. You can use
UML to communicate with other developers, your clients, and increasingly, with automated tools that generate
parts of your system.

If you're already familiar with UML, you know how powerful and expressive it is — but don’t be surprised if
you're impressed all over again by the new features of UML 2. Perhaps you found some parts of UML too
complicated or the apparent benefit too obscure. Well, the UML gurus have revamped UML in many areas —
making easier to express yourself exactly and clearly — and they have also added fresh capabilities for the
latest software- and system-development problems that you’re facing.

But because your problems are complex — and your solutions are some-times even more complex — UML is
not always simple to learn. It's a large and multifaceted language, capable of helping in all areas of
development, from analysis to test as well as from database to embedded-real-time. To some, it's a
bewildering array of diagrams and symbols. Sometimes it might appear to you that the UML gurus purposely
make it too complicated (and with UML 2, even more so) for the rest of us to understand.

Bottom line: You need a practical, experience-based guide to the ins and outs of this new language. Let this
book be that guide. We boiled down our experiences with UML (in many environments) and our skills as
educators to focus on key UML capabilities that you need first to be more productive.

So, with straightforward English and concrete examples, we give you a leg up on expressing yourself and
being more creative on the job. (Hey, it could help you get a raise — just don’t expect us to help you geta
date.)

How to Use This Book

There’s a right way and a wrong way to use this book. Luckily (like its subject, UML 2), this book is
remarkably versatile. If you're a traditionalist, you can read it from cover to cover (although you'll probably stop
at the index). That's a great approach if you're really new to UML. If you're familiar with earlier versions of
UML, you can skip around looking for the new UML 2 stuff. You may miss our (ahem) great insights into the
rest of UML, but you know why you bought the book — do what works. Using any of these techniques will get
you familiar with your book so that you can count on it to help unstick you if you hit a snag with UML.

After you make friends with your book, you'll probably find yourself taking advantage of its just-in-time
features. With just a bit of page flipping, you'll be at a section that's full of examples, tips, techniques, and
warnings that will help you with your UML modeling.

There are other ways to use this book . . . and some of them are wrong ways. It's not going to work that well
as a doorstop (wrong size), and it probably won’t impress your date (unless you're dating a developer who's
new to UML). However, it'll look great on your bookshelf — silently conveying to your boss your desire to
improve — but if you never open it, you won't get the full benefit.




Some Presumptuous Assumptions

If you're reading this, we can safely assume that not only have you already opened the book, you're probably
also a developer of software, systems, or databases, and you want to read or write UML 2 diagrams. Perhaps
you're a manager or business analyst in the same boat.

We won't assume that you know any particular computer language, although knowing one will certainly help.

For the most part, we assume that you fall into one of two major categories: Either you're a modeler (with a
yen to communicate requirements or how you think the world works), or you're a developer (looking to explore
alternative designs or communicate your results). Either way, this book is for you.

We assume that you're capable of using a tool to draw UML diagrams — we don’t care which one. If the only
tool that you have your hands on is in your hands (as opposed to on-screen), you won't be at a disadvantage
when you use this book (although your diagrams won't be quite as tidy if you're drawing with a stick on wet
sand). You may even be better off doing some diagrams by hand; electronic UML tools are often expensive
and may not yet be up to_date with all the neat UML 2 features that we cover. If you're itching for a high-tech
UML tool, take a look at where we list of some of the more useful examples (in all price

categories).




How This Book Is Organized

Here’s your first practical hint about using UML: Put about five to nine major elements on a diagram — no
more. Studies have shown (we’ve always wondered who does this type of study) that most people have a hard
time comprehending more than about nine elements at a time. Likewise, when designing this book, we
decided to follow our own advice and to divide the book into just seven parts.

Remember that you don't have to read this book in order. Just choose the parts and chapters that you need at
the time.

Eart It UML and System Development

If you want to know what UML is (and why knowing it is useful), this is the place to go; it covers the basics of
UML and how it can be used. You'll also find some common principles for communicating or developing
systems with UML. These principles guided the UML gurus when they created UML; the same principles can
guide you to effective use of it. Ways to apply these principles crop up throughout the book.

Ert lIl: The Basics of Object MOQeIind

When you model by using UML, the basics are the things (or objects) that you draw and the relationships
among them. You'll find information on classes, objects, associations, inheritances, and generalizations. No
matter what type of development you do, understanding this part will probably be essential.

Part Ill: The Basics of Use-Case Mogeling|

Use cases (detailed real-world examples) allow you to understand and communicate the purpose of a system
or its components. They are great for organizing your thoughts — and your system — when you want to get a
value-added product out the door.

Part IV: The Basics of Functional Mogeling|

When the objects in your system get busy and you want to explain the details of their complex behavior,
you'll need a technique to do so. UML supplies several to choose from — and this part explains and compares
them. You'll see several different types of interaction diagrams (such as sequence, communication, and
activity) in action, and discover how to combine them to create solutions, patterns, and frameworks. If you're
experienced with UML, you'll find lots of new UML 2 stuff in this part.

Ert V: Dynamic Mogelind

Your objects are more that just clumps of data stuck together with a few functions. The objects that you
develop are more like living things; they remember the past and live their lives by changing their states in
response to incoming events. In this part, you can make sure that they get a life — and that you know how to
explain it. Come to this part for state charts.

Ert VI: Modeling the System?s Architecttila

Whether you're an architect, programmer, or construction worker, you build complex architectures. Computer
systems and software applications distribute themselves across different hardware platforms — and spread
throughout the Internet. This part outlines steps that you can use to design your systems for their mission by
using system plans, packaging, and subsystems.




Part VII: The Part of Ten§|

Everyone enjoys making lists (and daydreaming that they’ll be read aloud, backward, on late-night talk shows).
Here are our top-ten lists of useful tips, tools, Web sites, and diagrams. They're likely to be your top-tens, too.

[« rreviovs [ exi )



Icons Used in This Book

Appropriately for a book about graphical communication (even if it is software-oriented), there are signposts
throughout to help you find your way.

This icon identifies the really new stuff in UML 2. Not every modified feature will get this flag, but it does
alert those who are familiar with UML 1.x that something’s really different here.

Here’s a simpler way of doing something that can make it easier than the typical approach. Think of it as
a shortcut to better UML.

RENCENET UML can be a maze — and it can be amazing. These are gentle reminders to reinforce important
points.

If you see this icon but ignore it, you'll be in good company but a bad mood.

LECQIICERSI] When you see this icon, you know that we thought the associated material really interesting
— but every time we tell people enthusiastically about it, they fall asleep. Skip these sections if you want.
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Where to Go from Here

Okay, you're now ready to explore the world of UML 2 modeling. Relax. You've got the tools that you need in
your head and your hands (one of them is this book), and it's safe to explore.

So, go ahead and express yourself with the power of UML 2.

T



Part I: UML and System Development

Chapter List

:What's UML About, Alfie?

Following Best Practices

Part Overview

The 5th Wave By Rich Tennant

E.iaﬂ*|5ﬁﬁﬁrn—\
—
L] B
]
--. -1
- =
=0 SRammm p—
[ e =
R =
- - —" = - —_— -_—1
— [ _— . "= = = L - =

“No, 1t's not a pie
chip that got ecan

4
4
g o

@
E

In this part . ..

Building systems or software isn’t that tough if you can communicate with your clients, co-workers, managers,
and tools. Unfortunately, as your problems get harder and more complex, the risks that emerge from
miscommunication become greater — and more severe when they do crop up.

Fortunately, there’s a straightforward, visual language that you can use that will help promote more precise
and more efficient communication about the nature of your system in all its aspects — software, requirements,


file:///C:/DOCUME~1/ADMINI~1/IMPOST~1/Temp/Hungry%20Minds%20-%20UML%202%20for%20Dummies%20-%202003%20!%20-%20(By%20Laxxuss).chm/6080final/images/p01%5F0%2Ejpg

architectures, designs, design patterns, and implementations. This language is UML, the Unified Modeling
Language. The newest version, UML 2, has become more powerful and more useful than ever.

Starting here, we cover the basics of UML. You find out how it may fit your situation, how and when you can
use it, and what it's good for. We give you just as much background in history, terminology, and basic
principles as you'll need to take advantage of UML'’s highly productive features.
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Chapter 1. What's UML About, Alfie?

Overview
In This Chapter
B yUnderstanding the basics of UML
B Exploring the whys and whens of UML diagrams

So you've been hearing a lot about UML, and your friends and colleagues are spending some of their time
drawing pictures. And maybe you're ready to start using UML but you want to know what it's all about first.
Well, it's about a lot of things, such as better communication, higher productivity, and also about drawing
pretty pictures. This chapter introduces you to the basics of UML and how it can help you.

[« erevious s o



Introducing UML

The first thing you need to know is what the initials UML stand for. Don’t laugh—Iots of people get it wrong,
and nothing brands you as a neophyte faster. It's not the Universal Modeling Language, as it doesn’t intend to
model everything (for example, it's not very good for modeling the stock market; otherwise we’d be rich by
now). It's also not the Unified Marxist-Leninists, a Nepalese Political party (though we hope you'll never get
that confused). It is the University of Massachusetts Lowell—but not in this context. UML really stands for the
Unified Modeling Language.

Well, maybe that’s not the most important thing to know. Probably just as important is that UML is a
standardized modeling language consisting of an integrated set of diagrams, developed to help system and
software developers accomplish the following tasks:

B Specification

B visualization

B Architecture design

B Construction

B Simulation and Testing
B Documentation

UML was originally developed with the idea of promoting communication and productivity among the
developers of object-oriented systems, but the readily apparent power of UML has caused it to make inroads
into every type of system and software development.
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Appreciating the Power of UML

UML satisfies an important need in software and system development. Modeling—especially modeling in a
way that’s easily understood—allows the developer to concentrate on the big picture. It helps you see and
solve the most important problems now, by preventing you from getting distracted by swarms of details that
are better to suppress until later. When you model, you construct an abstraction of an existing real-world
system (or of the system you're envisioning), that allows you to ask questions of the model and get good
answers—all this without the costs of developing the system first.

After you're happy with your work, you can use your models to communicate with others. You may use your
models to request constructive criticism and thus improve your work, to teach others, to direct team members’
work, or to garner praise and acclamation for your great ideas and pictures. Properly constructed diagrams
and models are efficient communication techniques that don’t suffer the ambiguity of spoken English, and
don’t overpower the viewer with overwhelming details.

Abstracting out the essential truth

The technique of making a model of your ideas or the world is a use of abstraction. For example, a map is a
model of the world—it is not the world in miniature. It's a conventional abstraction that takes a bit of training or
practice to recognize how it tracks reality, but you can use this abstraction easily. Similarly, each UML diagram
you draw has a relationship to your reality (or your intended reality), and that relationship between model and
reality is learned and conventional. And the UML abstractions were developed as conventions to be learned
and used easily.

If you think of UML as a map of the world you see—or of a possible world you want—you’re not far off. A
closer analogy might be that of set of blueprints that show enough details of a building (in a standardized
representation with lots of specialized symbols and conventions) to convey a clear idea of what the building is
supposed to be.

The abstractions of models and diagrams are also useful because they suppress or expose detail as needed.
This application of information hiding allows you to focus on the areas you need—and hide the areas you
don't. For example, you don’t want to show trees and cars and people on your map, because such a map
would be cumbersome and not very useful. You have to suppress some detail to use it.

You'll find the word elide often in texts on UML—every field has its own jargon. Rumor has it
that elide is a favorite word of Grady Booch, one of the three methodologists responsible for the original
development of UML. Elide literally means to omit, slur over, strike out, or eliminate. UML uses it to describe
the ability of modelers (or their tools) to suppress or hide known information from a diagram to accomplish a
goal (such as simplicity or repurposing).

tells you more about using these concepts of information hiding and abstraction during development.

Selecting a point of view

UML modeling also supports multiple views of the same system. Just as you can have a political map, a relief
map, a road map, and a utility map of the same area to use for different purposes—or different types of
architectural diagrams and blueprints to emphasize different aspects of what you’re building—you can have
many different types of UML diagrams, each of which is a different view that shows different aspects of your
system.

UML also allows you to construct a diagram for a specialized view by limiting the diagram elements for a
particular purpose at a particular time. For example, you can develop a class diagram—the elements of which
are relevant things and their relationships to one another—to capture the analysis of the problem that you
have to solve, to capture the design of your solution, or to capture the details of your implementation.




Depending on your purpose, the relevant things chosen to be diagram elements would vary. During analysis,
the elements that you include would be logical concepts from the problem and real world; during design, they
would include elements of the design and architectural solution; and during implementation, they would
primarily be software classes.

A use case diagram normally concentrates on showing the purposes of the system (use _ca and the users
(actors). We call a use case diagram that has its individual use cases elided (hidden) a
because it shows the system in its environment (context) of surrounding systems and actors.




Choosing the Appropriate UML Diagram

UML has many diagrams—more, in fact, than you'll probably need to know. There are at least 13 official
diagrams (actually the sum varies every time we count it) and several semiofficial diagrams. Confusion can
emerge because UML usually allows you to place elements from one diagram on another if the situation
warrants. And the same diagram form, when used for a different purpose, could be considered a different
diagram.

In , we've constructed a UML class diagram that sums up all the major types of UML diagrams
(along with their relationships), using the princi eralization, which entails organizing items by
similarities to keep the diagram compact. (See Chapter 4 for more information on generalization.)
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Figure 1-1: A class diagram of UML diagrams.

In , the triangular arrows point from one diagram type to a more general (or more abstract) diagram
type. The lower diagram type is a kind-of or sort-of the higher diagram type. Thus a Class Diagram is a kind of
Structural Diagram, which is a kind of Diagram. The diagram also uses a dashed arrow to indicate a
dependency—some diagrams reuse the features of others and depend on their definition. For example, the
Diagram for much of its notation. To get

Interaction Overview Diagram depends on (or is derived from) the
a line on how you might use UML diagrams, check out the summary in

Slicing and dicing UML diagrams

There are many_ways of grganizing the UML diagrams to help you understand how you may best use them.
The diagram in uses the technique of organization by generalization (moving up a hierarchy of

bstraction) and specialization (moving down the same hier: in the direction of concrete detail). (See
Chapter g for more on generalization and specialization.) InEigure 1-1, each diagram is a subtype of (or
special kind of) the diagram it points to. So—moving in the direction of increasing abstraction—you can
consider a communication diagram from two distinct angles:

B |t's a type of interaction diagram, which is a type of behavioral diagram, which is a type of
diagram.

B |t's derived from a composite structure diagram, which is a kind of structural diagram, which
is a type of diagram.
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After you get some practice at creating and shaping UML diagrams, it's almost second nature to determine
which of these perspectives best fits your purpose.

This general arrangement of diagrams that we used in our is essentially the same as the UML
standard uses to explain and catalog UML diagrams—separating the diagrams into structural diagrams and

behavioral diagran his is a useful broad categorization of the diagrams, and is reflected in the
categorizations in :

B siructural diagrams: You use structural diagrams to show the building blocks of your
system—features that don’t change with time. These diagrams answer the question, What's
there?

B Behavioral diagrams: You use behavioral diagrams to show how your system responds to
requests or otherwise evolves over time.

B |nteraction diagrams: An interaction diagram is actually a type of behavioral diagram. You
use interaction diagrams to depict the exchange of messages within a collaboration (a group
of cooperating objects) en route to accomplishing its goal.



Table 1-1: UML 2 Diagrams and Some of Their Uses

Category Type of Purpose Where to
Diagram Find More
Information
Structural Class diagram Use to show real-world
diagram entities, elements of analysis
and design, or
implementation classes and
their relationships
Structural Object diagram Use to show a specific or
diagram illustrative example of objects
and their links. Often used to
indicate the conditions for an
event, such as a test or an
operation call
Structural Composite Use to show the how
diagram structure something is made.
diagram Especially useful in complex
structures-of-structures or
component-based design
Structural Deployment Use to show the run-time
diagram diagram architecture of the system,
the hardware platforms,
software artifacts (deliverable
or running software items),
and software environments
(like operating systems and
virtual machines)
Structural Component Use to show organization and
diagram diagram relationships among the
system deliverables
Structural Package Use to organize model
diagram diagram elements and show
dependencies among them
Behavioral Activity diagram Use to the show data flow
diagram and/ or the control flow of a
behavior Captures workflow
among cooperating objects
Behavioral Use case Use to show the services that
diagram diagram actors can request from a
system
Behavioral State machine Use to show the life cycle of a
diagram diagram / particular object, or the
Protocol state sequences an object goes
machine through or that an interface
diagram must support
Interaction Overview Use to show many different
diagram diagram inter- action scenarios




Category Type of Purpose Where to
Diagram Find More
Information

the same collaboration (a set
of elements working together
to accomplish a goal)

Interaction Sequence Use to focus on message

diagram diagram exchange between a group of

objects and the order of the

messages
Interaction Communication Use to focus on the
diagram diagram messages between a group

of objects and the underlying
relationship of the objects

Interaction Timing diagram Use to show changes and Rarely used,
diagram their relationship to clock so we refer
times in real-time or you to the
embedded systems work UML
specification

Because UML is very flexible, you're likely to see various other ways of categorizing the diagrams. The
following three categories are popular:

B siatic diagrams: These show the static features of the system. This category is similar to
that of structural diagrams.

B Dynamic diagrams: These show how your system evolves over time. This category covers
the UML state-machine diagrams and timing diagrams.

B Functional diagrams: These show the details of behaviors and algorithms—how your
system accomplishes the behaviors requested of it. This category includes use-case,
interaction, and activity diagrams.

You can employ UML diagrams to show different information at different times or for different purposes. There
are many modeling frameworks, such as Zachman or DODAF (Department of Defense’s Architecture
Framework) that help system developers organize and communicate different aspects of their system. A
simple framework for organizing your ideas that is widely useful is the following approach to answering the
standard questions about the system:

B \Who uses the system? Show the actors (the users of the system) on their use case
diagrams (showing the purposes of the system).

B \What is the system made of? Draw class diagrams to show the logical structure and
component diagrams to show the physical structure.

B \Where are the components located in the system? Indicate your plans for where your
components will live and run on your deployment diagrams.

B \When do important events happen in the system? Show what causes your objects to react
and do their work with state diagrams and interaction diagrams.

Why is this system doing the things it does? Identify the goals of the users of your system



and capture them in use cases, the UML construct just for this purpose.

B How is this system going to work? Show the parts on composite structure diagrams and use
communication diagrams to show the interactions at a level sufficient for detailed design and
implementation.

Automating with Model-Driven Architecture (MDA)

Model-driven architecture (MDA) is new way to develop highly automated systems. As UML tools become
more powerful, they make automation a real possibility much earlier in the process of generating a system.
The roles of designer and implementer start to converge. UML provides you with the keys to steer your
systems and software development toward new horizons utilizing model-driven architectures.

In the past, after the designer decides what the system would look like—trading off the design approach
gualities such as performance, reliability, stability, user-friendliness—the designer would hand the models off
to the developer to implement. Much of that implementation is difficult, and often repetitious. As one part of an
MDA approach to a project, UML articulates the designer’s choices in a way that can be directly input into
system generation. The mechanical application of infrastructure, database, user interface, and middleware
interfaces (such as COM, CORBA, .NET) can now be automated.

Because UML 2 works for high-level generalization or for showing brass-tacks detail, you can use it to help
generate high-quality, nearly complete implementations (code, database, user-interface, and so on) from the
models.

In MDA, the Development Team is responsible for analysis, requirements, architecture, and design, producing
several models leading up to a complete, but Platform-Independent Model (PIM). Then UML and MDA tools
can generate a Platform-Specific Model (PSM) based on the architecture chosen and (after some tweaking)
produce the complete application.

This approach promises to free the development team from specific middleware or platform vendors. When a
new architecture paradigm appears—and it will—the team can adopt it without going back to Square One for a
complete redevelopment effort. The combination of UML and MDA also promises to free development teams
from much of the coding work. Although the required UML models are much more specific than most
organizations are used to, their use will change the way developers make systems.

With the advent of MDA and its allied technologies, UML becomes a sort of executable blueprint—the
descriptions, instructions, and the code for your system in one package. Remember it all begins with UML.




Identifying Who Needs UML

Broadly speaking, UML users fall into three broad categories:

B Modelers: Modelers try to describe the world as they see it—either the world as is, whether
it's a system, a domain, an application, or a world they imagine to come. If you want to
document a particular aspect of some system, then you're acting as a modeler—and UML is
for you.

B Designers: Designers try to explore possible solutions, to compare, to trade off different
aspects, or to communicate approaches to garner (constructive) criticism. If you want to
investigate a possible tactic or solution, then you're acting as a designer—and UML is for
you.

B mplementers: Implementers construct solutions using UML as part of (or as the entire)
implementation approach. Many UML tools can now generate definitions for classes or
databases, as well as application code, user interfaces, or middleware calls. If you're
attempting to get your tool to understand your definitions, then you're an Implementer—and
(you guessed it) UML is for you.

To understand how you can benefit from UML, it will help to know how and why it was developed. It's based
on successful and working techniques proposed by groups of Software Technology Vendors before the Object
Management Group, and voted upon by the members.




Dispelling Misconceptions about UML

Many developers have several misconceptions about UML. Perhaps you do too, but after reading this book,
you'll have the misconceptions dispelled:

B UML is not proprietary. Perhaps UML was originally conceived by Rational Software, but now
it's owned by OMG, and is open to all. Many companies and individuals worked hard to
produce UML 2. Good and useful information on UML is available from many sources
(especially this book).

B UML is not a process or method. UML encourages the use of modern object-oriented
techniques and iterative life cycles. It is compatible with both predictive and agile control
approaches. However, despite the similarity of names, there is no requirement to use any
particular “Unified Process”—and (depending on your needs) you may find such stuff
inappropriate anyway. Most organizations need extensive tailoring of existing methods
before they can produce suitable approaches for their culture and problems.

B UML is not difficult. UML is big, but you don’t need to use or understand it all. You are able to
select the appropriate diagrams for you needs and the level of detail based on you target
audience. You'll need some training and this book (of course), but UML is easy to use in
practice.

O umLis not time-consuming. Properly used, UML cuts total development
time and expenses as it decreases communication costs and increases
understanding, productivity, and quality.

The evolution of UML

In the B.U. days (that's Before UML), all was chaos, because object-oriented developers did not
understand each other’s speech. There were over 50 different object-oriented graphical notations
available (I actually counted), some of them even useful, some even had tool support. This confusion,
interfered with adoption of object-oriented technigues, as companies and individuals were reluctant to
invest in training or tools in such a confusing field.

Still the competition of ideas and symbols did cause things to improve. Some techniques were clearly
more suited to the types of software problems that people were having. Methodologists started to
adopt their competitors’ useful notation. Eventually some market leaders stood out.

In October 1994, Jim Rumbaugh of the Object Modeling Technique (OMT) and Grady Booch of the
Booch Method started to work together on unifying their approach. Within a year, lvar Jacobson (of the
Objectory Method), joined the team. Together, these three leading methodologists joined forces at
Rational Software, became known as the Three Amigos, and were the leading forces behind the
original UML. Jim Rumbaugh was the contributor behind much of the analysis power of UML and most
of its notational form. Grady Booch was the force behind the design detail capabilities of UML. Ivar
Jacobson led the effort to make UML suitable for business modeling and tying system development to
use cases.

The Three Amigos were faced with the enormous job of bringing order and consensus to the Babel of
notation and needed input from the other leading methodologist about what works and what doesn't.
They enlisted the help of the Object Management Group (OMG), a consortium of over 800 companies
dedicated to developing vendor-independent specifications for the software industry. OMG opened the
development of UML to competitive proposals. After much debate, politics, and bargaining, a
consensus on a set of notation selected from the best of the working notation used successfully in the
field, was adopted by OMG in November 1997.
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Chapter 2: Following Best Practices

Overview

In This Chapter
B Getting to know the object-oriented principles behind UML
B Avoiding vendor hype
B |nterpreting the buzzwords

Ever notice how buzzwords seem to sprout like mushrooms whenever experts get their hands on something
really useful? The object-oriented ideas that form the foundation of UML started in the 1970s and UML itself
got going in 1994, so the experts had plenty of time to come up with complex terms—Ilike abstraction,
encapsulation, and aggregation—to confuse the rest of the world. The experts think you already know these
terms. Luckily, the meaning behind these words is generally quite simple.

Various vendors have developed a host of rival tools to help you with UML. The experts also went into
overdrive coming up with competing methodologies (steps for using UML). These tools and the methodologies
are supposed to make you and me more productive. Of course the vendors and the experts assume you
already know how to use their tools, understand the meaning of UML diagrams, and know all the buzzwords
they’ve come up with in their marketing brochures. In this chapter we cover the terms and other details about
UML that everyone assumes you already know.




Understanding UML Terminology and Concepts

Over the years (if you're like most of us) you've learned the wisdom of such phrases as “say what you mean,
mean what you say” and “get to the point.” You've probably found that your best communication with other
people happens when you say what needs to be said, no more and no less. The experts use their own special
words to describe this common-sense principle; (which uses an air-filter air exchange unit as an
example) interprets what they mean.




Table 2-1: Keep It Simple: Word Interpretations

Expert's Word

What They Really Mean

Example

Object

Refer to something useful that
has identity, structure, and
behavior.

The air-filter unit sitting in my
living room is unique from all
other air filters. It's about 3
feet tall with an
18-inch-square base. The unit
behaves nicely by cleaning
the air for me.

Class

A family of objects with similar
structure and behavior

You refer to my air-filter unit
and the thousands of others
manufactured just like it as the
HEPA air-filter unit. All these
similar units form a class of
air-filter unit.

Abstraction

Describe the essence of an
object for a purpose.

A circuit diagram of an
air-filter unit describes the
essence of the electrical
wiring so you don'’t electrocute
yourself when you work on it.

Encapsulation

Just tell me what | need to
know to use an object.

“You turn on the air-filter unit
with the external three-speed
knob, and you can't get inside
the unit to change the
possible speeds of the motor.”
This statement encapsulates
all the details of how the
electricity flows to the motor
thus turning on the motor that
moves the fan, which moves
the air through the filters

Information hiding

Keep it simple by hiding the
details.

Most people don’t need to
know the three-speed switch’s
part number, or the fact that it
takes 120 volts AC power at
15 amperes

Aggregation
21

Just tell me about the whole
object or tell me about the
parts of the whole object

The air-filter unit (as a whole)
pulls in air and expels filtered,
cleaned air. The air-filter unit
is composed of two filters, a
fan, a fan motor, a
three-speed switch, and some
wire

Expert's Word

What They Really Mean

Example

Generalization

Just tell me what is common
among these objects

Every air-filter unit has a filter
to clean the air and a fan to
move the air.




Expert's Word What They Really Mean Example

Specialization Just tell me what is different The HEP43x air-filter unit is
about this particular object. unique because it has a
motion sensor to speed up the
fan when extra dust is flying

around.
Inheritance Don't forget that specialized Since the HEP43x is an air-
objects inherit the common filter unit, it inherits the
features of generic objects. features of all air filter units—a

filter and a fan

Abstracting away irrelevance

Ignoring unimportant details is a fundamental part of your life. Most of the time you are not even aware how
much you take no notice of your surroundings. If you had to pay attention to everything around you all the
time, you would have no time to do anything else. When you communicate your ideas about a system or the
software you are developing, you ignore the trivial and focus on the important. The experts have a fancy
word—abstraction—for this process of distilling the “important” information (needed for some clear purpose)
out of the mass of surrounding details.

ifferent degrees of abstraction at different times. For example, the picture of the air-filter unit in
igure 2-1is an abstraction; this image is not the real air-filter unit. The picture describes the look of the unit
without details such as color, physical dimensions, and actual size.

Sometimes you need different abstractions of the same thing. For example, the electrician may need to see a
wiring diagram like the one in . This diagram “abstracts away” everything about the air-filter unit

except its electric circuitry—and even that isn't what the actual wiring looks like. The symbols on the wiring
diagram have special meanings; they indicate components or functions that would otherwise clutter up the
diagram with distracting details. The symbol that looks like an upside-down triangle with three lines, for
example, shows that the circuit is grounded at this point—exactly how that's done isn’t important right now,
and isn’t shown.

UML diagrams have symbols that act as a shorthand notation. These symbols allow you to show
what’s important by using the principle of abstraction, just as a circuit diagram shows the electricians what's
important to them.
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Figure 2-1: Picture representation of an air-filter unit.

n you use UML to make models—in particular, objects and classes, which are discussed in detail in

hapter 3—they make good abstractions of the physical world. A good model contains only the important
aspects of an object, such as its identity, structure, behavior, and association with other objects. (Abstracting
your real world objects—paring them down to the essentials—is also a great help when you map real-world
stuff into object-oriented programs.)

Don't let someone use UML to describe lots of irrelevant detail. Apply the principle of
abstraction—ignore the irrelevant and model what is important to you and fellow developers.

Encapsulating and hiding information

To help you enforce an abstraction, the experts have a couple of other fancy terms:

B Encapsulation: When you summarize important features of your objects in one place, you
are encapsulating them—your objects can make good abstractions of the real world by
combining features such as identity, attributes, and behavior into a neat package.
Everything an object needs to be itself—structure, identity, internal behavior—is close
together so the object can be itself (function the way it wants to). The operations (behavior)
of an object are like a wall between its internal workings and those of other objects. The wall
of operations places a barrier that helps the object maintain its separation from other
objects, which helps enforce the abstraction.

These walls prevent your intended abstraction from being violated. You turn an air-filter unit
on and off. You cannot break the encapsulation of that object and change its internals to
create a TV that you can also turn on and off.



B |hformation hiding: Hiding the details of how an object performs its job helps prevent
overloading the user with irrelevant details. The advantage is that if you hide internal
information about an object from its users, then you can tinker with that object without
affecting the users.

Manufacturers of air-filter units try hard to hide how the unit works from the users of these
devices. The assumption is that the user doesn’t have to know anything about the operation
of the unit except how to turn it on and off. If the manufacturer changes the internal workings
of the unit without changing its controls—and it performs the same function—then its users
don't have to retrain themselves to use a new unit.

Encapsulation and information hiding are used in many branches of technology. For example, computer users
sometimes complain that PCs—even today—still require the user to master too much detailed knowledge. The
users—all of us—still have to know a lot about the internal workings of the computer before we can change a
setting or get it to do a simple task. All those details tend to get in the way of performing a job. From the user’s
point of view, the PC builders haven't done enough information hiding or encapsulation.
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Figure 2-2: Electric circuit representation of an air-filter unit.

A little information hiding goes a long way

During the 1990s, software developers were obsessed with Y2K—the fear that software programs
worldwide would be disrupted when the year changed from 1999 to 2000. The problem boiled down to
a lack of (you guessed it) encapsulation and information hiding. Two digits were customarily used to
represent the year attribute of a date: 98 for 1998, 99 for 1999, and 00 for—what? 1900 or 20007?
Programs that needed accurate dates to function properly relied on those unencapsulated two-digit
year attributes—big trouble. Companies and governments around the world spent in excess of $200
billion to solve the problem.

Now, suppose those dates were encapsulated into a date object and the year representation was
hidden inside the date object. The software developers could have changed the internal representation
of year from two to four digits and added a wall of behavior that would, if asked, provide the date with
either two- or four-digit years. When a software developer needed to see whether one date preceded
another, the developer would ask two date objects to compare themselves through a simple compare
operation. If early software developers had encapsulated all dates in the first place—and hidden the
representation of year—then the Y2K scare would have never happened.
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features to define a generic class of objects. That way, you refer to these common features
whenever you mention the class—and you only have to do so once.

Specialization: Specialization is the opposite of generalization. To specialize a group of
objects, you look at a group of objects and identify groups of objects with unique features
not shared with other groups of objects. Then, you create a class for each group of objects
with their own unique features.

The same is true of any object—especially of any machine. There are lots of different kinds of air-filter units,
from no-frills to fancy. shows the type of air-filter uni see above a stove. A more elaborate,
whiz-bang air-filter unit, bristling with gizmos, is shown in _Fi:ure 2-j. These units share common
features—internal fan, On/Off switch, replaceable air filter—that you can find in various types of filter units.
When you consider all possible filter units that have these basic features, you're generalizing.

Figure 2-3: This stove-top air-filter unit has a light so you find the oregano.

To help you see the spaghetti sauce you’re cooking, the stovetop unit in has a light to illuminate the
cooking surface below. None of the other air-filter units have this, so stovetop air-filter units make up a more
specific class of objects.

The fancy unit in has an ultraviolet light and a motion sensor. Since we've already included it in the
general class of air-filter units, we can assume that it also has an On/Off switch, an internal fan, and an
internal filter— even though there’s no stovetop light.
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Figure 2-4: Air-filter unit with ultraviolet light. (Do dust motes glow in the dark?)

Inheriting features and performing the same behaviors differently

Okay, air filters in general have the features common to all air filters—so when we speak of a particular
air-filter unit, we can focus on its specific features. By doing so, we assume you already understand that the
unit has the features listed in the generic description. We're “reusing” the generic features that all air-filter units
have in common.

This leads us to two more terms that the experts use to confuse us:

B RN Inheritance: You notice that when we talk about a specific kind of air-filter unit,
we assume you understand that the specific unit has the same features of any generic
air-filter unit. The experts like to say the specific object inherits the features of the generic
object.

Through the principle of inheritance, you “reuse” the features of a generic object when
talking about or modeling specific objects.

B polymorphism: Of course, everybody studies classical Greek these days, right? So here it is
again—poly meaning many, and morph meaning form. It's when objects have the same
behavior but perform it differently. For example, all air-filter units can perform the operation
of turning on—but each type of unit performs that operation differently.

In this example, you notice there is a difference between the operation of the object and the
method the object uses to perform the operation. In the object-oriented world, objects invoke
the operations (behavior) of another object. The second object then performs some internal
method (steps in a process) as a result. When you (the first object) invoke the operation of
turning on the air filter unit (the second object), the air filter unit performs an internal method
(it passes electricity through a switch to the fan).

The idea of polymorphism is to hide the exact method of operation behind the operation
itself. You invoke the operation of an object without worrying about how the operation is
performed. So when you step up to an air-filter unit, you just turn it on. The method inside
the unit does the rest.

When you use UML to describe general and specific objects, use the Principle of Least Surprise. You
place an attribute or an operation in whatever class—generalized class or specialized class—is least likely to
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surprise the user.
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Improving Your Productivity

Developing software is a hard job, made harder because the product has to be easy to use, loaded with
additional functionality, and usable even when distributed over complex Internet environments. Software must
continually be better, quicker, and faster than ever before. To help you achieve these goals, software
development has gone object-oriented. Instead of writing functions, you create little software objects that send
messages to other software objects. Unlike functions, these software objects allow you to hide the details of
internal operations in tidy programming objects. Now, to go along with this new direction in software
development, you encounter a whole bunch of buzzwords. You can use to translate the slew of new
buzzwords when UML pros want to talk shop (or vendors want to sell you methods and tools for UML
modeling).




Table 2-2: L Buzzwords and Their Interpretations

Expert's Word

What They Really Mean

Example

Component

A real-world object or unit of
software code that is so self-
contained that it can be
swapped out and replaced by
another object, without the
user knowing the difference.

You can replace one DVD
player in your entertainment
system with another DVD
player of equal or better
capability; you can replace
one module of code with
another that works better

Component-based
development

Building your system out of
modular/replaceable units of
code.

Develop your system using
Enterprise Java Beans, .Net,
or CORBA components.

dictates the architecture of
your application

Interface A contract that specifies what A DVD player must accept
the object must do(but not audio and video signals
how to do it). through specific connectors

(for example, RCA-type).

Pattern Description of how developers Use the adapter pattern to
solve a frequently occurring adapt an existing class
problem. interface to a new interface

you can handle.

Framework A large-scale pattern that You could implement a hotel

reservation application using
an event-driven framework
using GUI screens, or an
auction framework over the
Internet.

UML Modeling tool

Software that allows you to
create UML diagrams— and
generate code based on the
diagrams.

hapter 23 lists some vendors

of Modeling tools.

approach to the task of
developing a system or
software.

Life cycle A sequence of generic steps For many software projects,
from beginning to end that the life cycle (Waterfall, for
everyone on the team has to instance) starts with the
follow for developing a system analysis step, followed by the
or software. design step; all steps are

sequential.

Methodology A prescribed detailed These are the steps

prescribed by industry experts
for the development of
systems and software. These
steps often involve the use of
a mod-eling language like
UML, RUP, OMT, Booch, and
Agile.

Building component-based applications




You've seen manufacturers assemble hardware from groups of components. Each part of a device (for
example, a disk drive) is created first. Then the parts sit in bins, waiting to be picked at the right time in the
assembly process. One instance of a part like a power supply or disk drive is exactly like another; each part is
a replaceable unit. The assembly-line approach to building hardware is more productive than building things
by hand; object-oriented programming applies the same principle to software development.

Building software by assembling prefab pieces is faster and more productive than creating each program line
by line from scratch. This is what the experts call component-based development. You can think of
components as units of code that can be plugged into the software (as if into a circuit board) to form an
application.

To develop applications from groups of components, you need to perform the following tasks:

B Create components: Write units of software as groups of cooperating objects, which you can
reuse from application to application.

u Separate what a component can do from how the component does it: You must declare
interfaces to your components. Each interface specifies the name of the operation and any
parameters needed by that operation. When one component invokes the interface of
another component, it should not have to know anything about how the operation is
performed.

For example, if we build a streaming-video component in software that provides a run
interface, you should be able to simply ask any of our streaming-video components to run.
You shouldn’t have to know anything about the internal type, structure, or format of the video
to run it. Thanks to this separation of concerns (external interface from internal code), you
can replace our component with another component that provides the same run interface
and your assembled application will continue to work. It's like replacing one power supply in
a disk drive with another.

B provide acommon standard for communication among components: To make your
components replaceable, you have to standardize on the exact way one component talks to
another. The Object Management Group’s CORBA and Microsoft's COM are two
established communication standards that offer this sort of consistency.

B Allow your components to exist in a standard environment: Your components must be able
to create instances of other components, find out which interfaces other components
provide, and register themselves so other components can find them and invoke them.
Enterprise Java Beans (EJB) is a good example of a component environment. EJB provides
standard ways to create, register, find, interface with, and delete components.

Use UML component diagrams to describe an assembly of parts for your application. Use class,
composite structure, sequence, and communication diagrams to describe how the insides of your components
work. (Class diagrams show the attributes and operations of each object making up your component.
Composite structure diagrams show the internal parts that make up each component. Sequence diagrams
show interaction among the components over time. Communication diagrams show complex internal
interactions of the parts of a component.)

Utilizing patterns in your development

One way you can become more productive is by reusing solutions to common development problems. Why
reinvent the wheel every time you have a design problem? During the 1990s, many developers got together
and documented common solutions to common system and software problems. They called the resulting
documents design patterns. Each pattern has a name, a description of the problem it solves, a standard
solution, and the documented trade-offs you encounter if you apply the pattern.

For example, the proxy design pattern allows you to have one object take the place of another. This pattern
allows all objects to interact with each other across different computers. Your object on a client computer



invokes a proxy object on the client computer; and that object is the one that contacts the real object on the
server computer. Your original object knows nothing about how to contact the server object—and doesn’t have
to (that's what the proxy is for). This approach can make object development easier.

Here the terminology gets confusing. Patterns describe a common way of making objects work
together. Some experts use the word framework to describe larger-scale patterns used to create applications.
Other experts use that same term—framework—to describe an existing group of objects that you customize
for your own purposes. When the experts sort it out, we're sure they’ll let us know.

You can use UML collaborations and collaboration occurrences to model patterns and frameworks. For
more information on diagramming collaborations and collaboration occurrences, see .

Using UML tools

UML is easy to draw; artistically challenged experts designed it that way. But, keeping track of many different
kinds of diagrams—on many pieces of paper—is especially tedious when you have to make changes during
development. Using UML to model and build today’s complex software systems requires something more than
a white board, lots of paper, and pencils with big erasers.

What you need is a UML modeling tool, formerly known as a CASE (Computer-Aided Software Engineering)
tool. A modeling tool aids the development of software by keeping track of all the software engineering
symbols (such as those in UML), and it helps you do the following tasks:

. This can include class diagrams (see m , use case
, and sequence diagrams (see ).
B Dprawing UML notation correctly: The tool draws a UML class as a box and a UML state as a
rounded rectangle. You don't have to fool with getting the icon to look right.

u Drawing UML diagram
diagrams (see

B Organize the notation and the diagrams into packages: With large projects, as the number of
classes increase you need help organizing your diagrams. Modeling tools help y: ze
packages. (For more information on package organization see [Chapter 7 and Eha:ter

)

B searching for specific elements in your diagrams: This is very helpful when you have a lot of
diagrams with many classes, objects, associations, states, and activities.

B Reverse engineering: Some of the tools read your object-oriented programming code and
convert it into simple class diagrams. This saves you time when you're modeling existing
software.

B Model reporting: You can disseminate information about your models to other developers by
asking the tool to generate a report.

B Generating code: The big payoff of a UML modeling tool is the fast creation of some, but not
all, of the code you need for your software.

Over 120 different modeling tools support UML modeling. ( in this book describes ten such tools.)
You can even get some of them free. Whatever the outlay, choose a UML tool that fits the kind of system
you're building and that makes you the most productive.

Think carefully about the kind of system you're building before you buy a UML modeling tool. Consider
the following system categories:

B |hformation systems: You want to build software applications that process information. Look

for a tool that is well rounded in that it provides you with all the UML diagrams.
|

Real-time and embedded systems: You concern yourself with strict timing gnd sizing issues
in these systems. Get a tool that is especially good at state diagrams (see [Chapter 1§),




timing specifications, and real-time simulation of event handling (a special program that
directly implements a state diagram).

Database systems: In this case, you design databases to handle transactions online or serve
as data warehouses. Consider the tools that support conceptual, logical, and physical
models, and that can generate the code to query and extract data from your chosen
database-management system.

Web-based systems: Here you concern yourself with scripting languages and Web services;
you have to generate XML data structures, create client-side code, and specify server-side
operations. You need a tool that allows you to diagram all the different components in a
Web-based application.

The primary reason you buy a UML tool is to improve productivity. Look for a tool that gives you
the automated support you need on the job. Don't listen to vendor hype; look first at what the modeling tool
can actually do for you. The best tools have capabilities like these:

Shell generation: The tool generates header files for your code according to a class
diagram, but doesn’t generate any actual method code.

Code generation: Now we're talking. These tools generate basic code for setting and getting
the attributes of a class. They also generate simple constructor methods.

Language-development support: You find some tools support the whole application
development process. These tools integrate requirements management, UML modeling, and
an interactive visual development environment. A good tool that supports your language
development parses your code in the UML model for correctness. You should be careful to
choose a tool that fits your language needs and supports the development tools you use.
These tools also reverse engineer code into simple UML models, helping you with
integrating legacy code.

Database generation: These tools allow you to specify logical and physical data models as
different class diagrams. The tool generates Data-Description Language (DDL) statements
such as create table and create index. Make sure the UML tool generates the DDL you need
for the relational database-management system (RDBMS) you use.

Some UML tools don’t generate DDL directly. The tool vendor supplies you with an export
facility. You export your UML class diagram into a more traditional entity-relationship
modeling tool. That tool generates the DDL.

OCL support: The object-constraint language (OCL) provides you with a powerful way of
expressing business rules beyond the UML diagrams. OCL allows you to declare pre- and
postconditions for your operations. A precondition is a statement of truth before an operation
can work properly. A postcondition is a statement of what is true after an operation executes
successfully. If you use OCL heavily, look for tools that parse OCL and generate partial code
from OCL.

Support for collaboration on large projects: Many UML tools place your diagrams in a file on
your computer. If you work with others, then you have to send them copies of the file with
your diagrams. On very large projects (with 50 or more developers), that approach leads to
disaster—the files get changed, no one knows which file is the latest and greatest, and
mistakes proliferate. When you work big projects, look for tools that store their models in an
industrial-strength database instead of a file. Large projects also require lots of
documentation. Look for a tool that generates reports in HTML, XML, and hard copy

Sorting out methodology madness

UML is just a notation. UML does not tell you when to use which diagram. The experts had plenty of time to



create lots of suggestions about when, what, where, why, and how to use UML. They call this advice a
methodology.

Most experts use their own obscure terms to describe their specific methods. You may find their jargon
very confusing—especially when different experts use the same word to mean different things, or different
words to mean the same thing.

Every method for developing systems and software starts with the following basic steps:

1. Planning: Organize your project.
2. Analysis: Find out what your application does or needs to do.

3. Design: Specify how your application works.

4. Just build the application.

5. Testing: You make sure the application works properly.
6. Deployment: Launch the finished application onto servers and the users’ computers.

Any good engineer will tell you about the basic steps for developing a system. But you need to know which
UML diagram to use during each step. You must have a sense of how to order the steps, and how long you
should take to perform a step for your project (for example, some complex software requires a longer
requirements-gathering period). That's where the experts come in with their life cycles and their
methodologies.

Riding multiple life cycles

A system or software development life cycle tells you what to do (process steps) and when to do it (the
sequence of process steps). When the experts give you just a life cycle, they don't tell you how to perform the
actual steps.

Fortunately, life cycles come in recognizable types. Here are the ones you're most likely to come across:

B waterfall: This life cycle is one of the oldest and one of the simplest. Each basic step
(planning, analysis, design, and so on) follows the others in a strict sequence. First you
perform your planning. When that is done, you gather your application requirements during
analysis. Only after you have all the requirements can you move on to design. This life cycle
is not very flexible.

B spiral: The Spiral was originally a way to make the Waterfall life cycle more flexible. Think of
this cycle as a sequence of mini-Waterfalls. Your project progresses in smaller steps. At the
end of each spiral (a whole sequence of risk assessment, analysis, design, and prototyping),
the team assesses how well the project is doing. The next spiral then addresses these
issues to build a larger prototype. Eventually the prototype becomes the full, delivered
system.

B jterative Development: The Spiral is thorough, but developers needed a life cycle that didn’t
take so long. When they recognized they could perform groups of steps in parallel iterations,
they had the key to speeding up the process.

First, high-level requirements are gathered. Then the project is broken up into small bit-size
pieces of customer-oriented capabilities that meet those requirements. Small project teams
work on each iteration at the same time to deliver each piece. (An iteration involves building,
testing, and providing a small functional part of the overall program.) You get the project
done faster because your team works on different parts of the project at the same time.

Adhering to multiple methodologies



A methodology tells you how to perform a sequence of steps to get the job—completing an application—done
in the time available. When you read experts’ prescriptions for building an application you may get the
impression they’re really saying, “Do it my way or else face disaster.”

Don’t be confused by the lingo. What some experts call a methodology is just a life cycle. Look for a
method that's well enough thought out to tell you what to do, when to do it, how to do it, and how long to do it.

No one follows the experts all the time. Every project is different and yours is no exception. Read
what the experts have to say—and then create a customized methodology that fits your company culture, your
type of project, your team dynamics, and your path to success.

If you want some useful starting points, you can find methodologies like the following by using your favorite
search engine on the Web:

B OMT, Booch, Objectory: In the old days (pre-1995), these were the leading object-oriented
methodologies. Each method had its own notation. UML came along and replaced the
different diagram symbols with one unified notation. But you can’t get a complex project
done using just a notation—look deeper at the overall approach.

B Rational Unified Methodology: During the mid-1990s, the Rational software tool company
hired (or had access to) the methodologists of OMT, Booch, and Objectory fame. These
folks (known to developers as the Three Amigos) came up with a unified method to go along
with the unified notation. Rational called its new method RUP for the Rational Unified

Process. (See jwwraonalcor])

B Catalysis: During the mid- to late 1990s, component-based development became
fashionable. Desmond D’Souza and Alan Wills developed a methodology they called

Catalysis that describes how to perform development using components. (See
oo ol

B Agile, eXtreme Programming / eXtreme Modeling: After the turn of the current century, a
number of developers came together to address the continuing failure of methodologies.
Older methodologies like RUP seemed bloated and overbearing, resulting in projects that
generated lots of diagrams and documents but still failed. These developers wanted
something more agile than RUP. The result—the Agile method—encouraged developers to
tailor their methods to meet their specific needs. Agile modeling using UML is geared toward
small development projects with tight deadlines, like building Web front ends. (For agile
development see vww.agilealliance.ord. For eXtreme Programming see

.extremeprogramming.ord.)

Use risk as your guide. Each step of a methodology is intended to mitigate some risk you might face on a
project. Every project is different because every project faces a different group of risks. Typical risks include
lack of communication among developers, not enough money in the budget, not enough time on the schedule,
and failing to meet user requirements. Review your project to identify the high-priority risks that could kill your
development effort. Then you should find the process steps, methods, and UML diagrams to help you mitigate
those risks.

No matter what method you choose, successful projects happen because teams learn to work
together. Don’t worry about the fancy words; get everyone on the team focused and excited by the project.
You can use UML diagrams to communicate, exchange ideas, build consensus, and document for others what
your project, application, system, or software is going through on its way to completion.
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Part Il: The Basics of Object Modeling

Chapter List

Objects and Classes

Relating Objects That Work Together

Including the Parts with the Whole

Reusing Superclasses: Generalization and Inheritance
Organizing UML Class Diagrams and Packages

Part Overview

"WHERE'S THAT FLAKE TEMPLEMAN® HE'S SUPROEED TO BE
HELPING US WITH THIS."

In this part . ..

This part introduces you to the everyday notation at the heart of modeling objects and developing
object-oriented programs. Whether you're a modeler or a programmer, we familiarize you with objects,
classes, associations, generalizations, aggregations, and packages. We cover the important details of UML’s
object-modeling notation and give you tips on how to develop good modeling practices. We also warn you of
problem areas and show you how to avoid them.
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Chapter 3: Objects and Classes

Overview

In This Chapter
B Choosing key objects and classes
B Nominating good names
B Attributing the attributes
B Getting openness with operations
B Building the boxes
B Allowing for privacy

J ust as you take time to get to know a friend, you need to take the time to get to know the important objects
and classes of your system before you start doing UML modeling. With this chapter as your guide, you can
identify these key classes and objects in your system and give them useful names. By spending quality time
with classes and objects, you get a good idea of what attributes a class has, what operations it can do, and
even what parts must remain private or may be shared.

In this chapter, we offer useful tips for identifying and naming classes and their parts, and then we help you
start organizing all these parts into a model that everyone on your development team can easily understand
and use.




Recognizing Classes and Objects

Before you can go about modeling objects and classes with UML, get familiar with the entities in your system
that match the definition of an object or a class:

B Opject: An object can be any useful item that has identity, structure, and behavior. When an
object-oriented software system is running, the items in the system are interacting software
objects. When a real-life physical enterprise is in operation, the individual interacting entities
in the enterprise system are the business objects.

B Class: A class is a family of objects. If several objects have similar structure, behavior, and
meaning, then you can group the objects into a class—in effect, a template (or even a
factory) you can use to create uniform individual objects. When you develop an
object-oriented system, the system is described as being made up of classes—and that’s
even true of a real-life enterprise system. Some examples of classes might be the Crash
Dummy class, Lease class, Client class, or Owner class. Each class provides a generic
scheme for one or more objects, and a class can be a template for many objects or only
one.

There is often (and should be) a strong parallel between a software system and its underlying physical
enterprise: The system’s software objects should parallel the enterprise’s business objects (actual, tangible
things that the software objects represent). Imagine that you are constructing the software for a Rent-A-Crash
Dummy business enterprise. As you walk through the enterprise in your mind’s eye, you recognize business
objects: a particular Crash Dummy, a specific lease document, and a particular client. All these objects are
useful, can be recognized, have structure, and have behavior. A well-designed system shows a parallel
between the business and the software; every business object has a software object. There is a software
object for each Crash Dummy, each document, and each client.

Even so, some additional software objects are necessary parts of the design and implementation of an
object-oriented software system—even though they’re not strictly parallel to the business system. If you were
to walk through your software system as a virtual traveler, many of the sights you could point out would be
such objects: individual pieces of data such as records, software structures such as queues, working bits of
code such as instance variables. These are the construction elements of the object-oriented software world; no
less than the business objects, they too have identity, structure, and behavior. When you first start modeling
your system, don'’t include these design or implementation objects; they get added in later activities.

You can use many techniques to choose your objects and classes. Because your project will be using these
objects and classes for a long time to come, thinking a bit about your choices is worthwhile. One of the most
common techniques, called Underlining the Nouns (and Words That Relate to Nouns), can help you identify
which classes and objects to use. You start by describing the system (or the system’s behavior). Then you
examine each noun in the description and consider whether it meets the following criteria:

B |t's a thing or family of things

B |t's part of a problem to be solved

B |t's not part of the implementation details
B |t's not an event or occurrence

B |t's not a property of a thing

After you underline all the nouns and related wi i ur system description, you can start weeding out the
ones that might make good classes or objects. [Table 3-1f can help you sort through these words.




Table 3-1: Sorting the Nouns (And Noun-Related Words)

Type of Noun Example It's Likely to Be a(n)...
A family of things Person, Crash Dummy Class

A proper noun (name) Max Object

A property of something Age, Color

ﬁm'bmﬁ (see the section
?ldentifying AttributesfAater in

this chapter)

A value or data

27 years, Red

Attribute’s value

A condition of a thing

Adult, New

State (see )

An occurrence, event, or time

Birthday Party, Telephone
Ring

Qperation (see the sectjon

?Performing Operations[later
n this chapter) or event (see
Chapter 17))

Part of the implementation

Database, Table, EJB

E?ve for design (see

Set up a list for the nouns that make the cut. Be generous: If you're not sure whether something is a good
candidate, add it to the list anyway. After you identify a noun as an object, look around for the class that this

object is an instance of.

Don’t completely discard the nouns that don't qualify as objects. You'll find that they may serve as
attributes, states, operations, events, and so on—all of which have value later.

As mentioned earlier, the input to this technique is a description of the system or of the

system’s behavior. If

no description is available, construct your own. Sometimes the description of the system’s behavior is best

organized as a set of outside entities, called actors, pursuing their individual goals, callg

e ses, which are
Chapter §.

invoked whenever they use the system. You can find actors and use cases covered in|



Naming Objects and Classes

After you identify the classes and objects you want to use in your system, you can start thinking about what to
call them. In this section, we provide some UML naming guidelines. (For general naming tips, see the sidebar,
“Perfecting your names.”)

Following rules for naming classes
Every project may have its own guidelines for naming classes, but your class names also need to follow some
commorﬁmm&d_mwmwh_LﬁQL. If you made a list of possible names (as we discuss in the
section PRecognizing Classes and Objectd]}, fart with a name from the list and whip it into shape by

following the refinement process illustrated in| able 3-2.

Follow your organization’s rules and style when naming your classes. You may want to use different
style names during different phases of your projects. It's common to put spaces between terms in the names
during analysis but to make the names more code-like by dropping the spaces as you enter the design phase.

Table 3-2: Refining Names to Be Good Class Names

A good class name.. . . Revised example

Uses a noun or noun phrase my modern crash dummies
Is singular not plural my modern crash dummy
Avoids possessives a modern crash dummy
Doesn’t contain irrelevant adjectives a crash dummy

Is bold and is centered in its box a crash dummy

Uses initial capital letters A Crash Dummy

Doesn't have spaces between words ACrashDummy

Doesn’t contain articles (a, an, the) pronouns CrashDummy

Perfecting your class and object names

Since the goal of a good name is to convey information quickly and accurately, avoid anything that
could be confusing or that might slow down interpretation. It's good policy to avoid using any
abbreviations in any hame and make sure your spelling is correct.

Almost all abbreviations have multiple meanings and can be momentarily bewildering. Even a one
tenth of a second delay adds up to be significant lost time over the life of a project. If you must use
acronyms, make sure they come from a limited central list of allowable abbreviations. Likewise, avoid
puns and double entendres. (Impress your fellow modelers with your UML skills, not your humor.)

Also remember that spelling counts. Don’t think for a moment otherwise. Misspelling a word brands
you as careless, and even worse, interferes with the rapid recognition of the name. Models are made
for accurate and quick communication, which won’t happen if your audience is laughing. Proofread
carefully and correct all spelling and grammar mistakes.
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Identifying Attributes

After you become familiar with your classes and learn how to name them, you need to consider their
properties. To be an interesting and useful class, instances of the class (objects) should have some interesting
and useful properties. UML calls these properties attributes.

Finding these attributes is usually not difficult. You can often identify attributes by considering how you would
describe the objects within a class and how you could differentiate among them. For example, the color of an
object might be interesting and may differ, so color could be an attribute. The weight of an object might be
interesting and may differ, so weight could be an attribute.

Depending on your background, you may feel comfortable thinking about attributes as member variables or
data slots. Each data slot has a data value placed inside it. Either way you look at it, attributes are the specific
features or values that an object of a class may have.

If you have a background in using or designing databases, you may find it helpful to match UML terms
with database terminology. They're not exactly equivalent, but seeing the parallels in will give you a

head start to understanding. Don’t be enamored too much with this comparison. It works well for the data
aspects of a class, but a class is a larger concept than just a table because the class encompasses both data
and behavior.

Table 3-3: Parallel UML and Database Terms

UML Term Parallel Database Term
Class Table

Object Record

Attribute Field or Column

After you identify an attribute, you may want to indicate the attribute’s type. (A type specifies what kind of data
that attribute can hold.) When you do supply it with a type, place the type’s name after the attribute’s name as
follows:

attribute: Type

The type of an attribute can be the taken from your programming language’s possibilities—or (since UML
allows it) you can develop your own. UML also defines several intrinsic data types:

B |nteger: This includes all positive and negative whole numbers, as in the following list:
m . 2-1012...

B Boolean: Boolean values specify a state of logical truth, such as True or False.

String: A string is a sequence of characters and spaces in code (as in the example “A
Typical String”).

Ultimately, it's going to be necessary to specify the type of all the attributes to produce an executable system.
However, you can delay typing (specifying the type) until you know it and wish to share it with your model
readers. Many UML tools provide a default type for attributes as you add them to the model.

Naming attributes and types




w the same naming conventions that object’s names follow (see the section PNaming Objectf

d Classespearlier in this chapter), but they don’t usually begin with an article (a, an, the) because they're
only properties. The following are some attributes of a Person class:

B hame: String uses an Intrinsic UML type.

B age: Integer uses an Intrinsic UML type.

B \eight: Double uses a Language Defined type.
Some attributes of a Lease class could be as follows:

B gate: Date uses a Language Defined type.

B guration: Integer uses an Intrinsic UML type.

Sometimes an object may need to have an attribute borrowed from another class—or refer to an object of
another class. You can show this situation by using a class name in the Type field. For example, on a Lease
class, you might want to indicate a particular Crash Dummy being leased and the person renting the Crash
Dummy. You could set it up as follows, where CrashDummy and Person are classes:

hiredDummy: CrashDummy
renting: Person

You can find much more about referencing objects of other classes in .

When you name types, generally follow the same conventions that you would follow when naming classes.
(See the section “Following UML rules for naming classes,” earlier in this chapter.) To distinguish classes from
types, end your user-defined type names with the word Type. It is also standard convention to prefix Boolean
attributes with the word is. For a Person class, some additional attributes could be as follows:

B phoneNumber: PhoneNumberType uses a user-defined type.
B streetAddress: AddressType uses a user-defined type.

B ssingle: Boolean uses a Boolean attribute.

Enumerating the possibilities

If you find that an attribute has a value that's taken from a (usually small) fixed list of discrete, possible values,
you want to construct what is called an enumeration data type. It's good modeling practice to clearly identify
these types by ending their names with the word Kind, as in the following examples:

B GenderKind could have the values Male or Female.
u TrafficLightColorKind could have the values Red, Yellow, or Green.
B successKind could have the values Succeed or Fail.

You may ultimately want to expand a data type such as GenderKind to include every single esoteric possibility.
But as with all typing (and all modeling, for that matter), too much detail may be counterproductive.

Defining default values

When your system is up and running, slots for the attribute values are created every time an object is created,
but the contents of the slots are undefined. You probably want to determine default values to initialize your
attributes, and may do so when you define them at modeling time, as follows for a member of the Person
class:

attributeName: AttributeType = default value

name: String =
age: Integer =0



weight: Double = 0.0

gender: GenderKind = male

phoneNumber: PhoneNumberType = 000 000-0000
isSingle: Boolean = true

These default values are used only when a new object is created at runtime, and the type of the default value
has to be compatible with the type of the attribute.

UML is constantly improving. Occasionally, the UML gurus change things that probably don’t
really need changing. In UML 1.4, the value assigned to an attribute when an object is first created was called
the initial value. In UML 2, the gurus changed this to the default value—less precise (but more common)
terminology.

Multiplicity

In normal situations, you want your objects to have one attribute value for each attribute you've identified. UML

allows for more. Perhaps your friend has two telephone numbers, or more than one name. UML enables you
to indicate exactly how many values an attribute has (called the ultiplicity) and even allows for a range. You

place the multiplicity in square brackets after the attribute’s type, as follows:

attributeName: AttributeType [Multiplicity]

You can express the multiplicity by following the examples in .

Table 3-4: UML Multiplicities or How Many Do We Have

UML Multiplicity Meaning

1 Exactly 1 (the default)

2 Exactly 2

1.3 From 1 to 3 (inclusive)

3,5 Either 3 or 5

1.* At least one, and at most, unlimited
@ Unlimited (includes 0)

0.1 Either 0 or 1

Lils] Attributes and analysis

During the early phases of development, it's often premature to consider low-level features (such as
data types, slots, or fields). Instead, concentrate on the knowledge responsibilities that an object might
have. Ask yourself, What questions could be directed to the object that the object should be expected
to reply to? Questions about the object’s state, status, or condition are all natural knowledge
responsibilities; typically all are treated as attributes.

In early development steps (such as analysis), you also need not compress and eliminate spaces in
the attribute names. Keeping the names normal-looking helps you spell-check the names—and also
helps show that your early-stage attributes are merely conceptual, not meant to be directly
implemented.

Similarly, consider using the conceptual approach to units of measurement (such as Degrees Celsius)
instead of implementation data types (such as int for integer) in the early stages of developing your



name: String [1..2] = "Michael'|

age: Integer [0..1]

age: Integer [1] =0

phoneNumber: PhoneNumberType [2]
=(000 000-0000, 000 000-0000)
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Performing Operations

As you get to know your classes and get to know their properties (attributes), you also get to know their
behaviors. UML uses the term operations to refer to the possible behaviors of a class what the objects of the
class can do or have done to them. Consider what can you ask objects of the class to do—or what can cause
them to change their states—when you create the basic syntax for an operation. A typical example follows:

operationName (optional argumentList): ReturnType

So if you wanted to ask a Person object to rent out a crash dummy, the operation would look something like
this.

rentOutDummy (): SuccessKind

An operation is usually called (asked to be performed) because the caller wants something in return. Specify
the ReturnType as an attribute-like type identifier. If nothing is returned when this operation is performed, either
use Null or omit the ReturnType altogether. In the previous example operation, a success indicator is returned.

But before something can be returned, something must usually be given—and generally requires information
before it can do something. The argument of an operation specifies a piece of information needed by the
object to perform this operation.

Specify the information needed by the operation in an optional argumentList of comma-separated arguments or
parameters—the specific things the object needs to perform this operation. Here’s how the arguments go
together:

operationName (argumentl, argument2, . . . ): ReturnType

Each argument must have a type declaration so that the kind of information that is needed can be determined.
Each argument in the argumentList above looks like a mini-attribute, as shown below:

argumentName: ArgumentType [Multiplicity] = default value

So our example operation might be more completely shown as follows:

rentOutDummy (aDummy:CrashDummy[1],forClient:Person[1]): SuccessKind

In this example, the operation rentOutbummy has two arguments. The first argument is a singly valued
argument named aDummy and is of the Crash Dummy type. The second argument is also a singly valued
argument, which is called forClient and is of the type Person. When called, the operation returns a value that is
of the enumeration type SuccessKind.

As with attributes, if you don't specify a multiplicity for an argument, it will default to 1. And as with attributes,
you may also specify a default value if you want.

rentOutDummy (aDummy:CrashDummy,forClient:Person): SuccessKind

Besides a type, a multiplicity, and a default value, each argument can also have a direction. If you need to set
the argument before the operation is called, the argument is an in argument. If you set the argument by calling
the operation, then the argument should be an out argument. If the argument must be set before the operation
is called and is changed by calling the operation, it's an inout argument. The direction precedes the name of
the argument. (The default is in.)

Here’s the syntax and an example of an operation with the direction included:

direction argumentName: ArgumentType [Multiplicity] = default value
rentOutDummy (in aDummy:CrashDummy, in forClient:Person): SuccessKind

The complete specification of the operation name, arguments, and return for an operation is called the
operation’s signature. As people have their own signature, each operation has one also. However; more than
one person can have the same name, and more than one operation can have the same signature, whenever




there is more than class in question, it's best to precede the operation with the owning class name:

Class::operationName (argument list): ReturnType
Person::rentOutDummy (in aDummy:CrashDummy, in forClient:Person): SuccessKind

Naming operations and arguments

Name operations in the same format as attributes (start with a lowercase word, compress blanks, and
capitalize all successive words), but operation names should be verbs or verb phrases. Though not technically
required,

follow the operation name with () to emphasize the visual distinction from an attribute. When naming the
operation, name it from the point of view of target object, the object performing the operation, not from the
point of view of the requestor. If the requestor also performs an operation to make the request, then there are
two parallel operations. We show some examples inw.I

Try to choose active verbs whenever possible; you don’t want your readers to fall asleep or drown in
those passive helping verbs.

Table 3-5: Operation Naming

Requestor’s Operation Recipient’s Operation

hireDummy (aDummy, fromPerson) rentOutDummy(aDummy, toPerson)
borrowTool (aTool, fromPerson) lendTool (aTool, toPerson)
offerProposal () acceptProposal ():Boolean

Saying please

One trick to help name the operations correctly from the target object’s point of view is to place a virtual
“Please” before each operation. When you want a person to lend you a tool, you ask them, “Please, lend me
that tool” and not “Please, borrow me that tool.”

When naming arguments, consider that the argument name has four purposes. The name is supposed
accomplish the following:

B Make it clear to the reader what the argument does.

B Make it clear to the caller what needs to be supplied.

B Make it clear to the caller what the argument is going to be used for.
B Make it clear to the coder what the incoming argument is.

The most useful approach is to make the whole operation signature read like a sentence. Remember to place
a logical “Please”(replacing the two colons) right before the operation name and right after the class name. For
example, consider the following operation:

Person::rentOutDummy (thisDummy:CrashDummy, toThatPerson:Person):SuccessType

It could be translated this way: “Person, please, rentOutDummy, thisDummy of type CrashDummy toThatPerson of
type Person, returning a SuccessType”




Diagramming a System’s Parts

UML is primarily a diagramming language. In this section, we show you how to take the classes and objects,
along with their attributes and operations and to graphically represent them on diagrams. By capturing the
elements on diagrams, you can depict and solidify your understanding of the static structure of your system, as
well as communicate it to others for comment and buy-in.

Boxing in classes and objects

Figure 3-1: UML's class box.

To show a UML class box, just place the chosen class nhame in the center of the box, or perhaps about one
third of the way from the top of the box, as shown in Eigure 3-2.

: .Cr.'::h[}umm.]l .

Figure 3-2: A class box with a name.

LRSIl What's in an icon?

The UML gurus argued for a long time on what shapes to use for the UML notation. For classes, one
of the UML Three Amigos, Grady Booch, argued for an amorphous cloud-like figure (as shown in the
figure)—based, of course, on his own Booch notation. Another Amigo, Jim Rumbaugh, argued for a
box (based, of course, on his own Object Modeling Technique notation). Others argued for a variety of
shapes, one of which was a tombstone-like icon. For a while, they even toyed with pentagons.
Ultimately they settled on the rectangle box for objects and classes. Their key reasons: Objects and
classes have crisp boundaries and need a crisp, solid, stable icon. And it had to be something simple
to draw, not only for the developers, but for the UML tools too.
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Differentiating between classes and objects




UML always tries to make similar things have similar shapes. Although this simplifies remembering the form, it
can make them hard to tell apart. Objects also use boxes, just as classes do. To differentiate them, the UML
gurus decided that object names must be underlined and then followed by the class name, with the two names
separated by a colon.

When you show an object on a diagram, you can omit the class part of the name if its class is clear from the
context (or if it's still unknown and must be left unspecified). When you omit the class part, you're allowed to
omit the colon as long as you keep the underline. Alternatively, the object name may be omitted when yo
want to emphasize that any anonymous object of the class would do under the circumstances.
shows several sample objects with different name forms.

Proper Marmss - unspeciled clas Mulax

Froper Name - with class specified . Joam = Lrashiunmmnyg
Mypical Mame - wilh class specified | aCrashDumimy ; CrashDummy .
Ancryrmous object of specified class PLrash Dummy

Figure 3-3: Sample UML objects.

Using arrows to indicate an object’s class

Sometimes UML has more than one way of showing the same information. This doesn’t mean that you have
to use them all. Even though redundancy can often improve communications, it usually makes the diagram
more complicated. UML has another way of indicating that an object is an instance of a specified class—by
drawing a dashed arrow from the object to the class. Avoid this arrow technique unless there is some reason
to strongly emphasize that the object is a mtiiff[ ff fne class—and even then, it's still probably better to drop
the redundant class name from the objects. Figure 3-4 shows the use of an arrow to indicate the object’s
class.

- Crash Dummy ne: Pl

Figure 3-4: An object pointing to (instantiating)its class.
Using stereotypes

UML has lots of different kinds of dashed arrows that look identical. Luckily, UML allows you to label a model
element to indicate exactly what kind of element it is. UML calls this label a stereotype. You show the
stereotype next to the element (preceding the name of the element if there is one). UML has several
predefined stereotypes or you can define your own to indicate a special kind of element for your own purposes

The syntax for a stereotype is as follows.

«stereotype name»

tereotype can appear before any UML element. You could label the kind of dashed arrow we used in
as «InstanceOf» as the arrow indicates that the object is an instance of the class it points to.

The special characters surrounding the stereotype name are called guillemets. If you're typographically
challenged, you can use the double angle brackets << and >>, but the « and » are used in the UML standard.

Modeling forms

Following the object-oriented principles of encapsulation and co-location (as explained in the ), UML



displays each class along with its properties and behaviors together. Each type of information (class name,

attribute, and operation) has its own compartment in a class-box symbol. And following the object-oriente
principles of encapsulation and information hiding, the compartments may be hidden if desired. Eigure 3-

demonstrates the standard arrangement of the three compartments, and the following list describes them:

Name compartment: The name of the class goes in the Name compartment.

Attribute compartment: Place those attributes that you've already identified for the class in
the Attribute compartment. When you look over all the attributes, you may find that there are
some redundancies. It's almost always good advice to eliminate duplication, but sometimes,
there’s an attribute whose value can be calculated from some of the other attributes yet you
still want the attribute to be kept. The calculated attribute is called a derived attribute and is
flagged by a slash (/). For example, consider the following attributes of a Rectangle class:
height: LinearUnits

width: LinearUnits

(area: SquareUnits

In this case, the height and width are considered base attributes and the /area is the derived
attribute. The base attributes are those whose values are needed to calculate the derived
attribute. (See the sidebar “ Derived attributes” for more on—you guessed it—derived
attributes.)

Operation compartment: The operations of the class go in the Operation compartment. But don’t
model all operations; some of them are automatically implied. Whenever there is an attribute on the class,
there is likely to be an operation to SET the attribute’s value and an operation to GET the attribute’s value.
Because these GET/SET operations (accessor operations) are relatively obvious, most UML tools generate
such operations for you. If you write your own GET or SET operations, you may confuse the tools—and you'll
certainly crowd the Operation compartment.

Mamelompartment

Ariribute Compartment

Oipsration Compartmeant

Figure 3-5: A class's compartments.

jllle] Derived attributes

Why might you keep a derived attribute if it's really a duplicate? There are two basic reasons.

B During analysis, you may find that a key customer concept, something from the
customer’s basic vocabulary, is really derivable. If you eliminate that concept, you'll
have to spend a lot of effort in explaining why the customer can't find the concept in
your model. You run the risk of seeming either ignorant or arrogant if you leave it
out. So leave it in—but mark it derivable.

B During design, derived attributes have another purpose—efficiency. Suppose some
calculated value is needed often, and quickly. If you plan ahead, you might want to
precalculate the value and store it so it's available when you need it. (Just remember
to recalculate the derived attribute when the base attributes change.)

Unless it's obvious, flag each derived attribute with the formula needed to
recalculate it, as in the following example:

height: LinearUnits



width: LinearUnits
/area: SquareUnits {/area = height ¥ width}

These brackets—{ }—indicate a constraint and may contain any information that limits the values of an
attribute.

height: LinearUnits {height > 0.0}
width: LinearUnits {width > 0.0}
/area: SquareUnits {/area = height ¥ width}

[« rrevious | o



Defining Visibility

If you really get to be friendly and know your classes well, you'll be able learn some private secrets about
them. When you make your models and design your classes, you'll be able to define what's visible and what's
not. Typically, all the attributes are private so that only the owning object can see the values of the attributes.
Thus, each person object can see his or her own age, because you own and control your own attributes.

Each attribute—and each operation—of a class should have its visibility determi u model the visibility
by preceding the feature definition with a typographical symbol, as defined in [Table 3-§.

Table 3-6: Symbols for Modeling Visibility

Symbol Visibility Meaning
+ Public Any object can use the feature.
- Private Only the owning object can

use this feature.

# Protected Only the owning object or
descendants of the owning
object can use this feature.

~ Package Only objects in the same
package as the owning
object’s package can use this
feature.

The object-oriented principle of information hiding should be guiding you to avoid exposing any details.
Keeping the details hidden allow you to change them later, whenever you want to. To give yourself this
freedom to change, make all the attributes private. You don’t want anyone to get to them without going through
the accessor (GET/SET) operations where you can control the access.

On the other hand, most operations are public. You want the objects to be useful, so they need to be
accessible to be told do their stuff.

You can find more details on information hiding and other principles of object orientation in the .

Marking attributes as public and private

LCCLDICERSIM] Many UML tools enforce the information-hiding concept of attribute privacy strictly. Even if
you mark an attribute as public, it is still generated as private. How do the UML tools get away with ignoring
your requests, after all, you're the modeler and should be in charge?

Most tools generate the attribute as private, but generate accessor operations with your requested visibility.
This surprising trick puts up a wall that enables you to control the details of the access.

If you modeled it as +name:String, you'll probably automatically have the following generated:

- name:String
+ getName():String
+ setName(toNewName:String)

But what should you do, if you really want to have an attribute that’s mostly private, but not to everybody? In




many programming languages, it's possible to mark some classes as friends. Only close friends can getto s
ﬁ\e private parts; these friends can break the encapsulation rules. (For more about encapsulation see [Chapter

)

Marking static attributes

Every object in a class has its own attributes and keeps track of its own data. Sometimes, however, members
of the same family have to share information. They do this through by flagging the attributes representing the
shared information as static attributes. This indicates that the attribute has class-scope. Once flagged, every
object in the class has the same value for that attribute. Change it once, and every object’s value is changed.
You mark these attributes as static by underlining them. Operations that set or get these static attributes
should also be marked static.

Normally, when a regular (non-static) operation is called or an attribute is referenced, you start with the object
name, as follows:

B 5crashDummy.name indicates the name of the aCrashDummy object.
B myNeighbor.borrowTool() indicates the borrowTool operation on the myNeighbor object

With a static attribute, you refer to the class as a whole—so you precede the operations and attributes with the
class name, like this:

B CrashDummy.nextID indicates the nextID used by the whole CrashDummy class

B CrashDummy.getNextID() also indicates the operation to get the nextID value used by the
whole CrashDummy class

If you want to define a static attribute or operation for a class, include it in the class box, but flag it as static by
underlining it. Eigure 3-§ shows an example.

CorashDurmimy
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micciel: Modalkind=5mple

s Mumier: Intsger=getiextili)
| sl nteoss
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wright Double=0.01 fweight = 0.0
gendar: Gendarkind

| shsight: Doubla=5.5 [haight: ()
sWllorking: Bookaan

e ONSIUGEan: +Crashllumms )
et e Inkacyar

+hira(im thisllate: (late = [aday )

Airalin thisDate: Data=Today)

Figure 3-6: A class with many features.

The CrashDummy class in illustrates some of the features that are discussed in this chapter. The
attribute compartment has several private attributes and the operation compartment has several public
operations:

B The birth attribute captures the construction date for the Crash Dummy.
B The age attribute captures the targeted age that CrashDummy mimics.

B You use the gender attribute of the dummy to capture the gender that the CrashDummy
mimics.

B Use the weight and height to capture physical properties of the dummy. Each has their own
default value and a constraint governing their values.



B You can see a Boolean isWorking attribute, which reflects whether the dummy is need of
repair.

B The nextlD attribute is a static (also known as a class-scope) attribute, whose value is
available to the class as a whole.

B The nextlD attribute is used with the static operation getNextID().

B The CrashDummy() operation is also considered a static operation; although it makes a
CrashDummy object, it operates on the class to do so.

B The CrashDummy() operation is also flagged with the stereotype «constructor» to remind the
reader or tools that this operation will make up new objects.

Most of these attributes capture constant properties of a CrashDummy object. After you set them, you can
forget them, as they don’t change over the life of the object. However, make you shouldn’t forget that objects
typically have attributes that reflect the state of the object and may change over time.




Chapter 4: Relating Objects That Work Together

Overview
In This Chapter
B Showing how objects and classes relate
B Figuring out how many objects relate to each other
B |ndicating which objects play multiple roles
B Adding attributes to associations
B partitioning your objects
B |mplementing associations

UML allows modelers and programmers to show static relationships between classes and objects. If you're a
modeler, you describe relationships between objects that communicate with each other in the real world so
you can better understand these objects and their classes. If you're a programmer, you specify which objects
interact with each other so you know how to define classes in your program. This chapter tells you about two
types of relationships—Iinks and associations—and shows you the UML notation for modeling these important
relationships between objects and between classes.

You must resolve a lot of issues as you define and depict relationships between objects and classes. You
need to figure out how to show an association and what makes a good association name. You also need to
decide how many objects can link together. Then, you need to think about the details of associations, such as
names at each end of an association, association classes, and qualifiers. These issues can be tricky, but we
break them down for you. We also give you some pointers to help you accurately model various associations
and take the mystery out of what modeling associations mean for your programs.




Showing Static Relationships in a Class Diagram

There is a lot more to this world than just objects. Relationships between objects are just as important as the
objects. In UML these relationships are defined using associations and links. To give you a concrete sense of
these relationships, we use several different examples. Our first example involves a company that rents crash
dummies to clients for tests. Consider this the Rent-A-Crash Dummy example. You have to relate the crash
dummies to the clients who rent them—and show that a specific crash dummy named MAX was rented to a
client named Safety 'R Us.

An instance of a class is an object. We use the words object and instance interchangeably.

Links are instances of associations. Associations relate classes, whereas links relate instances of those
classes (objects). So a link would connect an object in the Client class with an object in the CrashDummy class.

You show a simple association by drawing a line between the two classes you want to relate. Likewise, you
show a link by drawing a line between two instances of two associated classes.

After you have specified that two classes are associated, think about a few details for depicting the
association. Here’s a quick list (which we discuss further later in this chapter):

B Name: Normally an association has a name—placed along the association line—that
describes the relationship between the classes. Older versions of UML specified italics for
the association name so it would stand out. UML 2 doesn’t require italicized association
names—but it's not a bad idea. A good practical rule is to use the form that your UML
modeling tool uses.

Names of associations are not underlined, but the names of links are. Use associations to
connect classes; use links to connect objects.

u Use multiplicity to specify how many instances of one class can be linked to a
single instance of another class. The multiplicity is shown as a number (or numbers)
indicating the lower and upper bounds on the number of links at each end of an association.

B Roles: Here you name the class on one end of an association by indicating how the class
participates in that association. The name is placed at the end of the association closest to
the participant class it is identifying.

B Constraints: Employ constraints on an association if its underlying links must follow some
rule(s). Place a constraint in curly brackets {} close to the association.

B Qualifiers: Use qualifiers to show that navigation from an instance of one class to a
partitioned set of instance(s) of another class must be based on an attribute of that other
class. Place a qualifier in a box appended to the class from which the navigation begins.

B Directional navigation: Utilize a navigation arrow on the association line when one class can
communicate one way with another. Show directional navigation with an arrowhead at one
end of the association, indicating the direction of allowable communication.

Well, yes, there are a lot of details here, but the chapter takes you through them. Fortunately, you don’t have
to place all these details on each and every association in your diagrams. Usually the name of the association
and the multiplicities are all you need.




Linking Objects Together

When you want to show that a relationship exists between two objects, you create a link in your UML class
diagram. That is, a link is the device you use in a UML diagram to indicate that two objects communicate with
each other. The link appears as a line connecting two boxes representing the objects and may have a name
showing somewhere along the line.

Remember these characteristics of links when creating or reading a UML diagram:
B A link relates two objects that communicate.
B A line connecting two object boxes represents a link.

B Naming the link is optional. We name a link only if it helps clarify what we mean to others
who look at our diagrams.

So say that Safety 'R Us is a company that rents a dummy called MAX for testing. shows an object
called SafetyRus (an instance of the class Client) renting MAX, an instance of the class CrashDummy—and rents
is the name of the link between these two instances.

fents
SafetyRus : Client | { MAX : CrashDummy

Figure 4-1: Two linked objects.

Only when two objects are linked together can they communicate. In UML, the link notation allows the modeler
to specify that SafetyRus is linked to MAX, and therefore SafetyRus can rent MAX. The link notation allows the
programmer to specify that the instance SafetyRus is linked to the instance MAX, and therefore SafetyRus can
invoke MAX’s operations. Still confused? Well, try looking at links like the strings on a marionette. If you want to
invoke the behavior of the puppet, you must be linked to it via the strings.
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Associating Classes

You show meaningful relationships between classes with an association. It's called an association because
you are indicating that instances of certain classes associate—that is, communicate with each other—and
thus work together. The definition of an association sounds a lot like the definition of a link.

Keep in mind:
B | inks relate objects.
B Associations relate classes.

B You give the association a name to help others understand the nature of the relationship
between two classes.

shows a simple rents association between the Client class and the CrashDummy class. Clients do not
purchase or make crash dummies; clients rent crash dummies. So we want to use UML associations to

indicate what the instances of these classes do when they get together. The link shown in Eigure 4-1 is an
instance of the rents association shown in ‘.

Cliert f—_ Fents

— CrashDummy

Figure 4-2: Two associated classes.

Because a link between two objects carries the same name as the association between the objects’ classes,
the link name is often omitted. This is a fancy way of saying, Name your associations, but don’t worry about
link names.
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Naming Your Associations

When you name an association, use a verb phrase that best describes what these two classes do with (or to)
each other. If you consider the classes at either end of an association along with the association name, then
the whole thing can be read as a sentence, such as, “A client rents a crash dummy.”

Try to find an active verb phrase that relates the two classes. This enables others to understand your
diagrams more easily.

Although associations have meaning in both directions, the name you choose should be readable from left to
right or from top to bottom when someone is looking at your diagram. When you build class diagrams with
many classes and associations, however, you cannot avoid having some of your association names running in
the wrong direction. If you must use an association name that reads from right to left or bottom to top, then use
a small arrowhead—the name-direction arrow (as in figure 4-3)—to help the reader. Considered as a
sentence, the association in figure 4-3 reads like this: “Test equipment monitors a crash dummy.”

+ [TCHILSTS
CrashDummy 1 TestEquipment

Figure 4-3: Use of arrowheads for reading association names.

Some UML modeling tools (software that helps you draw UML diagrams and may generate code as a
result) don’t have the directional-arrowhead feature that UML requires. In such cases, we use the keyboard
symbols in [Table 4-1f as substitutes for the arrowheads. If possible, however, we recommend using
name-direction arrows (if your UML modeling tool provides them) to help other developers know exactly what
you mean.

Table 4-1: Substitutes for Association-Name Arrowheads

Symbol Keyboard Keys Purpose

< Shift+, (comma) Read association from right to
left

A Shift+6 Read association from bottom
to top

> Shift+. (period) Read association from left to
right

Y Lowercase v Read association from top to
bottom

We highly recommend that you name your associations. Names emphasize relationships instead of data
flow (more about that in the sidebar, ‘Noname associationd”); they also increase the readability of your
diagrams by leaps and bounds. After all, UML is all about effective communication with other developers.
When we return to a class diagram months after we put it together, the association names help us remember
what we had in mind months earlier.
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Relating Many Objects (Multiplicity)

As in the real world, you can link one object to many instances of another class. Surely, if you want to have a
successful business renting crash dummies to clients, your clients should be able to rent more than one
dummy at a time—and a dummy should be rentable to more than one client over time. Specifying how many
instances can be linked together is called multiplicity.

When showing multiplicity on your association, remember to do the following:
B position the multiplicity numbers above or below the association line, close to the class.
B place multiplicity numbers at both ends of an association.

B Use multiplicity to show how many things at either end of an association are potentially
linked together.

Notice the 1..* symbol close to the CrashDummy class in . This symbol tells you that a client rents at
least one or more crash dummies. In other words the appearance of 1..* represents the idea of having one or
more instances of CrashDummy that a Client rents. The 1 in the 1..* means that a client must rent at least one
crash dummy. The *in 1..* indicates that a client can rent more than one crash dummy, and does not place an
upper limit in the number that can be rented.

Because associations have meaning in poth directions, you also place a multiplicity symbol on the association

Figure 4-4, you see that a CrashDummy can be rented by zero or more instances

line next to the Client class. In
of Client (0..%).

rents

l:] '

Client =

1

T LrashlDumimy

Paultiplicity

Figure 4-4: Association with multiplicity

Determining multiplicity

When you specify the multiplicity of an association, you must determine the value to place at each end of the
association line. Follow these steps to make your determination:

1. Establish the classes that form the endpoints for the association.

In this example, the classes are Client and CrashDummy, connected by the rents
association line.

2. Examine the characteristics of the association from the perspective of one class.
In this example, we look at the Client class and ask ourselves the following questions:
B Can a client rent zero crash dummies and still be a client? (No.)
B Must a client rent at least one dummy? (Yes.)

B Can a client rent many dummies over time? (Yes, many.)
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The answers to these questions tell us that the multiplicity must be 1..* because the
client must rent at least one crash dummy, and can rent many.

3. Place the multiplicity symbol that represents the answer to questions in Step 2 at the

proper point on the UML diagram.

In this example, we place 1..* at the opposite end of the association from the Client

class.

4. Repeat Steps 2 and 3 from the perspective of the other class.

To complete this example, we look at the association from the perspective of the
CrashDummy class. We ask ourselves the following questions:

B s it possible for MAX to never be rented? (Yes, poor MAX.)

B Must at least one client rent MAX? (No.)

B Can more than one client rent MAX over time? (Yes, although not at

exactly the same time.)

The answers to these questions tell us that the multiplicity must be 0..* because a

particular crash dummy may never be rented by a client,

by many clients.

but could (over time) be rented

Finally, we place 0..* at the opposite end of the association from the CrashDummy class.

Notice that we first look at the association from the client’s perspective—as if we had only one client. We
decide to use 1..* as the multiplicity symbol and place it at the opposite end from the client class. Then we
consider the multiplicity from the crash-dummy perspective. The chosen multiplicity is 0..* and we place it at

the opposite end of the association from the CrashDummy class.
Representing multiplicity

lists the various symbols that can use for multiplicity. To understand

multiplicity symbol at the crash-dummy end of the rents association in figure 4-

in the figure with a symbol from the table to see what that multiplicity means.

Clert ——10 fonis

1 CrashDummy
o - A

Figure 4-5: Choosing multiplicity

he table, consider the
. You can then replace the ??
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Table 4-2: Multiplicity Symbols

Multiplicity

Meaning Symbol

1

A Client instance must be linked with exactly one

instance of CrashDummy no more and no less.

A Client instance may be linked with zero or
more instances of CrashDummy.

0..* A Client instance may be linked with zero or
more instances of CrashDummy. This is just like
using * for the multiplicity.

0.1 A Client instance may be linked with either zero
or one instance of CrashDummy. This is known
as the optional multiplicity.

1.* A Client instance must be linked with at least
one or more instances of Crash ny. This is

the multiplicity we chose for

5..9 A Client instance can be linked to at least 5
instances of CrashDummy but not more than 9
instances.

3,5,7 A Client instance can be linked to (and thus rent)
3 or 5 or 7 instances of CrashDummy.

Using multiplicity

The multiplicity you end up with on your diagrams varies depending on the application you develop. For
instance, suppose you build an application that keeps track of all clients who ever rented dummies, whether
they are renting some now or not. You would have to allow a multiplicity of zero or more for the CrashDummy
class (as shown in ). In this situation, you have the possibility that an instance of Client rents zero
crash dummies.

If your application is a simple order-entry system, you may require that a client rents at least one dummy.
However, if your application is keeping track of all clients, you need to show that a client rents zero or more
dummies.

Client ‘—

—= LCrashlummy
0. 0.."

Figure 4-6: Multiplicity depends on the application.

MWhen you start thinking about the multiplicity of your associations, you uncover hidden assumptions
about how many objects can be linked together. When you talk with users, often they’re vague about
associations and don’t consider every possible way of linking the instances of one class with the instances of
another class. For example, thinking about objects that invoke each other’s behavior in a program can easily
make a programmer forget to consider all the different situations. It's left to you to discover whether an
instance of one class must be linked to another—or perhaps doesn’t always require a link. Consider these
details when you gather requirements and analyze the situation; it pays dividends later, when you start
programming.
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Some time ago, we were writing a simulation program that associated airplanes with their location on a
simulated map. The location was called a cell—the map was composed of | each plane was placed in
a cell. As the simulation progressed, a plane would move from cell to cell. EiZure 4-1 shows a UML diagram of
the associations between plane and cell. A plane is currently located in exactly one cell and a plane moves
through one or more cells during the simulation.

: mxcaled i 1 )
Plane | { Cell

maowves throwghr

Figure 4-7: Multiplicity example with cells and planes.

What we didn’t properly appreciate at programming time was the fact that a plane had to be in a cell. We
created the plane class but did not enforce any multiplicity. So, when we started to use instances of the plane
class, they were not automatically assigned to a cell. When another object in our program asked a plane,
Where are you? the program blew up—that's because it was chasing a null pointer to a nonexistent cell object.
(A null pointer is a program variable that is set to zero instead of to a valid address in a computer’s memory.
This one was a real nuisance.) If we’d used UML, we would have discovered the need to code a link from
plane to cell, right from the start, instead of having to debug and rewrite it after the fact. This is just another
example of why considering the details of multiplicity is a good habit to get into.
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Understanding the Roles That Classes Can Play

When objects get together, sometimes they behave differently in different relationships. You could say they
have multiple personalities. We use the term role to describe in a single name how a class behaves in
association to another class.

For example, consider one of your authors as if he were an object (he won’'t mind): He plays the role of
Husband in the relationship with his wife—and in quite a different relationship to his job, he plays the role of
Chief Technologist. (Sometimes he plays the role of Crash Dummy.) He plays many roles, depending on who or
what he’s associating with. The same is true of objects in UML.

When adding roles to your association, consider the following:

B A name is shown on the association line next to the class that plays some role in
relationship to another class.

B You use roles to help clarify the nature of the behavior that an instance exhibits when it's
linked to an instance of another class.

In versions of UML previous to UML 2, the name at the end of an association was called a role. In UML
2, the word role has disappeared, replaced by association end name. To be precise, a name at an “association
end” indicates what kind of behavioral participation the instances of one class (at that end) perform in
relationship to instances of the class that occupies the other end of the association. That specific kind of
behavioral participation is, in effect, a role—so the idea that objects play roles in relationship to other objects
still makes sense to us. Therefore, as a practical matter, we use the word role instead of “association end
name.”

The Cell class in has two different roles in relationship to the Plane class. An instance of a cell may
play the role of “current cell” in association with one plane, and a “route element” in relation to another plane
that has already moved through that “current cell” to another cell.

: mcaled i 1 )
Plane | {  Call
| current cell | i
. 7 -
route alermani

Moves through

Fole names

Figure 4-8: Class diagram with roles.

You can think of a role as the name of an attribute belonging to the class on the opposite side of an
association. The role “current cell” is an attribute of the class Plane en though the diagram doesn’t show it,
the class Plane has attributes currentCell and routeElement (as in . The data type for each of these
attributes is the class Cell.

Association names are important to the readers of your diagrams. Role names are important to the code
generators of your UML modeling tools. We recommend you provide role names on your class diagrams
whenever you can; it makes for better code generation.
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Plane

-currentCell : Cell
-routeklement : Cell[1..7]

Figure 4-9: The Plane class with role-name attributes.

Diagrams for modeling objects and classes come in two flavors—class diagrams and instance diagrams.
The class diagram shows the static structure of classes and their associations. The object diagram shows
objects (that is, instances) and their links. You use class diagrams most of the time—but now and then an
instance diagram helps clarify a class diagram by providing an example. You build class diagrams to
communicate the structure and behavior of each class. To show which classes can interact, you associate
them together. When other developers have trouble understanding the meaning of your class diagram, use a
instance diagram to show specific objects linked together. The instance diagram illustrates your class
diagram.

When we put together the class diagram in , for example, some developers didn't understand what
we meant. So we built a sample instance diagram (shown in figure 4-1(). Note that Figure 4-4 shows a Plane
class associated with (located in) a Cell class—and the Cell class plays the role of currentCell. Eigure 4-1
illustrates the meaning of these associated classes by showing an instance of Plane (p12) linked to only one
instance of the Cell class (c45-23). Here cell c45-23 plays the role of the current cell, showing where plane p12
is at this point in time.

also shows aPlane class associated with (moves through) a Cell class. Here the Cell class plays a
different role, that of routeElement. Again, illustrates the meaning of the association (moves through)
by showing the p12 instance linked to three instances of the Cell class—c45-20, ¢45-21, c45-22. Each of these
three Cell instances plays the role of routeElement, showing which other cells plane p12 has visited on its route.

Thus an instance diagram can help you clarify the meaning of a class diagram by illustrating it with a specific
example of linked objects.

- i
P12 : Planeg I | c45-23 : Call
| cuanreEnt Cell |_ |
! cd 520 - Call
routeElament |_
| c45-21 : Call
routek el | ]
- | cd 527 - Coll
routaElament |_

Figure 4-10: Instance diagram




Associating Classes with Themselves

You may need to show that two instances of the same class can be associated with each other. In certain
tests, for example, crash dummies are lined up in a row with one dummy as the leader and the rest as
followers. During the test, the lead dummy blocks the dummies lined up behind it. Each dummy then has an
association—block—to the next dummy behind it. Such an association relates instances of the same
class—and is known as a reflexive association.

When diagramming reflexive associations, remember to do the following:

1. Draw an association.

You need an association that comes out of a particular class and goes back into the
same class.

2. Name the association.

Make sure you name the association so it reads like a sentence.
3. Add multiplicity.

Consider the multiplicity at each end of the association.
4. Provideroles.

To lend clarity to the diagram, add role names to describe what different instances of
the same class do in the association.

You would read the diagram in as follows: “A crash dummy blocks zero or more instances of
CrashDummy in the role of follower. Further, a crash dummy may be blocked by one crash dummy in the role of
leader.”

0..1

CrashDummy

leader

follower | 0..°

<blocks

Figure 4-11: A reflexive association.

To read the blocks association shown in , you would read in the reverse direction, like this:

“A crash dummy (class name) is blocked by (association name in the reverse direction)
zero or one (multiplicity) instances of CrashDummy (class name) in the role of leader (role
name).”

Reading reflexive associations

Reflexive associations can be tricky to diagram, which can also make them tricky to read. Here’s how




CrashDummy

wer {ordered} | 0.

Team LiB 4 FREVIOUS | MEXT b
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Using Association Classes

When you model the real world you find attributes that do not seem to fit in any one class. For instance, in our
rental example you have two classes, Client and CrashDummy. Further, you know that clients rent crash
dummies.

Now you want to model the attribute dayOfRental. The value of that attribute is the day a particular client rents
a particular dummy. Where does the attribute belong?

Well, for openers, the dayOfRental attribute does not belong in Client; the client may rent dummies on different
days. You could create attributes for client called dayOfRentall, dayOfRental2, and dayOfRental3. But if you
create multiple attributes, how do you know which crash dummy was rented on dayOfRental1? On the other
hand, dayOfRental doesn’t belong in CrashDummy either; any given dummy can be rented on many different
days, to different clients. The solution to this dilemma: Recognize that dayOfRental is an attribute of the rents
association and not an attribute of a class.

If you find an attribute whose value depends on more than one class instance, you need a third class that
holds that attribute. For example, the dayOfRental attribute depends on the specific instance of Client and the
specific instance of CrashDummy that were linked in the rents association on that day. You would designate
the needed third class—an association class—by using a dashed line to connect the new class to the
association.

shows the UML notation for showing such special attributes. The figure shows your two
classes—Client and CrashDummy—in the rents relationship. It then shows another class (Rents) that contains
the special attribute dayOfRental.

rents
Client r CrashDummy
1 a.s 1 1.7 L

Rents
- dayOfRental : Date

Dependency  Associationclass

Figure 4-13: The Rents association class.

In UML, a dashed line means dependency; shows dependency between the Rents class and the
association named rents.

REUEMIEE The name of the association class must be the same name as that of the association—because
they are really two different aspects of the same association. Association classes are, however, classes in
their own right—so they can have operations as well as attributes. You can even associate your association
classes to other classes—but this can get complex in a hurry. Our recommendation is to keep your modeling
simple and easy to read.
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Qualifying Relationships

People often partition the objects of a class into groups based on the value of an attribute in that class when
they describe the real world. This grouping of objects may be an important aspect of an association between
two classes. In our rental example, we group crash dummies by their size—and it turns out that size is an
important attribute of a crash dummy. When clients place orders for crash dummies, they always specify the
size of the dummies they want. When placing orders, the client “qualifies” the order with a value for dummy
size. They ask for two 72-inch dummies and three 52-inch dummies. It helps the order processing to group the
orders according to the sizes requested. Thus the orders association between client and crash dummy is
known as a qualified association.

Modeling this situation requires the use of something the UML gurus call a qualifier, a notation that
ualifies—that is, partitions into groups—navigation from an instance of one class to the instances of another.

Figure 4-14 shows a qualified association where the qualifier occupies a small box between a class and an

association. The qualifier goes at the opposite end of the association from the class of which it's an attribute.

Say what? In , size is an attribute of CrashDummy. When a Client instance orders zero or more
instances of CrashDummy, they must specify the size they wa he gualifier size goes at the opposite end of
the orders association, away from the CrashDummy class.) So means that if we take an instance of
Client and a value for the size qualifier, then we have zero or more orders links to instances of the class
CrashDummy. So, given a specific client, the particular crash dummies rented are of a certain size.

A qualifier is i in the instances at the far end of the qualified association. Any attribute
can have a datatype. In figure 4-14, for example, the size qualifier has the inches datatype.

Clualified

] ] awlers
Client | size : inches } { CrashDummy

0.- 0.~

Figure 4-14: Qualifying an association.

Reducing multiplicity—with qualifiers

Often you find qualifiers reduce the multiplicity of an association. The rents association between the Client
class and the CrashDummy cample) is a many-to-many assaciation. |f we recast the association as
a qualified association (as in EiLg:ure 4-15), the multiplicity is reduced.‘ has the following meaning:
“Given an instance of Client and the value for a CrashDummy serialNum, the Client rents zero or one instance
of CrashDummy.” (This is true because each crash dummy has a unique serial number.) Using qualifiers to
reduce multiplicity is like tossing a lot of similar things into a bin, where the bin name describes the contents. If

bin name is a unique attribute (like serial number), you get one thing per bin. If the bin name is descriptive
attribute (such as size), you can get lots of things per bin—but less than the whole drawer.

Client | seriallNum F—_ rents

— CrashDummy
. {1..1

Changed multiplicity
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Figure 4-15: Qualifiers can reduce multiplicity.

Indexing with qualifiers

During design, you may want to tell the programmer to use an index when invoking the methods of an object
at runtime. An s a way of quickly looking something up; it works like a card catalog at the public library:
You look up a book by its title, author name, or keyword. The card catalog provides an index for looking up
books quickly rather than searching each shelf for the book. We've often found that qualifiers are a good way
to show indexing in UML.

As a designer, you're often concerned with performance—and if 0 execute a fast lookup to find a
particular crash dummy by its serial number, then the diagram in does the trick. To show the
programmer you want a fast way of looking up crash dummies by serial number, use the qualifier notation in
your class diagram.




Finding a Way—Navigation

Whenever you associate two classes, you are indicating that instances of these classes can “see” and
communicate with each other. That means you can navigate from one side of an association (the source) to
the other side (the target). An association is navigable in both directions if the objects involved invoke
operations (in which an object sends a message to another object to ask the second object to perform some
specific behavior) on each other. If you have objects involved in an association and they can navigate in both
directions, then each object can serve as both a source and a target.

You may only need to navigate an association in one direction during runtime. To show this navigation
constraint, you place an arrow on the association line to indicate the direction of the invocation—from the
source object toward the target object. We generally use navigation arrows during design time. If an
association has no arrow, then (normally) it's okay to implement the association in both directions. If an
association has an arrow, then you program the association only in the direction of the arrow—and not the
other direction.

In , the arrow on the rents association line indicates that an instance of Client can invoke methods
of CrashDummy objects at runtime. However, an instance of CrashDummy cannot see (and thus cannot
navigate to) instances of the Client class, as it would have to do in order to invoke behavior on instances of
Client.

renis 1.° [
Cliert | == CrashDummy
Q.." +rented Dummy

Figure 4-16: Using the navigation-arrow symbol.
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Creating a Program

Suppose you want to implement your program by specifying an association between classes in a UML
diagram. We want to show you how a UML diagram wijth associations is turned into code. Refer to the class
diagram in , the following bulleted list, and Listing 4-1] to see how this simple model of client and

crash dummy becomes program elements implemented in Java programming code:

| " | Fal
Chent - B,
jo."
l |
l l
SizE ::'r::l:-:‘:‘.l .
| e - TR rented Durmimy
o 1..°
Uy
| CrashDurmmy leader
Greies 0. ———
L careliers E S
ordered Durmimy | . 0.1
follower | G.°

= blocks

Figure 4-17: Class Diagram of clients and crash dummies.

Classes: The Client and CrashDummy classes become classes in the Java code in
statements such as the following:

public class Client

Associations: The rents, orders, and blocks associations become combinations of attributes.
For example, you implement the blocks association in both directions by declaring the
attributes public CrashDummy leader and public CrashDummy follower[] within the CrashDummy
class. The diagram shows you can only navigate from Client to CrashDummy (and not the
other way around); the rents and orders associations are implemented only in the Client class,
as follows:

public Btree orderedDummies;
public List rentedDummy;

Roles: Notice that we use the role names as the names of the attributes used for
implementing an association. So the role of leader is implemented as the name of the
reference attribute leader by making the following declaration:

public CrashDummy leader.

The orderedDummy, rentedDummy, and follower roles are also handled as attributes, along the
following lines:

public Btree orderedDummies;
public List rentedDummy;
public CrashDummy followerf[];

Qualifier: The size qualifier is implemented as Private Integer Size so it is an attribute of
CrashDummy. The qualification aspects are implemented using a Btree class named
orderedDummies. The Btree class allows you to associate a value for the size qualifier with an
instance of CrashDummy. Then, the Btree is used to lookup a CrashDummy by its size.



u Finally, the multiplicity is handled by using the following:

O A simple reference pointer, as in Public CrashDummy leader where

multiplicity is to 0..1 or 1.

O An array as the default for handling multiplicities of more than one, as in

Public CrashDummy follower(].
O A designer-defined container, such as List or B-tree.

What would the diagram in look like in a programming language such as Java? We
classes to classes and associations to references, then you generate code that looks similar to

Listing 4-1: Java Code for Simple Associations

| if vou ¢

isting 4-1.

public class Client

{
public B-tree orderedDummies;
public List rentedDummy;

public Client() {

}

}

public class CrashDummy

{
public CrashDummy leader;
public CrashDummy follower([];
Private Integer Size;

public CrashDummy() {

}
}

vert




Chapter 5: Including the Parts with the Whole

Overview

In This Chapter
|
|
|

Modeling the whole and its parts
Differentiating between aggregation and composition
Programming considerations for aggregates

Showing parts within class boxes

When you model associations between classes, you find that UML treats one kind of association with special
reverence. This particular association embodies the “whole-or-part-of” relationship that UML modelers call
aggregation. Aggregation is just a fancy way of talking about a group of distinct objects (parts) gathered
together to form some whole. In this chapter we define aggregation and its stronger form—composition. We
demonstrate the UML notation for aggregation and explain why it holds a special place among associations in
the world of object-oriented modeling and programming.




Representing the Whole and the Parts

If you have a class such as car and you want to model the car and its parts (such as the engine, brakes,
chassis, and wheels), you use aggregation. In UML, aggregation shows the relationship between the whole
and its parts. Using the notation is simple; just follow these steps:

1. Decide which class is playing the role of the whole and which classes play the role of the
whole’s parts.

2. Draw an association line between the class that is playing the whole (car) and each of its
parts (engine, brake, and so on).

3. Place asmall diamond shape on the association line, right up against the class that is
playing the role of the whole (car).

We show an example of this diamond shape_ in , later in this chapter. (We aJso
talk about when to fill in the diamond as in and when not to as in figure 5-

later in the chapter.)

Lenericiepor

sOlStatemment © Strirg

<«Constructors:= genericReport () : GenericReport
printip : Printer)

sedHeader jcomparty @ Strirg, tithe @ String)
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<sinuciors > dalatal)

¢ ¢ + 4

1 1] 1 1
] ! 0.1
Hexide Fadde
companyMame | String primtDate : Date
raport [itle : String copnyright | String
pagehum : Integer address @ String

1 phonabum ; 5iring
printip : Printer) t
- ) prir{p ;. Printer)

1.7 . 1..% | detail
Ceolurmn Hoscly
title ; String text ; String
startPosition : Integer
length ; Integer | prink(p : Printer) |

print {p - Printor)

Figure 5-1: Example of composition, a strong form of aggregation.
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Figure 5-2: A weak form of aggregation-some parts survive if the whole goes
away.

4. Consider the multiplicity of this special association that is now an aggregation.
Usually the whole has multiplicity of one.
5. Consider the multiplicity of the each of the parts in relation to the whole.

For example, the engine has a multiplicity of one, and the wheels have a multiplicity of
four (or five if you count the spare tire).

Modeling complexity

For the modeler, aggregation is important because it hides complexity. Objects are like black boxes: We can
see the outside of the box but not what is inside. If an object is really an aggregation of parts, then the inside of
the box may be complex. A car, for example, is a complex object—and (as with a black box) we don’t have to
understand all its internal parts to use it. The aggregation notation helps the modeler handle complexity by
building two diagrams:

B External associations of the aggregate: On this class diagram, place the class playing the
whole, and show classes outside the whole that are associated with the whole. This first
diagram shows the external context of the whole class.

This diagram hides the complexity of the internal parts. In other words, just look at the
external aspects of the complex whole.

B |nternal structure of the aggregate: On this second class diagram, place the class playing the
role of the whole at the top and show all of its parts underneath. Then consider the
associations between the parts and show those on this diagram.

This diagram only shows the classes involved in the aggregation and does not show any
classes outside the aggregation. The modeler can focus on the internal workings of the
aggregate without the complexity of what is outside the aggregate. In other words, just look
at the internal aspects of a complex whole.

Considering aggregation behavior

A whole and its parts form a special bond. The whole object usually invokes the behavior of its parts to
accomplish its own behavior. When you start a car, you use an interface (the ignition-key slot) that is part of
the car. After turning the ignition key, various parts of the car (wires, battery, ignition coil, engine, and so on)
are invoked in the right sequence to start the engine. From a programming perspective, the whole (car)
invokes behavior on the aggregated parts to achieve its requested behavior (to start running).
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For programmers, aggregations have a special meaning beyond just allowing instances of one class to invoke
the behavior of instances of another class. Because the whole controls its parts, use the following when
designing operations for the whole and its parts:

B constructor: Think about the constructor operation (the operation invoked to create
instances of the class) of the whole. Ask yourself what parts must be available as soon as
the whole object is created at runtime. Be sure to create them in the constructor’'s method
(the actual code for the constructor operation).

B | ife cycle: Consider the life cycle of the whole. You need to think about the state changes the
whole goes through during its life—and for aggregates, this can be quite complex. During the
life of an aggregate, its parts are created and deleted at specific times, and the aggregate
invokes the behavior of each part at specific times in specific order. You may want to
consider building a state diagram for the_class that plays the role of the whole. (You can find
more information on state diagrams in Chapter 16.

—

B Cascading operations: For each major stage in the life cycle, consider what behavior the
whole is performing. Further consider which parts get involved to assist the whole. For
example, when the car is asked to accelerate, the accelerator, throttle, engine, transmission,
axes, and wheels get involved. When the car is asked to stop, the brakes, wheels, axes,
transmission, and engine are involved. Think of how requests of the whole object are passed
down to requests on the parts.

B Handling errors: Consider how you handle errors. If a part is having a problem, the natural
place to handle the problem is within the part. However, if the part can’'t deal with the error,
you can throw the error over to the whole and let it deal with it. Often the whole object
“knows” enough about the internal workings of itself and all its parts that it can rectify the
problem.

B pestructor: Don't forget the destructor operation (the operation that contains behavior to
delete instances of a class) of the whole. You should consider what happens when the whole
is asked to destruct. Take the time to think about the life cycle of the whole’s parts. Reflect
on whether any parts are left over—are they all destroyed along with the whole? Program
your destructor operation on the whole accordingly.

The following are some quick guidelines for specifying aggregation:

B Don't worry about naming this special association. All aggregations are also associations.
Aggregations are a special kind of association because they associate a whole with its parts.
So, all aggregations are implicitly named “part-of.” You can name them if you want to, but
you don’t have to.

B Consider naming the part end of the association only if it plays some special role in relation
to the whole.

B On the class representing the whole, add operations that control the parts.

B Create a state diagram for the whole, indicating its dynamic life cycle. (See for
more on state diagrams.)

B Carefully consider the constructor and destructor operations on the whole.




Showing Ownership: Composition

If you have a part instance of some whole instance which belongs to one and only one whole, then you have a
special case of aggregation known as composition. With composition, parts can’t be shared with other objects.
The life of the part is completely within the life span of the whole. If you think of a VCR, it is a composite. Take
a look inside your VCR through the door that accepts the videotape. It is composed of all those internal

parts—such as circuit boards, a power supply, and a tape-transport mechanism. If the VCR is destroyed, then
all the parts within it are destroyed as well. When you have a part whose life is within the life of the whole, then
you have composition, which is a strong form of aggregation. To indicate composition in UML, simply fill in the
diamond that appears next to the class playing the role of the whole, as shown in figure 5-1.

A typical real-world example is a client who needs to build a reporting system. Imagi | & system
including a GenericReport class—a composite that contains several other classes. figure 5- illustrates a

simplified version of the class diagram that describes this composition. A GenericReport is composed of four
parts—Header, Column, Body, and Footer. The diamonds are filled in with a solid color to indicate composition.
Because composition is a kind of aggregation, and aggregation is a special form of association, you can place
association names, multiplicities, role names, and qualifiers on the line between the classes. Notice that the
body plays the role of detail. The multiplicity at the GenericReport end is 1 because these parts belong to one
and only one instance of the composite object (GenericReport). Given a GenericReport there are zero or more
instances of Header, one for each page of the report. A GenericReport has one or more Column instances, one

or more Body instances, optionally a Footer.




Showing What Can Be Shared: Aggregation

There are times when you want to show that a part can be shared among more than one aggregate. This is
known as the weak form of aggregation. A part such as a computer can be shared among different networks
at different times. The part's life is not strongly tied to the life of the whole. The computer as part of the network
maintains a separate existence from that of the network. You don't fill in the diamond in the case of this
weaker form of aggregation.

The relationship between a class playing the role of the whole and its parts in known as
aggregation. When the life of the parts are tied up in the life of the whole, then you call the aggregation
relationship composition. When a part is sharable among different wholes, then you simply call the
aggregation relationship aggregation.

uses the weak form of aggregation to model a common business object called SalesRegion. A sales
region contains one or more offices, may or may not contain a wholesale warehouse, and does contain one or
more retail outlets. Here the SalesRegion class is playing the role of the whole. Nevertheless, the association is
not a composition because the parts are not necessarily destroyed if the sales region goes away.

Here’s a closer look at the multiplicity in the direction from the parts to the whole: An office is contained within
zero or more sales regions, which means some offices belong to more than one sales region at the same
time. A single wholesale warehouse services zero or more sales regions. A retail outlet belongs to at least one
or more sales regions. The respective parts are potentially shared among sales regions.




Deciding between Aggregation and Composition

You might find it difficult to decide between modeling a relationship as an association, an aggregation, or a
composition. Here are a few clues to look for when you're modeling relationships:

B |f you hear words like “part of,” “contains,” or “owns,” then you probably have an aggregation
relationship.

B |f the life-cycle of the parts are bound up within the life-cycle of the whole, then you have a
composite.

B |f the parts are shared, then it's an aggregation.
B |f the parts are not shared, then you may have composition.

Aggregations (and composition) also have two other identifying properties: they’re not symmetric but they are
transitive. Hang on, these are fancy terms for a couple of simple ideas. An association is symmetric if it is the
same thing in both directions. Think of the relationship between a generic report and one of its columns.
Although it’s true that the column is part of the generic report, it's not true that the generic report is also part of
the column. (Seems obvious, doesn't it?) When you're deciding about whether you have a part-of relationship,
ask the symmetry question. The transitive property is a fancy way of saying: If A is a part of B, and B is a part
of C, then A is also a part of C.

Here's a down-to-earth way to say that again: If a filament (A) is a part of a light bulb (B), and a light bulb (B) is
part of a lamp (C), then the filament (A) is also part of the lamp (C). If you can apply the transitive property,
then chances are you have an aggregation.

summarizes these criteria to help you decide whether you have an aggregation, composition, or
association.

Table 5-1: Aggregation Versus Composition: Clues

Decision Result Criteria

Aggregation or Composition Part-of, contains, owns words are used to
describe relationship between two classes

Aggregation or Composition No symmetry

Aggregation or Composition Transitivity among parts

Composition Parts are not shared

Composition Multiplicity of the whole is1 or 0..1

Aggregation Parts may be shared

Aggregation Multiplicity of the whole may be larger than 1

Association Relationship does not fit the other criteria




Using Alternate Composite Notation

UML allows you to place a class diagram inside a class. When we're talking about composites, this isn’'t as
strange as it may seem. Since the second compartment of a class shows structure, and a composite has
complex structure within itself, then you can show the parts of the composite inside as a mini class diagram.

UML 2 has a new diagram name for this alternative notation: composite structure diagram.
The UML notation for class has three major compartments:
B The first compartment names the class, describes its stereotype and lists its properties.
B The second compartment shows the structure of the class as a list of attributes.
B The third compartment is where you place the class’s behavior specification.

This compartmentalization was allowed as an interesting idea in the previous version of UML 1.4. Most of the
CASE tools, however, didn’t pick up on this idea. But that is changing with UML 2.0.

Showing parts as classes

Modeling the strong form of aggregation—composition—often results in a class diagram with lots of confusing
lines. You have lines between the class playing the role of the whole and classes playing the role of the parts.
You also have lines showing the associations between individual parts internal to the composite. With all these
lines, the diagram can be difficult to read. UML 2 allows you to model composites and their parts as a class
diagram within a class (composite structural diagram). This reduces the clutter and allows you to be clear
about what you mean.

You can show the parts of a composite inside the structure compartment of a class by putting a box around
the part and providing a name for that part: part name, then a colon, then a class name for the part. If you
have more than one part of the same type in the composition, then you can show its multiplicity in square
brackets. For iff? f the Body part of a GenericReport would be surrounded by a box with detail:Body[1..*]
inside, as in Figure 5-3.




Composite whole

GenericReport

Header[0.."]

l|'.|I'I'.'I'.'!'.'I'.rl" 3

Colurmn]1.."]

- —
'\-\._\.
“-HH!rr.'c' for
"'\-\.H.
H'\"-\._‘

detail : Body([1..7]

precedes

Footer[0.,"]

Part Assembly connector

Figure 5-3: Composite parts shown inside a class.

Parts can also be connected by (you guessed it) connectors—lines that indicate links between instances of
parts within a composite—so those parts may communicate with each other. UML 2.0 provides for two kinds of
connectors—assembly and delegation. An assembly connector allows one part of the composite to supply
services that another part needs. On the other hand, use a delegation connector to show the whole composite
forwarding some external request for behavior to one of its internal parts. The assembly connector connects
two parts like an association. The delegation connector connects the whole with one of its parts. The
delegation connector is shown as a line from the edge of the composite class to one of the parts inside the
composite class.

illustrates just such a diagram. The GenericReport class is playing the role of the whole or
composite. The parts are anonymous parts with classes named Header, Column and Footer. One of the parts is
named detail which is of the class Body. The parts are connected using lines that can be named just like
associations. Indeed you can place multiplicity, role names, and qualifiers on these connections. Each of the
connections shown in are assembly connections. For instance the Header will invoke the print
service of Column.

Showing parts as attributes

his sectjon ties together composites, part diagrams (those class diagrams inside of a class), and attributes.
s ows the class for GenericReport and its attributes. Notice the correspondence between the
attributes in and the classes in . The class definition in ‘ hides the internal
structure of the GenericReport class by simply listing the major parts as attributes. The sglStatement is not a
part—rather, it's one of the attributes of the GenericReport class.
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GenericReport

header : Header[0.."]
column : Column|1..7]
detail : Body[1.."]
footer : Footer[0..1]
sqlStatement: String

Figure 5-4: Showing composite parts as attributes inside a class.

If you want to convert a simple class into a composite structure diagram, you can use as a guide.
The table shows the correspondence between attributes in a simple class diagram and the elements of a part
diagram inside of a composite class. For instance the detail attribute of the GenericReport becomes a part with
the same name in the composite structure diagram. The Body datatype becomes the name of the detail part's
class. The [1..*] multiplicity is carried forward to the multiplicity of the detail part.

Table 5-2: Attribute Correspondence to Composite Parts

Attribute Feature Composite Structure Feature

Attribute name Part name

Type Part’s class name

Multiplicity Allowable number of connections between part
instances

[« rreviovs [ exi )



Chapter 6: Reusing Superclasses: Generalization and
Inheritance

Overview
In This Chapter
B Reusing common attributes and operations
B Defining generalization and specialization
B providing steps to show generalization
B Adding discriminators to inheritance hierarchies
B \Weighing the pros and cons of multiple inheritance

It's natural to classify objects in categories and to organize categories into subcategories. If you look for a
place to live, you find yourself categorizing a dwelling unit as a house, apartment, townhouse, condominium,
mansion, and so on. Houses can, in turn, be further organized by styles such as ranch, split-level, colonial,
and saltbox. UML provides you with notation to capture these types of classifications—also known as
generalization and specialization—and make use of them as a modeler and a programmer. This chapter
covers generalization—and how it leads to inheritance. (Specifically, subclasses that inherit the attributes and
operations of a superclass. For more on superclasses and subclasses read on.) We show you the UML
notation for inheritance and how to take advantage of it.

Some of us object-oriented developers will go to great lengths to save ourselves a little work. When we can
model something once and reuse it, we're interested. If we can write a method (the program code for an
operation) for a class only once and use it many times, then sign us up for higher productivity. If you want to
save yourself time by specifying attributes and operations once and then reusing them many times, read on.




Making Generalizations

As you define classes, you may notice that some classes have the same attributes or the same operations.
When this is the case, you place these common features (attributes, operations, and so on) in a more generic
class called the superclass. The classes that share the common features are known as subclasses of the
superclass. For example, the length of recorded material on a videotape, audiotape, compact disc, or movie
film is an attribute of all four kinds of recorded media. These classes can share other attributes as well, such
as their physical dimensions and the date each one was used to make a recording. In this case the superclass
would be RecordedMedia, the subclasses would be Videotape, Audiotape, CompactDisc, and MovieFilm, and
some shared attributes could include recordedLength and totalLength.

This process of finding similar attributes or operations across classes is known as generalization. For example
you generalize the attribute recordLength into a more generic class called RecordedMedia. The process for
showing a generalization in UML is simple:

1. Identify the subclasses.

Locate classes that have the same attributes and/or operations. These classes are your
subclasses.

2. Create a superclass.

Provide a superclass to hold the common attributes and/or operations of the
subclasses. Give the superclass a name that categorizes all the subclasses. We
recommend placing the superclass above the subclasses in the diagram. (You don't
have to, but it does make it easier to read.)

3. Add common features to the superclass.

Remove the common attributes and operations from the subclasses and place them
(once) in the superclass.

4. Draw a generalization relationship.

You draw a generalization line from each subclass to the superclass. In UML the
generalization line is represented as a solid line with a hollow arrowhead at the
superclass end. In UML, a line with the hollow arrowhead that connects a subclass to a
superclass is known as a generalization relationship.

After you create a superclass with the common features such as attributes and operations, the subclasses
inherit those features from the superclass. This way you only have to write the common features once in the
superclass instead of many times in each of the subclasses.

You can tell whether you have a generalization by looking at the language you (or others) use to describe
the relationship between classes. Notice that in describing recorded media and its various types such as
videotape earlier in this section, we used the phrase “four kinds of recorded media.” If you find yourself using
phrases such as “kind of” or “type of,” then chances are you have a generalization on your hands.

One of our clients is concerned with keeping track of materials in an archive. This client has accumulated
different kinds of recorded media such as videotapes and audiotapes. As modelers, we need to capture the
differences between these media as well as their similarities. The diagram in shows the beginnings
of several generalizations, arranged in an inheritance hierarchy.




Goneralization
Folkeny arrowtezad

Hecordedhdedia

- recordedLength ; Time

- totalLength @ Time

- bt ; Float

- width : Floal

. depih : Float

- form ; Hecording TechnologyKind

v recormimendPlaybackbachine) : Eoquipment

Videotape |_ Mowviekilm

farmal @ Videotapebt andardkind | -cortairsdudio - Boodean
wideologhttached : Boolean

Compact Liss

srecordedTracks : Integer
-afrarbata | Intager

Avdiolape

format ; AudiobapeStandardKind
-trackshacorded | Integes
dolty : Boolaan

Figure 6-1: Simple inheritance hierarchy.

Developers use the term generalization or inheritance to refer to the same concept of reusing
shared attributes and operations that you show in a superclass and reuse in subclasses. Generalization refers
to the concept of generalizing from specifics (the subclasses) to the generic (the superclass). Inheritance
refers to the effect of generalization on the subclasses.

In RecordedMedia is the superclass. The hollow arrowhead is just below (and right up against) the
superclass. Lines from the arrowhead indicate that Videotape, Audiotape, CompactDisc and MovieFilm are all
subclasses or “kinds of” RecordedMedia. Each subclass inherits the common attributes of recordedLength,
totalLength, height, width, depth, and form. Each of the subclasses also has the operation
recommendPlaybackMachine as an inherited common feature from the superclass. Each subclass has its own
attributes as well. For example, CompactDisc has two unique attributes (recordedTracks and errorRate) that the
other classes don'’t share.

When you see a generalization relationship between classes, its meaning is very different from that
of an association relationship between classes (as discussed in ). An association is ultimately a
relationship among many objects—some instances of one class have a relationship (link) with instances of the
other class. In a generalization relationship among classes, the relationship is really about the classes. The
best you can say is that an object created from a subclass contains all the features of the subclass and of the
superclass.

You only have one object from a class in a generalization relationship. Even though you show two classes, the
subclass and the superclass, you only have one object that gets created. You can think f_ i? ft_zljd of the
Videotape class also being an object of the RecordedMedia class because of inheritance. figure 6-4 shows an
object created from the Videotape class with all its attributes. (The instance of a class is represented as an
object symbol.) You don’t have two different objects (one for RecordedMedia and one for Videotape), just one
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object. When the object vtu83-1023 was created, we set all its attributes’ values. The recording on the tape is
57 minutes. The total length of the physical tape is 60 minutes. The tape is a Umatic videocassette with a
height of 10 inches, a width of 7 inches, and a depth of 1.5 inches. The recording is analog, and a log of tape
contents is attached to the tape for the archivist to reference.

viuB3-1023 : Videotape

recordedLength = 57
totalLength = 60

height = 10

width =7

depth = 1.5

form = analog

format = Umatic
videoLogAttached = True

Figure 6-2: An instance showing all inherited attributes.

You only have one instance defined by a subclass and its superclass. The subclass and the
superclass may have a constructor operation (to create the instance) and a destructor operation (to destroy
the instance). When your software runs, and you create an instance of a subclass, the constructor of the
superclass is executed first, followed by the constructor of the subclass. When it comes time to eliminate the
instance you created, the destructor of the subclass is called first, followed by the destructor of the superclass.
If things are more complex because you have subclasses of subclasses, just remember: Constructors are
invoked from the top of the inheritance hierarchy to the bottom; destructors are called in order from the lowest
subclass up to the highest superclass.




Specializing Classes

You might hear some experts talk about specialization. Specialization is just the opposite of generalization.
Instead of taking common features from subclasses and creating a generic superclass, you create specialized
classes from a common superclass. In the archive we have “print media.” It turns out there are two kinds of
print media — books and transcripts. So print media is a superclass. Books and transcripts are specializations
and thus subclasses of print media. While we started with the idea of having a class called PrintMedia, we
recognized there were special forms of PrintMedia in the archive.

When you generalize, you start with some subclasses and develop a superclass. When you
specialize, you start with a superclass and develop some subclass.

For specialization, we start with PrintMedia and use UML to show PrintMedia as a superclass and it's
“specialized” subclasses. shows the inheritance hierarchy for PrintMedia. The Book class holds its

own unique attributes of isbn, author, title, publisher, and publishDate. Transcript (on the other hand) has typist,
editor, and transcribed attributes.

PrimtMedia

- sheetWeight : Float
- paper : Paperkind

+ neadsBinding() : Boolean

A

Book ' Transcript
istr - ISBNnum Typist : String
author : String editor ;@ tring
title : String tramscribed : Date

publisher : String
pubdishDate : Date

Figure 6-3: Print-media inheritance hierarchy.

We may have specialized from the class PrintMedia instead of generalized, but you notice that we still have an
inheritance hierarchy with a superclass and a couple of subclasses. So, the Book and Transcript subclasses
both inherit sheetWeight, paper and needsBinding from PrintMedia.

Generalization and specialization are just two sides of the same coin. Whether you generalize or
specialize, the UML diagram ends up having superclasses connected to subclasses—an inheritance
hierarchy. A developer looking at your diagram might focus on the superclass and think of the subclasses as
specializations. Another developer looking at your diagram might focus on the subclasses and think of the
superclass as a generalization. You can look at inheritance diagrams either way no matter what technique
(generalization or specialization) you used to create the diagram.

When doing practical development of systems, you'll find that you're doing a fluid dance with generalization
and specialization. Sometimes you'll be seeing how things look the same, comparing them and generalizing
the results. Sometimes you'll be seeing how things look different, contrasting them and specializing the
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results. If you work hard at it, and dance with everyone, you'll find the order of your dancing doesn’t make that
much difference to the final generalization hierarchy. You'll have gathered together the commonalities,
separated out the differences, and made a robust hierarchy.

[« erevious s o



Using Generalization Sets

Each generalization relationship is known as a binary relationship because the generalization relates two
classes: the superclass and a subclass. When you create an inheritance hierarchy, you also create a
generalization set—a concept that helps you discriminate among the subclasses that inherit general
characteristics from a common superclass. For example, the basis for distinguishing among the subclasses of
PrintMedia is the material form of each printed medium—whether a book, magazine, or transcript.

In our example of PrintMedia there are two generalization relationships, one between Book and PrintMedia and
the other between Transcript and PrintMedia. These two generalization relationships then form a generalization
set (known in earlier versions of UML as a discriminator), which is a characteristic that distinguishes individual
specializations of a class into subclasses. The basis for this particular generalization set is the physical form of
the printed material.

You can show the basis for discrimination among subclasses in UM Ist place the name of the
generalization set (discriminator) close to the hollow arrowhead. shows the name of the

generalization set to be physical form.

Printhedia

- sheatWelght : Float
- paper ;. Paperikind

¢ nvedsBinding() : Booloan

Gener alization set nams

physical fom ~ (& k.a, discriminator)

Book Trarscript
sk - ISEMnumm Lypist - String
L hcr ; HNg aditor - Sbrirkg
Lithe : String trarscritsed @ Date

pubiisher - String
publishDate : Date

Figure 6-4: Inheritance showing generalization set.

You should use named generalization sets when you have large inheritance hierarchies. This will make it
easier for others to know the basis for each part of your large hierarchy. If you ever have to add a class into
your hierarchy at a later time, you can make the right decision as to what part of hierarchy the class belongs so
your inheritance hierarchy remains consistent.

We experienced just such a problem with the materials in the archive. shows just the superclasses
and subclasses for archive material and their basis for discrimination into generalization sets. (We've hidden
the attributes and operations to make the diagram easy to read.) The ArchiveMedium are classified by the
mechanism used to create them (creation mechanism). RecordedMedia are created using some recording
device. PrintMedia are created using a machine that places ink on paper such as a printing press, photocopier,
or typewriter. Videotape and CompactDisc are types of RecordedMedia based on their physical form.
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Figure 6-5: Complex hierarchy with generalization sets.

Okay, now we have a nice inheritance hierarchy—everything fits. Then, someone remembers that some old
photos are also part of the archive. Photos are not made using a recording device, nor are they created putting
ink to paper. Photos have a different creation mechanism and they are a different physical form from the

classes in the hierarchy. However, because we have names for our generalization sets, we can see where to
place the new class in the hierarchy.

In order to solve the problem, we need add a new class, so we add PhotoMedia as a kind of ArchiveMedium and
Photograph as a kind of PhotoMedia. You create PhotoMedia with a camera and film, and then develop the film

to reveal a picture. Understanding the basis for discriminating between the subclasses of ArchiveMedium helps
place the Photograph class into the complex inheritance hierarchy, as in .

Archiveldedium

craation meaechanism

Recorcdadidod: Prictehdadia Prirthdedia
—x— — L ..lr - | L =
lil [ ik
phrysical form | physical Torm physical form
I‘1|.-;,11|_|-:_:||i_1|:i‘| |
1 N — | I :
Vidle o apus ‘ lii{|||1;|:LuL|]|5|; Hook |
~ - . |l L ]
Aischion s RAordetibim lrarscripl

Figure 6-6: Using generalization sets to help with class placemen.
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Inheriting from Ancestors

Generalizations are a great way to inherit common attributes and operations, but a class inherits much more
from a superclass, namely associations, constraints (limits), methods (code for an operation), interfaces
(specification of an operation), and composite parts (the parts internal to a class).

Think about an instance of a generic dwelling unit (a superclass) and its associated instance of an address.
Now think of a particular kind of dwelling unit, say a ranch style house (a subclass). The ranch unit is also
associated with an address because it is a kind of dwelling unit. The ranch unit subclass inherits the dwelling
unit's association with the address class. If you constrain the definition of any dwelling unit’s size attribute to
be no smaller than six square feet, then that ranch unit's size could not be any smaller than six square feet.
The ranch unit inherits any constraints of the superclass dwelling unit. You could reuse the dwelling unit’s
method for calculating its own resale value based on size and location for calculating the ranch houses resale
value based on the same formula. You also inherit the composite parts of a dwelling unit such as the kitchen,
living room and bedroom in any type of dwelling like the ranch-style house.

You should be careful when inheriting from a superclass. The regulations for using inheritance are a
little complex, but we’ll show you the rules that you use most often. When your superclass is associated with
other classes, then the subclasses (being special cases of the superclass) are also associated with those
same classes. Fven so, you should be aware that only certain aspects of an association are inherited. (See
th “Making sense of inherited associations,” for more information.) When your subclass
specifies constraints, they must be the same as—or more constraining than—those of the superclass.
Operations and their methods may be simply reused, or redefined.

Making sense of inherited associations

In the archive example that we used earlier in this chapter, it turns out that storage space—like shelves and
file cabinets—store all manner of archive media. Videotapes are stored on special movable shelves.
Transcripts are stored in file cabinets of various sizes. To demonstrate this connection, we modeled this
situation as an association between the class StorageSpace and the class ArchiveMedium.

All the subclasses of ArchiveMedium inherit this association and so RecordedMedia is associated also with
StorageSpace. However, the subclasses of ArchiveMedium only inherit certain features of the association.

You inherit the role name, multiplicity and constraints on the far side of an inherited association. For example,
RecordedMedia inherits the multiplicity at the StorageSpace end of the association between ArchiveMedium and
StorageSpace. You inherit any constraints and qualifiers on the near side of an inherited association. The near
side of the association would be the ArchiveMedium side of the association between ArchiveMedium and
StorageSpace.

illustrates the far-side features that the subclasses RecordedMedia, PhotoMedia, and PrintMedia
inherit from ArchiveMedium in the stores association: 0..1 multiplicity and mediaLocation role name. The
subclasses are also forced to be ordered because the stores association has the near-side constraint

({ordered}).
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Figure 6-7: Inherited features of an association.

Overriding your inheritance

You can override inheritance—change aspects of inherited attributes, constraints, and the methods used for
operations. For example, an attribute of a subclass can redefine an attribute inherited from the superclass.
Additionally the method used to implement an operation in a subclass can be a refined version of the
operation inherited from the superclass. For example, all types of vehicles (the superclass) can move (the
superclass operation). However, each type of vehicle like a sailboat and a car (subclasses) move in very
different ways (different subclass methods for the inherited move operation).

Overriding attributes

ﬁ,rriding attributes inherited by a subclass keep the following in mind with examples illustrated in
igure 6-9
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Figure 6-8: Examples of overridden attributes.

B Redefined name: An attribute in a subclass can redefine an attribute in the superclass by
showing a constraint with the word redefines followed by the name of the redefined attribute

from the superclass.

The class ArchiveMedium has an attribute defined asinventorylD: Text, and the subclass Book

inherits that attribute but redefines it as isbn: String {redefines inventoryID}.

B Datatypes: The datatype of an inherited attribute must be the same as or a specialization of

the inherited attribute’s datatype in the superclass.

In the superclass ArchiveMedium the inventoryID has the datatype Text. The subclass
RecordedMedia defines the datatype for inventorylD as String. String being a specialization of

Text.

of that same attribute in the superclass.

Default value: The default value of an attribute in a subclass may override the default value
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The generation attribute in the class ArchiveMedium has a default value of one because it is
assumed that most of the material in the archive is an original and not a copy. However, all
the photos in the archive are copies from a private collection. So, the generation attribute of
PhotoMedia has a default value of 2.

B Derived attribute: The subclass may have a derived attribute that was not a derived attribute
in the superclass.

ArchiveMedium has a weight attribute that is not a derived attribute. However, the Transcript
subclass inherits the weight attribute from ArchiveMedium, and inherits the sheetWeight
attribute of PrintMedia. The weight attribute of Transcript is a derived attribute because it can
be calculated using the sheetWeight and the numPages attributes. (Transcript inherits both
sheetWeight and numPages from PrintMedia.)

Overriding constraints

Inevitably, you deal with business rules that constrain the objects in your system. For instance, the archivist
must follow the rule that no material (ArchiveMedium) may be borrowed from the archive for longer than thirty
days. You recognize this as one of those rules people have to follow, and you have to make sure your
software doesn't violate that rule. The archive-system software must warn the archivist when any instance of
ArchiveMedium is out for a period close to (but not more than) thirty days.

This case illustrates an important principle: If the superclass has a constraint or limitation, then all of its
subclasses have that constraint too. When you use inheritance, your subclasses must not loosen any
constraints placed on the superclass. Therefore Books and Transcripts cannot be borrowed for more than thirty
days.

Although you can’t loosen the constraint for subclasses, you can tighten it. One example is the rule that
Videotapes can't be borrowed for more than a week.

Overriding operations and methods

One thing we like about inheritance is being able to reuse the method for an operation defined in a
superclass. Often the method code for a superclass operation has to be written no more than once; all the
subclasses then have that operation. No need to write the method code again (once for each subclass). The
original operation of ArchiveMedium has a simple method that works the same for every subclass. The method
(using the Java language) looks something like this:

public Boolean original() {
if (generation == 1) then
return True;  //first generation means original

else
return False;

}

Although you can reuse your inherited operations and their methods, you can do more than simply reuse the
method code. You can extend, restrict, or optimize your methods. For a concrete idea of these different ways
to override methods in the superclass, consider ArchiveMedium and its place operation:

private StorageSpace medialocation; //attribute to implement
/I the association to an instance of StorageSpace

public void place (StorageSpace on){
if (on.spaceAvailabe()) //check to see if there is space
if (on.add(this))  //add media to storage space

medialocation=on; //set pointer to our media location

}



Now let’s look at what it means to extend, restrict, or optimize a method:

B Extend: Reuse the method code you inherit from the superclass and then add some code
that extends the method to deal with specialized attributes of the subclass. For example the
Transcript classes’ place operation must make sure the editor of the transcript has access to
the place where the transcript is stored. So the place operation is extended to check that
condition:

public void place (StorageSpace on) {
if (on.userAccess(editor)) //extension is here
super.place(on); /lthen reuse superclass method

}

B Restrict: Your method code in the subclass must account for some additional constraint that
is placed on the subclass. In the archive example, a videotape must not be placed in a
crowded storage area. So the place method of the Videotape class must be restricted to
storage spaces that are no more than 80 percent full:

public void place (StorageSpace on) {
if (on.percentUsed() <= 80) //check for enough space
super.place(on); /lthen reuse superclass method

}

B Optimize: You optimize the method code for a subclass because you can take into account
the specialized extra attributes or constraints in the subclass. It turns out that photographs
are so thin that we almost never have to worry about whether there’s enough storage space
available. So, to optimize the code for the place method a little, you can remove the
statement that first checks to see whether space is available. The resulting code looks like
this:
public void place (StorageSpace on) {
if (on.add(this))  //add media to storage space

medialocation= on; //set pointer to our media location

}

Inheriting interfaces

Classes have public operations that you invoke from instances of other classes. You can think of each one of
these public operations as being an interface between you and the internal workings of the class. Each
operation is defined by its name, parameters, and return-result type. This definition is known as the operation’s
signature. For instance the signature for the assign operation on the ArchiveMedium class includes the name
assign, the to argument and its datatype String, as well as the Boolean return result type. In UML the signature
for assign looks like this:

assign(to:String): Boolean

Your subclasses inherit this signature as well as the method code for that operation. When you invoke the
assign operation on any subclass of ArchiveMedium, your subclasses must all have the assign operation with
one parameter—and the operation will return a Boolean value, no matter how you write the method code for
the subclasses.

Normally you create instances of classes. Each class has methods defined for each operation. A method must
follow the rules laid down by the operation’s signature. The classes used to create instances are known as
concrete classes. Most examples of classes in this book are concrete classes. However, suppose you have a
superclass operation with no method code for that operation. Such an operation—without method code—is
known as an abstract operation. In UML, abstract operations are shown in italics. If an operation is abstract
(has no method), then you can’t create instances of that class. The runtime environment wouldn’t know what
to do if you invoked an operation that had no method code. In this situation, any of your classes with abstract
operations are known as abstract classes. Any class for which you cannot create instances is an abstract



class. In UML, abstract classes have their class names shown in italics.

Abstract classes are a great way to enforce interface inheritance. If you specify an abstract operation in a
superclass, then all of its subclasses must conform to the signature of that operation. So anyone who inserts a
new subclass into the inheritance hierarchy must write method code for the inherited abstract operation to
create a concrete subclass.

You cannot create instances of abstract classes. You can only create instances of concrete
classes.

In , you see that recommendPlaybackMachine is an abstract operation and RecordedMedia is an
abstract class. We don't have enough information in the superclass to define a method that could recommend
what equipment to use to play back recorded media. On the other hand, we have that information in each of
the subclasses. Given (for example) an instance of the VideoTape class and a value for its format attribute, we
have all the data we need to make a recommendation.
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Figure 6-9: An abstract class, used to enforce interface inheritance.
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Exploring the Pros and Cons of Multiple Inheritances

You categorize classes in many different ways. A person class could be categorized by age, income, job role, or
location. You use inheritance as a way to categorize your subclasses. If a subclass can inherit from one
superclass, why not from two or more superclasses? Well, it can; UML allows you to show such multiple
inheritance. For example, the MovieFilm class is an instance of RecordedMedia and of PhotoMedia. It should
have all the attributes and operations of both superclasses, as illustrated in fFigure 6-10. You show multiple
inheritance in UML by connecting the subclass to each of its superclasses with a generalization relationship.

RecordedMedia ‘ PhotoMedia
:':':. : |".'a )
Videotape | Compactlisc Photograph
Audiotape MovieFilm

Figure 6-10: Inheritance from classes.

Ah, but does the use of multiple inheritance make our programs richer? Sometimes. There are both
advantages and disadvantages to using multiple inheritance. First, the advantages:

B vou categorize classes in many different ways. Multiple inheritance is a way of showing our
natural tendency to organize the world. During analysis, for example, we use multiple
inheritance to capture the way users classify objects.

B By having multiple superclasses, your subclass has more opportunities to reuse the
inherited attributes and operations of the superclasses.

Now for the disadvantages:

B Some programming languages (such as Java) don't allow you to use multiple inheritance.
You must translate multiple inheritance into single inheritance or individual Java interfaces.
This can be confusing and difficult to maintain because the implemented code for
categorizing objects is quite different from the way the user organizes those objects. So,
when the user changes their mind or adds another category, it is difficult to figure out how to
program the new subclass.

B The more superclasses your subclass inherits from, the more maintenance you are likely to
perform. If one of the superclasses happens to change, the subclass may have to change as
well.

B \When a single subclass inherits the same attribute or operation from different superclasses,
you must choose exactly which one it must use. For example, the MovieFilm subclass
inherits the place operation from both the RecordedMedia superclass and the PhotoMedia
superclass. Remember, the RecordedMedia and PhotoMedia classes inherit the place
operation from their superclass—ArchiveMedium. So now you must choose which method
code for place to use for MovieFile—the one from RecordedMedia or the one from PhotoMedia.
These choices can get very complex with multiple inheritance hierarchies. Be careful.
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Reusing Code

The really great thing about inheritance is the productivity you get through reuse of code. We've shown you an
example of code reuse earlier in the chapter with the following method from the Transcript classes place
operation:

public void place (StorageSpace on) {
if (on.userAccess(editor)) //extension is here
super.place(on); /lthen reuse superclass method

}

Notice the third line says super.place(on);. We are reusing the place method that is located in the ArchiveMedium
superclass.

Creating an inheritance hierarchy of classes helps you simplify your programming code. Object-oriented
programs can loop through a set of objects that are from the same generalization set (based on the same
superclass) without knowing which object of which subclass is being invoked. The object-oriented program
simply invokes an operation defined on the superclass. The program does not have to worry which object is
being invoked because they all share a common superclass and all subclasses inherit the superclass
operations.

For example, if our program has a list of objects created from the Videotape, CompactDisc, MovieFilm, and
Audiotape subclasses and these objects were all mixed up on the list, we could write a program to retrieve
each object from the list and invoke the recommendPlaybackMachine operation on that object. Since each
object inherits the recommendPlaybackMachine operation from the RecordedMedia superclass the right
behavior will be invoked.

The real payoff for you is when you want to extend your software. You can add new subclasses to an
inheritance hierarchy and not have to change code in other parts of your program. For example, suppose we
added a DVD subclass to the RecordedMedia inheritance hierarchy. We would have to program the subclass to
handle the recommendPlaybackMachine operation. Even though we added a whole new class to the software,
we would not have the change that part of the object-oriented program that goes through that list of objects
described in the previous paragraph. If we added an object created from the DVD subclass to the list the
program would still just invoke the recommendPlaybackMachine operation just as before. No code changes in
the existing program.




Chapter 7: Organizing UML Class Diagrams and Packages

Overview

In This Chapter

Avoiding confusing class diagrams

Showing the right number of classes on a single diagram
Building top-level and second-level diagrams

Showing the context of your system

Handling multiple time periods

Diagramming classes and instances

Modeling foundation classes

Considering application classes

Grouping classes into packages

UML diagrams such as the class diagram are quite versatile. You use class diagrams to express the static
structure of the objects and classes you want to model and the static blueprint of the program you want to
build. In this chapter we give you some tips for constructing class diagrams. We also show you several
different kinds of class diagrams that you can use when modeling systems or developing software.




Modeling Objects and Classes on Diagrams

You have two main types of static diagram in UML—class diagrams and object diagrams. Class diagrams
show classes and associations, aggregations, and generalizations. Pure object diagrams just show instances
of classes and their links to other instances. Of course, you can also show classes and objects on the same
diagram, but this is rarely done. We use these different diagram types for specific purposes.

If you use a UML modeling tool, take a close look at the different types of diagrams that it supports. If you
do not see an object diagram, then the modeling tool probably lets you place objects on class diagrams.

Most of the time you use class diagrams; they provide the broadest way of showing what you’re modeling.
They're also the most useful diagrams you can produce, because the code that UML tools generate is based
on the class diagram.

Pure object diagrams simply show instances and links—the objects and the connections between objects. (For
more on links see phapter 4.) For complex modeling, you have to show many instances and links on a single
diagram. But, the class diagram would be quite simple. shows you just what we’re saying. An
instance of the Supplier class called acel links up with two instances of the Invoice class, al and a2. Both
instances al and a2 are bills that were sent out in the past because they play the role of pastBill. These two
invoices were paid from an instance of the SupplierAccount class called aceAcc. Another instance of the
Supplier class, generalAirF, is linked to a different set of invoices. From the diagram you see that the instance
b4 of the Invoice class plays the role of the currentBill.

1 | |
acel : general Airf ;
Supplier Supplier

parst Bill | nastBill |_;.;|'_.:Eill | pasLBill | |_;.;|',IEiII | cuarreEr LBl

al; CY BA b2 b3 ba :
Ingoice Imwgice Ineedce | | Invaice Imuaiee | Invoies

L _ i ) I |

| acene: | genfee ;

| SpplisrAccount | SupphlierAccount

|

Figure 7-1: Object diagram example.

The diagram in illustrates two different cases for suppliers and their invoices. In one case the
supplier acel has no current bill. In the other case generalAirF has a current bill. This object diagram is an
illustration of the class diagram shown in , later in this chapter.

Pure object diagrams are good for showing a simple example of what you mean by a class diagram. We

sometimes have one or two pure object diagrams for a software project; they help give managers an idea of
what's going on.

You can also build a hybrid class/object diagram. You'll find this most useful when you want to show your
classes—and also show one or two example instances of no more than a few of those classes.

helps you choose when to use each type of diagram.




Table 7-1: Choosing a Diagram Approach

Diagram Type Purpose

Pure class diagram Show classes, associations, aggregations, and
generalization.

Arrange classes for code generation in a UML
tool.

Pure object diagram Show management a specific example.

Consider what instances you have at runtime
(also use a communication diagram).

Describe pre- and postconditions of a piece of
behavior (what is true before and after some
behavior is performed).

Show a setup for test runs.

Hybrid class object diagram Show examples of specific classes that are
hard to understand.

(rrevious e o



Constructing Class Diagrams

Your class diagrams show the fixed structure of classes, objects, attributes, operations, associations,
generalizations, and aggregations. (Seesﬁ, E andEfor more on these items.) If you're engaged in
a large modeling or development project, building one large class diagram for the whole project isn't
helpful—classes get lost, the diagram becomes confusing and difficult to read—break that diagram up into
manageable pieces. You want to be consistent in your diagrams as well. A class diagram should have the

same time period reflected in each association. (You may also find it helpful to build diagrams that have only
instances of classes, but this is rare.)

Drawing manageable class diagrams

We have seen many developers draw impossibly large diagrams using the development notation of the day.
Some of these diagrams fill entire walls. These diagrams can be difficult to understand because the important
information was buried in amongst hundreds of unimportant details. To make our diagrams comprehensible
we break them up into smaller more understandable pieces.

It's more effective to use a simple process to get more bite-size diagrams. To illustrate this process we use the
example of a company that’s in the business of selling air-filter units to customers and buying stock from their
suppliers. The process is as follows:

1. Build one top-level diagram with up to 15 key classes.

The top-level diagram provides developers with an overview of the most important
classes. It avoids showing details. The key classes are those groups of objects that are
most important to your business; they may include classes such as customer, air filter,
and supplier.

2. Build second-level diagrams with one of the key classes in the center of the diagram
surrounded by 5 to 10 supporting classes and their association with the key class.

Now you choose one of the key classes from the top-level diagram. Add in details
showing attributes, operations, other supporting classes, and associations that directly
relate to the chosen key class. For example, build a class diagram with customer at the
center, showing supporting classes such as coupon, customer account, credit card, and
club card.

3. If you have a significant aggregation, show the aggregate and its parts on a separate
diagram.

The class playing the role of the whole (aggregate) should appear on the top-level
diagram or on one of the second-level diagrams. For example, you show the air filter
and its parts on one diagram.

4. When you have a significant inheritance hierarchy, place the superclass and its
subclasses on a separate diagram.

See [Chapter g for more on inheritance.

From our running example, you have many types of coupons. On a separate diagram,
show the generic coupon as a superclass and the different types of coupons as
subclasses.

5. If any of your second-level diagrams are too complex with more than ten supporting
classes, consider creating a third level of class diagrams.

When you follow this process, you get a hierarchy of class diagrams; each diagram has a specific focus.




Stakeholders and users who want a quick overview look at your top-level diagram. shows just such
a diagram for a simple retail system that handles customer orders. Notice that the top-level diagram just
shows the most important classes, without specifying their attributes or operations. The top-level diagram
should be simple, without much detail to clutter it up.
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Figure 7-2: A top-level diagram.

Each class diagram should have a single major theme—and should have no more than 15 to 20 classes.
People have a hard time remembering more than a half-dozen things in their short-term memory. So if you put
20-plus classes in one diagram, most people will find it confusing and difficult to work with. We talk about a
top-level diagram followed by a second-level diagram. If a class on the second level also has a lot of
supporting classes, you can create third-level diagrams. Try to keep the number of classes on any one
diagram below 20 classes.

You see a second-level diagram in with the focus on a Customer class. All the classes that relate to
Customer are shown. Developers interested in all aspects of Customer turn to this diagram to see the detalils.
Users and developers in a specific area of your business should be able to review the diagrams that focus on
their areas of expertise. They should not have to look over every class in your system to find those that interest
them.

Notice that the second-level diagram in shows details such as the attributes and operations for
Customer and all its supporting classes—ClubCard, CreditCard, CustomerAccount, and Coupon. Sometimes we
place other top-level classes on a second-level diagram because other developers need to see how the details
of a key class fits into the big picture shown in the top-level diagram. For example, the second-level diagram
shows the Customer class associated with the AirFilter class so you can understand the context of the customer
focus diagram and its relationship to the higher-level diagram. The AirFilter class is shown without attributes
and operations. To account for them, we would provide another, second-level diagram with AirFilter at the
center, and show its supporting classes.
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Figure 7-3: A second-level diagram.

shows you the details of the AirFilter class. This diagram focuses on the internal parts of the air filter.
You notice that the diagram isn’t cluttered with other classes outside of the AirFilter class.
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Figure 7-4: Separate aggregation diagram.

The class diagram in gives your developers a way of focusing on an inheritance hierarchy without



having to wade through the complexity of other classes and associations.

Keep the following in mind when deciding what to put in a class diagram:
B Don't try to put every class on one diagram.
B Create a top-level diagram with your 5 to 15 key classes.

B Think of each class diagram as having a theme—all the classes in the diagram support that
theme.

B provide second-level diagrams. Each second-level diagram focuses on one or two of the key
classes shown in the top-level diagram.

B Create separate class diagrams that show only an aggregate and its parts

Put inheritance hierarchies into their own class diagrams.

E Q and E begin to capture the language of an air-filter order system. Users of that system
understand what a coupon is. They can look at Eigure 7-4 and tell you whether you have captured all the

different kinds of coupons. These four figures are known as a domain diagrams because they describe the
domain of ordering air filters in a retail setting.
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Figure 7-5: Separate inheritance diagram.

Considering time in class diagrams

When you draw a class diagram with its classes and its associations, the diagram is tied to a time period.
This sounds odd because of the static nature of these diagrams. But, when you think about the multiplicity of
an association you must specify it for some time period. Check your diagram to see that all the multiplicities
are for the same time period.

You might create a class diagram with hidden assumptions about time period. All the multiplicities
on a class diagram should reflect one time period. If you draw a diagram with more than one time period, you
create confusion about what you mean—uwhich leads to poor programming down the road.

shows a class diagram with two different time periods, and the multiplicities used in the diagram are
tied to that fact. The supplier may or may not send an invoice according to the sends association, and to
represent that, we have used the 0..1 multiplicity. It's certainly true that a single supplier sends many invoices
over a long period of time, say five years. We chose the 0..1 multiplicity because we're foc| very short
time period—today—with a current outstanding invoice that must be paid. The diagram in Fi:ure 7-3 also
shows that invoices are paid from a supplier account. It shows that a supplier account pays for zero or more
invoices. The paid from association also has a time period—for all time or for a very long time period. The paid
from association isn’t focused on just the outstanding invoice from a specific supplier.




The problem with the diagram in is that it uses two different time periods. Readers of the diagram
would not necessarily catch that—and would become confused. The diagram could be interpreted as meaning
that a supplier only ever sends one invoice.
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Figure 7-6: A diagram with mixed time periods.

Assign each of your class diagrams a time period. Then check the multiplicity of each association to
make sure it conforms to your chosen time period.

If you can't avoid showing different time periods on the same diagram, you can use role names on your
associations to help keep the time periods distinct. Create an association for each time period you plan to use,
and then add a role name to indicate the time period for that association.

shows the two time periods that were hidden in . The supplier sends an invoice that plays

the role of the current bill. We show this with a sends association connecting the Supplier class with the Invoice
class and a currentBill role name. The supplier is also associated with all past sent invoices. This second
association adds the second time period of the past to the diagram. We associate the Supplier class with a
second association to the Invoice class and a pastBill role name. The paid from association between the
SupplierAccount class and the Invoice class remains unchanged.
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Figure 7-7: Multiple time periods modeled correctly.

If you make an assumption about the time period for a class diagram, you should add a comment to the
diagram. That way you tell other developers exactly what to expect when reading the multiplicities of the



associations between the classes.
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Using Project-Oriented Class Diagrams

Class diagrams are also used to pull together key aspects of your project—during analysis, and again during
design. Accordingly, it can be helpful to create class diagrams that represent the context of the system, its
problem domain, application requirements, and the design of each subsystem.

Establishing contexts

There are two kinds of context diagrams you show with class diagrams:

B External context diagram: This type of diagram shows a central class and the classes to
which it's related. An external context diagram doesn’t show the internals of the central class
but instead illustrates the boundaries of the central class.

B |nternal context diagram: This type of diagram shows the opposite of the external context
diagram. You see the internals of a central class but none of the externally related classes.

Use external context diagrams to scope your system (to put a boundary around your system). We use the
following steps to se up an external context diagram for our system:

1. Create aclass and give it the name of the system you're developing.
Don’t show any attributes or operations on this class.

2. Think about all the actors and other systems that you expect to interact with your
system—and add a class to your diagram for each such interactor.

These are your external classes.
3. Draw an association between each interactor and your system class.
4. Consider the multiplicity of each association.

Ask yourself, How many instances of these actors/systems will my system interact
with?

5. Add an operation to any external class if your system must invoke its behavior.

6. Add an attribute to any external class if that class must have some knowledge important
to your system.

Internal context diagrams allow you to show internal structure. If you have a complex aggregation, then use
this kind of context diagram to show the internal parts of the class. For this diagram, simply inflate the size 0
class box. Place a mini-class diagram where you normally show the attributes of the inflated class.
ﬁ shows just such an internal context diagram for a generic report. See Chapter § for a detailed description
for showing the internal parts of a class as a strong form of aggregation. For information about context you
show using use case diagrams see [Chapter
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Figure 7-8: Internal context diagram.

]Y|®%4 UML 2 has a new diagram called the composite structure diagram, discussed in . You use
composite structure diagrams to show internal context.

Creating domain classes

As you develop your system or software application, you'll notice that you use some classes over and over
again. These highly reusable classes are based on the real world and represent things in your business. In our
air-filter example, classes such as Customer, AirFilter, and Coupon are found in the business world. When you
talk to users, these are the very words they use when discussing their business. We call these words the
domain language or the language of the user. We capture and model this user language for two reasons:

B Reusability: As a developers, you use domain classes—classes that reflect the domain or
language of the user—in several different ways, | way they are used is known as a
use case. (For more on use cases, please read Eha;ter g
the retail order system to track the sales of air filters to customers and to find out which
supplier has the best price for air filters. In both cases different parts of your application
software will use instances of the same AirFilter class. These reusable domain classes
become the foundation for many of your applications.

|.) For example a manager uses

B yser verification: Many of the classes in your software represent things in the real world. It's
easier to talk with a user about a problem (and the software you have to build to solve that
problem) if your diagram shows classes that are familiar to that user. The user can see the
words you have in the diagram and tell you whether it's right or wrong because you have
built a diagram that only includes words from their language—words they are familiar with.

As we mention in the section “Drawing manageable class diagrams,” , Ia Ia and E begin to

capture the language of an air-filter order system. Users of that system understand what a coupon is, and they
and tell you whether you have captured all the different kinds of coupons. These four
figures in this chapter are examples of domain diagrams because they describe the domain of ordering air
filters in a retall setting. Your classes that capture the language of the user are known as domain classes.

can look at

Domain class diagrams that capture the user’s language are good for the following purposes:
B Defining a common vocabulary between the user and the developer

B Capturing the most stable classes in your system



B Staying the same from application to application
B Removing vagueness from the definition of your real world classes

Develop your domain model during the requirements-gathering phase of your project. Capture in domain
class diagrams what the user means as they describe what they do. Refine the domain class diagrams when
the user talks about what they want your system to do for them. The very nouns the user says become
classes or attributes. The verb phrases from the mouth of the user become associations.

Applying an application perspective

There comes a point in your software development when you want to show which classes come together to
bring a use case to life. Remember, object- oriented software contains nothing but objects interacting together.
The functionality described in a use case arises from this interaction. Y;: ng-j ff fljff flfi? fbjects interact
to make each use case come to life. To show this relationship, use an lication class diagran], which shows
which classes work together to perform the job of a use case. The diagram will include a few classes from

your domain diagrams as well as special classes known as application classes. Application classes have the
attributes and behavior necessary to make your software live up to the description written for a use case.

The following is a list of some application classes that will help you get your project done:

B Controller class: These are classes that manage the interaction between the user and the
internal domain classes in your application. Controllers know when to ask a domain class to
make the application work. We usually add a controller class for each use case in our
applications. The responsibility of this use case controller class is to ensure that user
interactions with the system defined in the use case description are done properly, in the
right sequence over time.

B view class: A view class has the responsibility to manage the user interface boundary
between a person and your application. Users want to see the information or objects in your
system in a variety of ways. Each view class knows how to interact with the underlying
domain classes to show the user a specific view of those domain classes.

B Boundary class: Boundary classes are similar to view classes because they sit on the
boundary between your application and an actor outside your application. Boundary classes
interact with other systems, databases, and external devices that interact with your
application. For instance, we use boundary classes to separate our application from a
database. If any objects within our application require data from a database, they ask a
boundary class to go get it for them. That way if the database changes (or the
database-access mechanism changes), we only have to change the internal workings of the
boundary class. The boundary class hides the complexity of the world outside of my
application.

These classes encapsulate the attributes and operations of your application that are “visible” to the user. The
controller encapsulates what the user can do and when they can do it for your application. The view classes
show things to your users. Boundary classes hide the external interactions of your application from its internal
classes.

illustrates one of the application class diagrams used in an air-filter order-handling system. The
ibutes and operations of each class are not shown, making the diagram easier to read. You notice
ﬁ actually has two diagrams separated by a thick line. At the top of the figure is a use case diagram showing
the review accounts use case. At the bottom of the figure is an application class diagram showing the classes
that must perform the Review Accounts use case for the Order Clerk actor. (An actor is a person outside your
system that interacts with your system.) The AccountReviewer knows when to access the database via the
DatabaseAccessor to retrieve instances of the Customer, CreditCard, and CustomerAccount classes. The Account
Reviewer also knows when, at the users request, to create instances of the view classes (CustomerView,
CCView, AccountView, and ComplexAccount View) and when to ask a view to show itself to the order clerk user.
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Figure 7-9: Application class diagram.

Notice that we do not draw all the associations between all the classes in . The AccountReviewer
controller class has associations with all the view classes because it must create them, but drawing
association all of these lines clutters up the diagram and does not add anything surprising for the developer.
Another reason why we may not draw the line between the AccountReviewer class and the other classes is that
associations are often reserved for those situations where one class needs to continually know about another
class. The more temporary the knowledge of the other class is, the more likely we don’t bother modeling it.
When we use a UML modeling tool, we add these extra associations to the diagram just before we ask the
modeling tool to generate code.

All you find in object-oriented software is (you guessed it) objects. It's the objects—not
functions—that get together at runtime, collaborate, send messages to each other, and get the job done. Each
use case is realized by a group of cooperating objects. Both application objects and domain objects must work
together to get a use case to work.

Wrapping packages

At some point in a project, you may find that the modeling you perform to gather requirements, analyze those
requirements, and develop software to meet those requirements is getting out of hand. You probably have
different levels of class diagrams as well as domain class diagrams and application class diagrams. You might
well be wondering how to keep it all under control. We have faced this same problem many times—and each
time we used packages. You can wrap up groups of classes and even groups of diagrams into a UML



package.

A package is a way of grouping classes together. A UML package looks like a tabbed file folder. You think of
the package as containing certain diagrams and/or certain classes. There are several ways of organizing
packages for your system:

B Development phase: Create a package for each development phase—for example, Analysis,
System Design, and Detailed Design. Place the classes in each package as you find them
during each phase. (Classes discovered during analysis go in the Analysis package.)

B Diagram type: Create packages to hold the classes and the major types of class diagram.
We mention some of those diagrams in this chapter—and we often create Domain,
Application, System, and Subsystem packages. We place domain classes and domain class
diagrams into the Domain package.

B version control: Create packages to represent each version of your system as you develop
it. The packages would be named Alpha Version, Beta Version, Release One, and so on. This
way all the classes for a particular version are available in one place.

When your development becomes really complex and large, you can put packages inside packages.

To keep track of all those packages, use a . This diagram simply shows the packages as

tabbed folders, with the name of each package on the front of each folder. You can also show any
dependencies among your packages by showing a dashed line with an arrow at the end of the line up against
the package some other package depends on.

The package diagram is now an official diagram in UML 2. In previous version of UML we used a
class diagram to show packages and their dependencies because there was not official package diagram
separate from the class diagram in the UML modeling tool.

Packages own their content. You can’t put the same class into two different packages. Place each
class in one—and only one—package. You can use the class in other packages, but some package has to
own the reused class, and that’s the only one it should occupy. See for more details on organizing
classes into different packages.

is a package diagram showing some of the packages you might have for the retail air-filter
order-handling system. The Review Account, Handle Order, and Setup New Clients packages contain classes
and diagrams that are specific to use cases by the same name. The Air Filter Domain package just contains
other packages. Finally, the Client, Product, and Vendor packages contain groups of classes that are important
to each of those major parts of the user’s language.
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Figure 7-10: Package diagram.

Dependencies are also shown here. You see a dependency line from the Review Account package to the Air
Filter Domain package. The Review Account Package is dependent on the Air Filter Domain package; to review an
account, you must also use some of the classes in the Air Filter Domain package.

Packages are a great way to group important stuff together so your complex models don’t get out
of hand.
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In this part . ..

This part covers some of the most important stuff in software and system development: Who's your system
for? What must it do? Why build it in the first place? Here we cover the basic techniques that help you find
answers to those questions: use-case diagrams, which capture and present how the basic users (called
actors) call upon the system in their typical situations (called use cases). We explain how to document the
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contents, flow, and alternate courses as the use cases unfold, making the big picture easier to grasp for
narrative or specification purposes.

For advanced use-case modeling, we detail the possible relationships — inclusion, extension, and
generalization — among multiple use cases, and help you avoid common problems in this tricky area.

If your use cases start to multiply and get unruly, we show how to corral them in packages so they stay
manageable. And we offer advice on how use cases can not only help you create a better understanding of
your system’s goals and requirements (so your stakeholders buy in with minimum fuss), but also benefit the
process of design and implementation.




Chapter 8: Introducing Use-Case Diagrams

Overview
In This Chapter
B Determining who will use your system
B Showing your system’s uses in terms of use cases
B |ndicating system context
B partitioning your system into use-case packages

UML has lots of pretty pictures and diagrams. Some focus on harnessing the power of object-oriented theory
and techniques to analysis and design—and some focus on the meat-and-potatoes of detailed design and
construction. In both cases, these diagrams help you accomplish a task or communicate with your peers in
your organization.

However, practical development isn’t just an internal activity, especially in the current climate of competition
and shrinking budgets. If you want to stay in business, you have to capture and understand your customer’s
requirements and needs, and make a product or system that they want. Use cases and use-case diagrams
are the UML features that support the gathering and analysis of user-centric requirements by starting with your
users’ goals.

Use cases can keep you focused on your users’ goals and on producing practical systems that deliver value to
your customers, whether they’re paying external customers or paying internal customers (those with the
money inside your company).




Identifying Your Audience

A use case is a particular purpose that a user can actually use the system to accomplish. Use cases achieve
their great power primarily by simplicity and organization: When you identify and organize use cases, you can
paint a clear picture of what the system has to do. You can show this clear picture to your customers, users,
management, and peers—which can help you get invaluable, focused feedback on your ideas for the system
early in its process of development.

Consider the stakeholders

Considering the needs of the clients and their customers and workers is a good start, and although the
use case’s focus on actors does help you consider their needs, it's not enough. We recommend that
you also acknowledge the existence of stakeholders (the many individuals and organizations that have
a vested interest in the success of your project). Every system has a set of these potential
stakeholders—individuals or organizations affected by the operation of your system (or who may affect
the operation of your system). The stakeholders are the sources of your funding, your requirements,
and your opposition. They are your fans and opponents. Even within these groups, subgroups whose
opinions matter must be identified.

As an example, if you examine the workers, the stakeholders include those who will use your system
and those who have used the previous system. Also, consider those workers whose jobs you
automate, change, or eliminate. If you examine your own organization, the different types of
developers have their own stakes in the project.

Anyone who cares about the success of your system or who can derall it is a stakeholder. The
authorities (legal, regulatory, industry, political, trade, and so on), lobbies, and special-interest groups
are also stakeholders.

Are hackers and terrorists also stakeholders, then? After all, they can certainly derail your system.
Well, not normally. Some companies do explicitly treat the bad guys as stakeholders—and sometimes
even model them as actors—but that's a part of threat analysis. For a normal assessment of
stakeholders and their needs, concentrate on identifying individuals, teams, and groups who represent
political and economic forces that have legitimate vested interests (stakes) in your system.

During the process of gathering the requirements for your system, you'll be spending most of your time
with the actors—but you must consider all the stakeholders. Diagram the actors with their use cases,
but examine the stakeholders also. Prioritize them by their potential impact on the system as you
evaluate their needs. The more you satisfy your stakeholders’ needs, the smoother sailing your system
will have, and acceptance and follow-on will be high.

To get an accurate picture of your system'’s purpose, you must identify whom the system is for (your customer)
and who uses the system (the users).

The users and the customers are generally not the same group of people. Even when they are
the same people, it's beneficial to think of user and customer as different roles.

B vour customers: Your customers—sometimes called the clients—are the people or
organizations that ultimately fund and task your team. They must be satisfied for you to get
paid. Your team may have a contractual relationship with them (external customers), or they
may be part of your own management structure (internal customers). When you're in an
in-house development organization, consider your parent organization as your client.




B The client’s customers: When you talk about the customers (as opposed to your customers),
you typically are referring to the customers of your client. These are the people or
organizations that buy things from your client. If your system doesn’t make them happy, your
client is unhappy, and that means you’re unhappy.

B ysers: When you refer to users of a system, they may be your clients’ customers, or they
may be the workers in your client’s organization who have a hands-on relationship with the
system. Many systems have users of all types—clients, their customers, and their workers.
Users get the closest feel for the system—and get the strongest impressions. The tasks of
the users are what the system must automate; the needs of the users are what the system

has to meet.

UML has a special term for the users, whether they’re clients, customers, or workers: actors. The actors
initiate behaviors in the systems and receive information from the system.

n the potential guests phone them.

lists the main

Imagine you’re building a hotel registration system to be used by both potential guestse (via the
I-able 8- |

Internet) and by registration clerks at the hotel wh
stakeholders on this project. (The nearby sidebar *

Consider the stakeholderd” provides more information on

stakeholders.) In the table, Potential Guest appears as twice as a stakeholder—once in the role of customer
(when the actor is Registration Clerk), and once as an actor who uses the system directly via the Internet. Such
duplication happens often when there are optional intermediary workers (such as Registration Clerk).

Table 8-1: Main Stakeholders

Stakeholder Group Example
Client Hotel Chain
Customer Potential Guest

Actor (Worker)

Registration Clerk

Actor (Customer)

Potential Guest




Casting the System’s Actors

It's easy to start identifying the main groups of actors (refer to ) by taking a high-level view of the
workers and customers who act as end-users. Evaluate these main actors to see if there are subdivisions with
special privileges and capabilities. For example, in the hotel registration system, special types of Potential
Guests represent large parties for conferences or affairs—typically they want to reserve blocks of rooms at a
special price, and may also be reserving other hotel facilities. These Event Organizers are another type of actor
for this particular system. Identifying these subgroups helps you construct an evolving list of actors for your
system.

Many systems have paired sets of actors. For every customer actor type, (for example) there is often a
parallel worker actor type. The system allows the customer-actor to work directly with the system or through a
worker-actor intermediary—which gives you two actors with paired roles. You might be able to treat both
actors as only one actor if their user interface is identical (as it would be when their privileges are exactly the
same)—but typically these paired actors use the system in different ways. In the hotel registration system, the
customer-actors of Potential Guest and Event Organizer have paired worker-actors of Registration Clerk and Event
Consultant.

When classifying actors, you have to consider all sources of input to the system. For example, a system
typically needs input to define the evolving configurations. In the Registration system, someone—perhaps the
Hotel Manager—must define configurations for the rooms, their prices, checkout policies, and the like.

Finding nonhuman actors

In UML, human end-users aren’t the only actors in the system. The term actor also includes everything that
passes information or events directly to or from the system. Such actors include other systems/subsystems,
other databases, hardware, and devices.

Incorporating system and database actors

You have to consider these nonhumans as actors even though they aren’t stakeholders—or (really) users of
the system—for several reasons. Each external system that interacts with your system has its own
stakeholders and actors. By modeling the external system as an actor, you capture it as a proxy—a symbol for
the collected goals and requirements of these stakeholders and actors. The Hotel Reservation system must deal
with an external Credit Card Authorization system. The Credit Card Authorization system, considered as an actor,
works for you as a proxy for its clients, customers, and workers. Another such actor might be an external
database (such as external Frequent Traveler database).

Ignoring internal components (databases and systems)

When considering databases and other systems, you should only consider and model the external ones
as actors. If they’re an internal part of your own system, you can just leave them off the diagram.

Adding an internal component to the list of actors doesn't really add any value, because that component’s
clients, customer, and workers are just a subset of your own system'’s actors—not a source of new
requirements or information. Even so, don't just ignore the internal components; be sure to check whether any
of them qualify as actors that must be added to your total list of actors.

Telling internal databases from external databases

If a database is external, it should be modeled as an actor; if it's an internal component, then it shouldn't
be modeled as an actor. Sometimes it's hard to tell whether a database is external or internal; you have to
look at the list of clients, customers, and workers who deal with the database. If the actors for the database are




vastly different from the other actors of your system, don’t add them to your list; instead, treat the entire
database as an external actor. If the actors for the database are mostly the same as your actors, then you
probably have control over the database—and you can probably treat it as an internal component without
flinching. For another way of looking at this criterion, consider that the more you think of a system component
as under your control and design, the more likely it is to be internal. If you think of it as outside your control,
then it's most likely external, and best modeled as an actor.

Incorporating device actors
Input and output devices must also be considered potential actors:

B |nput Devices: Input devices (sometimes called sensors) have to be considered because
they report on some condition or events in the outside world. A sensor typically serves in
one of two roles:

O proxy for the causer of the events: For example, a TV remote control
acts upon the TV system to change the channel as an agent of the
person using the remote control.

O proxy for the setter of the sensor threshold: For example a thermostat in
a refrigeration system. It reports when the temperature increases over a
preset level. The thermostat is an actor because it acts for the person(s)
who set the temperature threshold.

B Output Devices: You should consider output devices because (by definition) they produce an
effect or output for some stakeholder to use, or to comply with a stakeholder’s wishes. The
compressor in a refrigeration system (for example) is an actor because it acts upon the
system’s contents to satisfy the wishes of the person who wants the contents cold.

Consider the card reader in an ATM system. It reads the card to get identity and account data of the patron. As
such, it acts for the person as a way of getting his or her data into the system—therefore it should be
considered an actor. The display in an ATM system is an actor for much the same reason because it outputs
data to the user. When the whole unit is essentially one device, you can combine the card reader, display,
keyboard, and so on into one (complex) actor for your system.

Ignoring transparent actors

Don't treat all sensors and devices as actors. Most devices are so ubiquitous that you deal with them
transparently. Consider the standard keyboard, display screen, and computer mouse. These hardware
elements can often just pass data or events from your system to its actors so easily that you consider its direct
actions as your own. Standard computer hardware provides examples of internal design elements that are so
well understood or easy to use that you need not (typically) consider them as sources of system requirements.
They are transparent to the system.

Incorporating clock actors

An actor starts every thread of activity in your system. To complete the identification of the actors, you may
have to include a device—in this case, a clock—as an actor to initiate internal scheduled activities. The
clock-actor stands in for the stakeholder who scheduled the activities. In the Hotel Reservation system, the
Clock automatically cancels room reservations if the Guest hasn't arrived by some cutoff time.

Identifying the roles of the actors

As you look for actors for your system, consider that an actor isn't a specific person, but rather, a role in which
a person may act. Don'’t use individuals’ names. (They may be stars, but from the system’s viewpoint, they're
only instances of roles.) Individuals often serve as different actors, depending on what part of the job they're
doing. The same person may act as a Registration Clerk and then later as an Event Consultant, depending on



the job flow.

Also, consider that job titles alone may not be sufficient to distinguish actors. A particular job title such as hotel
manager may encompass several separate roles—you may have to define several actors, one for each role. In
your diagram, reserve the actor Hotel Manager for the role that only a hotel manager can play.

One way you may try to distinguish the different roles an employee may play is to construct a class diagram
around the employee, where each employee is considered a class. (Class diagrams with roles are discussed
in .) If there are several different relationships (associations) connecting the employee to the other
system elements, then there is a separate role for each association the employee participates in. Usually each
of these roles would be a separate actor. You can see an example in , where an employee with the
job title of Hotel Desk Clerk acts in at least two roles—Reservation Clerk and Check-In Clerk—and these are the
true actors of the system.

reservation clerk

Hotel Desk Clerk |
[check-in clerk

- Resereations

. Room Assignment

Figure 8-1: Using roles to find actors.

Naming the actors

Actors are very much like classes, so you should use nouns to name your actors. Generally, the nhames of
human actors should be singular-agent nouns formed from an active verb. In English, many of these end in -er
or -ant, though they may end in -or, -ee, or -ar (Customer, Organizer, Consultant, Debtor, Professor, Employee,

Registrar). Be sure to examine the role names that come from association roles in the class diagram (as
discussed in ). These often contribute such standard names as Reservation Clerk, Check-In Clerk,

Guest, Student, or Patron, which identify specific types of relationships between actor and system. If an
employee who has a particular job title acts in only one role, you can use the job title as the actor’'s name.

When naming the nonhuman actors, you can use the name of the role that the hardware or external system
performs relative to your target system. Or, you may find it convenient to use the given name of the system to
simplify identification. For example, if there is an external system to authorize the potential guests’ credit
cards, it is acting in the role of CreditCardAuthorizer, and that's not a bad name for it as an actor. But if it's
already well known by a specific name such as credit card authorization system, then that might be a better
name for the actor.




Exposing an Actor’s Roles

Actors are not shy; they have to be shown to their public if you want to get their value, Within UML, the
notation for an actor is traditionally ick figyre, as you can see on the left of figure 8-4. You can also use a
class box (as shown on the right of EiZure 8-9) to indicate an actor—you label the box with the string «Actor».
This is called stereotyping, and each « and » mark is a guillemet. You may use double angle brackets (<< and
>>) if you're typographically challenged (as are many UML tool vendors). Stereotyping is the common UML
way of distinguishijng similarly drawn figures of different types. The box form for an actor is similar to a class
box (discussed in ), but actors and classes are treated differently—and the stereotype «Actor» helps
you recognize which is which.

o
S =ACtor:
A Credit Card Authorization Systam

Palariial Guksst

Figure 8-2: Exposing actors on diagrams.

We recommend using the stick figure form for all the human actors and the box class box form for
non-human actors (other systems, databases, and devices). This little visual convention will help you
distinguish them quickly.

Sometimes you'll find it possible to generalize your actors—especially when an “is-a” relationship (“x is a y”)
exists among some actors. You can use the UML generalizati otation to capture this relationship. You may
also find this same type of relationship among classes. (Chapter § discusses the generalization relationship.)

shows an example of generalized actors. In this case, we started with looking at the actors, Potential
Guest, and Frequent Traveler. We recognized that some of the essential activities of each could be generalized
as those of a Reserver, as they both make reservations. As we feel that a Potential Guest “is a” Reserver and a
Frequent Traveler “is @” Reserver, we use the generalization symbol to reflect the relationship.

Risery
I.i_1 .-_H.I
i j--
Potamtial Guest Frequent Traveler

Figure 8-3: Generalizing actors.




Showing Your System’s Use Cases

Finding and categorizing the stakeholders and identifying the actors will certainly help you determine the
sources of requirements for your system and help you get critical feedback early. However, to get full value
from UML use-case diagrams you have to show how the actors use the system. Each distinct use of the
system—or purpose for which the system can be put to use—is called a use case. Each use case must be
initiated by some actor, whether human user, device, clock, or other system.

Defining use cases based on actors and goals

Put yourself in the place of each actor in turn. Consider the goals that each human actor has when using the
system. Determine the job the actor performs while using the system you're developing. You need to
recognize and understand how your system helps the actor meet job goals or personal goals. If using the
system returns some observable or measurable value to the actor that moves the actor toward the goal, then
that use is a good candidate for a use case. For example, making a reservation returns a reservation to the
actor; checking in returns a room assignment and a key; checking out returns an end-of-room assignment and
a bill. For the non-human actors, consider the goals the actor’s stakeholders have when it initiated interaction
with your system.

All actor-and-system interactions are part of some use case. For each set of interactions with the system,
examine the goals or purposes of the initiating actor, sometimes called the primary actor. If more than one
actor participates in the use case, then the actor who starts the behavior (or contacts the system) is the
primary actor. The system contacts other actors as it attempts to meet the primary actor’s goals. You can call
these other actors the secondary actors. Often an actor may be primary for one use case and secondary for
another.

Illustrating use cases

UML has a simple way of indicating the relationships between actors and their use cases. You draw a line

from each actor to each use case he or she (or it) participates in. (An example of a use-case diagram appears
in Figure 8-4)
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Figure 8-4: This use-case diagram illustrates use cases and their associated actors.

Show the use case by drawing an oval, which is UML notation for a use case (and other such behaviors). The




name of the use case is supposed to be placed inside the oval, but this is rarely seen. Some tool vendors find
it difficult to redraw diagrams when the text is inside the oval, so they put the use-case name on the outside,
near the bottom of the oval. UML accepts either location for the name. Our Eigure 8-4 shows both ways of

drawing use cases.

If there are multiple actors participating in a use case, it's sometimes convenient to show who is in
charge and who is just along for the ride. We recommend that you indicate the actor who initiates a use
case—the primary actor—by drawing an arrow from the actor to the use case. Other actors, who might just

participate in the use case, you show as the targets of arrows that start at the use case. We demonstrate this
convention in .

When you draw the use case yourself by hand, you'll find it easy to put the name inside the use-case
oval if you remember the simple rule for using your hand as a UML tool: Draw the words first, and then draw
the container. If you draw the oval first, the name will rarely fit inside.

Showing multiplicity with actors and use cases

In many of your systems, the concurrency of each use case is useful to capture. The concurrency of a use
case is the number of instances of the use case that the actor can communicate with at the same time. You
can use the multiplicity value (see or the complete details of how multiplicity is indicated) to show
concurrency as well. If an actor can participate in more than one running of a particular use case—at the same
time—then the multiplicity of the use case should be 0..*. In the normal situation (one-at-a-time participation),
you can use 0..1 as the multiplicity, or just don't bother to indicate it. In , we show that the Credit Card
Authorization System can work with many instances of the Make Room Reservation running at the same time, but
a Potential Guest can only try one Make Room Reservation with our system at a time.
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Figure 8-5: A use-case diagram with multiplicity.

Don’t get too confused over arrowheads or multiplicity. The lines from the actors to the use cases can be
adorned in many ways, all of which are optional. All you need is the basic core line to indicate that the actor
participates in the use case. If a use case has only one actor, it's obviously the initiating actor. If there is more
than one actor, you can distinguish this primary actor by showing that it initiates the use case (do so by making
the arrowhead point to the use case). You can also try the convention that places the primary actors on the left
of the diagram and secondary (non-initiating) actors on the right. Of course, you can use both conventions on
the same diagram.

Defining a good use case

A use case is an actor-initiated, complete, system behavior that brings value to the actor. Sometimes it may be
difficult to identify the set of use cases that our system offers. The following list provides several helpful hints



for defining a good use case:

B Choose agood name: A use case is a behavior, so you should hame it with a verb phrase.
To make it more precise, you should add a noun to the name to indicate the class of objects
that the action effects. To help you choose the verb-noun phrase for the use case name,
going back to the class diagrams that helped you find the actors (see may help
identify the objects and the associations created by the use cases. Look at a possible good

name for your use case, by examining the name of the relationships of the actor to the
system’s objects.

B jjustrate a complete behavior: A use case must be a complete behavior that starts with the
initiating event from the primary actor and ends with the actor normally reaching his/her
goal. If a proposed use case is only a step along the way to the goal, don't treat it as a use
case unless you can consider it a goal in itself. For example, Specify the Bed Size (such as
king, queen, or double) is an activity that you have to perform to reserve a room—but it's
only a part of the Make a Room Reservation use case because it never really stands alone
and doesn't (by itself) return a useful result. It's not really a goal for the actor to use the
system. However, you may consider Check Room Availability important enough to be a use
case. It returns a value and could stand alone.

B |dentify a completable behavior: To achieve a goal and produce value for an actor, the use
case must complete. When you name the use case, choose a verb phrase form that implies
completion or ending. For example, use Reserve a Room, rather than Reserving a Room,
because the “ing” describes an ongoing behavior.

B provide “inverse” use cases: Whenever you see a use case that accomplishes a goal that is
to change a state in the system, you probably need a use case to un-accomplish that goal.
For example, the use case Make a Room Reservation is undone with Cancel Room
Reservation. Use cases that just obtain information don’t need an undo. (For example, you
don’t need an undo for Check Room Availability.)

B | imit each use case to one behavior: Sometimes you might be tempted to have a use case
achieve more than one goal or do more than one activity. To avoid confusion, keep the use
case focused on only one thing. For example, the potential use case Check-in and Check-out
is unfocused; it attempts to describe two different behaviors. If a proposed use-case name
has an and or an or in the name, it's probably too unfocused to be one activity.

B Represent the actor’s point of view: Write the use case from the actor’s point of view, using
the terminology of the actor, not that of the system. Doing so allows the actors to review their
use case properly without having to learn your system’s terminology. In addition, it helps
keep you and your team learning—and using—your user’s terminology, making you more
responsive to their needs. For example, you would allow a Guest to use the system to help
Reserve a Room (using common Guest terminology), but you would not name that use case
Schedule Room Assignment, because that's a Hotel's terminology and not the Guest’s.

One hint that can help you find good names for your use cases is to put the name in the conversational
words of a typical actor—for example, “System, please help me to <verb> <noun> <phrase>.” When you use
this form, you automatically force the use-case name to adopt the actor’s point of view.




Distinguishing between Internal and External

Taken together, the use cases of your system cover all the services that your system offers to the totally of
actors. Every service, every behavior, every interaction with the outside world must be covered. You may
enclose all the system’s use cases in a box (representing the entire system) if you want to emphasize that
your system is what's offering these services. Label this box with the name of the system under construction
(refer to and 8-5). Of course, this box is optional—and not all tools support this kind of
notation—but it will help make the ownership of use cases clearer (at least it helps when the use cases can fit
in the box).

Documenting use-case levels

Though it's (technically) optional to do so, you should also stereotype the box in which you're offering the use
cases as «system». Other entities (such as subsystems or even classes) can offer use cases within UML, so
using the stereotypes can help the reader understand who is offering these use cases as services.

We also recommend the use of «business» or «enterprise» when you want your use cases to be offered by the
entire business, whether they’re automated or not. Depending on your methodology—and the size of the
system you’re building—you may need «business», «system», «subsystem», «class», and even «component»
stereotypes to identify different levels of use-case diagrams. Doing so helps you understand, explore, develop,
and document your system—one iteration at a time.

When you do document your use cases at the «business» level, don’t consider the internal workers of your
system as actors. Instead, consider them internal parts of your business system—essentially transparent. You
ignore the workers at the business level because your model should assume they’re internal entities—under
your complete control, like a database or other internal subsystem. (You can read more about this approach in
the section on “Defining a good use case,” earlier in this chapter.) Similarly, when you’re diagramming at a
business level you should ignore “transparent” devices (discussed earlier); instead, indicate the ultimate actors
that use those devices.

For that matter, ignore all internal subsystems when you're showing use cases at the «system» level. You
can—provided you're building a large enough system—decompose the system into several interacting
subsystems. Then you can find use cases for each subsystem, each with its own use-case diagram (focused
on itself). From the point of view of the subsystem, its actors are the other interactive subsystems of the
system—'?fffij??g (if the subsystem interacts with the outside world) one or more actors of the system as a
whole. Figure 8-6

shows an example of use-case levels.
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Figure 8-6: Use-case diagram levels.

Treating people as design elements

If you model the Hotel as a Business, the registration clerks and other employees show up in the model as
internal design elements. Perhaps you could automate their jobs completely. Consider the recent trends in
libraries and supermarkets; it's now possible to check out your own books and check out your own groceries.
From the model’s point of view, clerks or cashiers are designable elements, not actors; in effect, the business
doesn't exist for the employees; the employees exist for the system.

[« rrevious | o
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Using Context Diagrams

Use-case diagrams are very powerful, but in most systems, the number of use cases you have will be larger
than you can conveniently show on one diagram. A popular form of the use-case diagram may help
summarize the interaction of actors with the system. This diagram is called a top-level use-case diagram, but
asit’ imilar to a type of diagram that preda . often you'll see it called by its traditional name:
Eontext dia;raﬁ. This type of diagram, shown in Fi:ure 8—], displays the system of interest and all its

actors—but it hides the use cases themselves.
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Figure 8-7: System context diagram.

When you draw these context diagrams, you don’t have to worry about the arrows. If an actor is always the
initiator in all its use cases, you can have the arrow pointing to the system. If an actor is never the initiator, you
can have the system pointing to the actor.

You can draw these context diagrams right after you identify the actors—and before you take a crack at the
use cases—so0 a good guess is probably sufficient. To be safe, don’t use the arrowheads if you're not sure.

As with the regular use-case diagrams, context diagrams can be subdivided into levels. To minimize
confusion, focus your diagram on the subsystem, component, or class of interest—and use stereotypes to
indicate what the diagram elements are doing.

[« erevious s o



Packaging Use Cases

Context diagrams are popular because they can show the entire picture at one shot. In complicated systems,
you couldn’t show all use cases on one diagram anyway. Therefore, what you want to do is to produce a
use-case diagram for each initiating (primary) actor. If you make the actor names on the context diagram into
hyperlinks, then your context diagram becomes a graphic table-of-contents that refers to a set of use-case
diagrams.

This organizational structure is probably the most efficient for you anyway. If you produce artifacts based on
the use-case structure, you’ll want to organize them actor-by-actor so the actor community can review the
diagrams more easily. The real-world actors (supervisory personnel, for example) can give you focused
feedback and input if they can narrow their view—which means looking only at their own sections. This
approach works for identifying requirements, as well as for the stages of analysis, design, implementation, and
delivery.

When you use this approach to structure part of your system, you put your initiating actor and its use cases in
a separate package. (You can find more about using packages in ‘-) A use-case package has an

ptional, special icon (a tabbed folder with an oval in the center) that you might want to use (as shown in
Figure 8-9). Although use cases themselves are behaviors—which you name with verb phrases—use-case
packages are things, so you hame them with noun phrases. We recommend creating a package called Actor
Uses for each primary actor you can name. If you find that you have too many use cases within a single
package, you can make lower-level packages. In fact, you may need several levels of packages if you're
planning a large system.
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Figure 8-8: Gathering use cases into packages.




Chapter 9: Defining the Inside of a Use Case

Overview
In This Chapter
B Describing the use case’s theme and plot
B Narrating the use-case story
B pouring use-case flows into tables
B Showing alternative flows

Simple UML use-case diagrams clarify how you expect your system to satisfy the needs of its actors. That's
fine, as far as it goes. Identifying or naming the services your system offers is often a good start—but more
details of the use case are needed before you can get on with development. This chapter lays out some
common approaches to defining the inside of a use case.




Creating a Use-Case Specification

A use case is one way of using the system. You identify the actors (the users of the system) and their use
cases—placing them on a use-case diagram—in order to understand and organize your thoughts about the
system, and as a useful way to organize the system’s requirements, analysis, design, and potential artifacts
(documents, diagrams, and so on).

You can also consider a use case as a behavior that the system offers to the actors to help meet the actors’
oals. (For more on identifying actors and their use cases, and drawing them in use-case diagrams, see
Chapter §.)

UML tells you to draw use cases as named ovals, and to connect them to their actors (stick figures and
boxes), but it doesn’t say much about how to supply details of how the system performs behaviors needed to
meet the actors’ goals. Though use-case diagrams are helpful, without more information on how the system is
to do this work, your development effort will stall. So you have to supply information on how the use case is to
work—and put that information somewhere. Where? Somewhere close by and available when you need it, but
not anywhere that clutters up the simplicity and effectiveness of your use-case diagrams. Figuratively we place
these details inside the use case—not on the diagram, but behind the scenes. Often a textual document or
form is the place to put these details; it may be reached (perhaps by hyperlinking) easily from the use-case
oval.

This set of needed details placed inside a use case is sometimes called the use-case specification because
you use it to specify (spell out in detail) how the system behaves when triggered by actors to meet their
goal(s). (The format of the specification isn’t standardized in the industry—each development organization
develops or modifies its own standard—but we’ve based the discussion that follows on the common features
of the most popular approaches.)

Filling in this specification isn’t difficult if you step through the following tasks:

1. Identify and name your use case.
See for more on this process.

2. Draw adiagram indicating the use case, as well as its primary (triggering) and
secondary actors.

See [Chapter g for more on drawing use-case diagrams.

3. Describe the use case briefly.
Give a sentence outlining the purpose of the use case.
4. Narrate the story of what happens in this use case.

The use-case narration should be a written story. Usually it starts with the phrase, “This
use case starts when the actor <does something> . . .” and then describes what the
actor and system do in the normal course of events. Often this description takes the
form of alternating steps: The actor does this, and then the system does that, and so
on, until the story ends with: “This use case ends when the system <does something>
and <the actor’s goal> <is satisfied>.” If there are some major plot variations to the story
(that is, alternate paths the use case might take), you should include them in the
narration as well. You don’t have to be exhaustively complete—and certainly don't be
formal. Go for a few paragraphs that get the idea across.

5. Describe the main course (sometimes called the main flow) of events in your use case.

When you and your customers are satisfied with your narration, you can take the main




story—the typical interchange of events—and capture this flow of events (what the actor
does and then what the system does, and so forth) more formally. Later in this chapter,
we give various popular techniques for capturing a flow of events.

6. Define appropriate pre- and postconditions for this flow of events.

As part of making the flow of events more formal and precise, we specify the conditions
that must be true to enable this version of the story to occur—the preconditions. We
also specify the conditions that will be true after this flow of events finishes—the
postconditions.

7. Identify alternative, error, and exception scenarios.

Now we look at the alternate plot lines we indicated in the narration. We identify all the
alternative paths, possible errors (and their consequences), and exceptional situations
that the use case might encounter.

8. Describe each scenario’s alternative course with a flow of events, adding pre- and
postconditions.

Using the same techniques used in Step 5 (to describe the flow of events for the main
course), describe each alternate course identified in Step 7. Then identify the pre- and
postconditions, as in Step 6.

9. Add to the use case any requirements that must be obeyed, or any implementation
notes.

Document any usual business rules and data validations that the use case must
enforce. Capture any guidelines on design and implementation that might be helpful.

Remember, every use case must have a specification constructed. How much of the specification you ought to
fill out depends on the formality of your project and where you are in your project.




Telling the Use-Case Story

In , we give a basic definjtion of a use case as an actor-initiated, complete, system behavior that

brings value to the actor. Chapter { also presents some techniques to help you find and identify these use
cases, culminating in naming your use cases and placing them on use-case diagrams, as shown in.

However, just naming the behavior does not tell the whole story; you need more.
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Figure 9-1: A use-case diagram for the use case Make Room Reservation.

All approaches to defining a use case’s behaviors are more or less the same as detailing how the system
responds to actor-initiated triggers—and ultimately delivers the value back to the actor. That plot and theme
bind the use case together.

Describing the use case

The simplest way to describe a use case (and normally the first one tried) is to identify the theme of the use
case in a simple sentence or two—the use-case description. Given the use case Make Room Reservation,
you might describe the plot and theme as follows:

Use-case name: Make Room Reservation

Description: The actor Potential Guest uses a Web browser to specify desired room
features and dates, in order to obtain from the system a confirmed room reservation.

The use-case description you write is, in essence, a simple synopsis or abstract of the use-case story. It
explains the goals, plot, and theme of the use case when just the use-case name will not. But, it is not the full
story; an abstract needs a body. An abstract may stand for the body under some circumstances. As with any
abstract, the use-case description may stand in lieu of the use-case story when there is no room for the full
version—or during iterative development (before the full story has been written)—but the full story must also
be done.

Use cases are not just descriptions

While there are many templates and guidelines that give overall good sample formats of the use-case
description, they often suggest a simple miswording that may lead you down the wrong path. You may
see samples that start something like, “This use case describes how the system .. .."

This leads you to think that a use case is a document as it describes a behavior. | believe that this is
confusing on several levels. In a typical iterative development, you have several different documents
that describe the same use case—each made at a different level of detail. The documents describe
the use case; they are not the use case itself.

This simple confusion between the use case itself and the use-case description sometimes leads to a
more fundamental error. Use cases are primarily artifacts of analysis and discovery. By looking at your
system, you can discover or uncover the existing use cases—the ones that are there whether you







B End with “This use case ends when the actor is satisfied with the behavior of the system or
is unable to continue.”

You should have the goal to describe the required behavior of the system without saying how it is to be done,
as in the following use-case narration:

Use-case name: Make Room Reservation

Description: This use case allows the actor, Potential Guest, to use a Web browser to
specify the desired room features and dates and to obtain from the system a confirmed
room reservation.

Narration: This use starts when the actor, Potential Guest, visits the opening Web page.
The system responds by prompting for the span of reservation days and the room type.
The actor identifies the type of room that is desired (bed size, is-smoking allowed) and
the desired reservation day span. The system validates the inputs and prompts for
re-entry if incorrect. The system then checks to see if a room matching the actors request
is available during the day span specified and returns this to the actor. If several different
classes of rooms are available, they are all returned to the actor. If none match the actor’s
criteria, the actor may re-specify or may exit the use case. If one or more rooms meet the
actor’s criteria, the actor selects the room desired. The system prompts for payment
information. The actor supplies name, billing address, credit card number, and expiration
date. The system contacts the other actor, Credit Card Authorization System, to validate the
credit card and available credit. If the credit card transaction is rejected, the System
informs the Potential Guest, who may then change the card or cancel the use case. If the
credit card transaction is accepted, the System marks the room as reserved over this time
period to prevent subsequent reservations, calculate a unique reservation number, and
informs the Potential Guest. The use case ends when the actor reviews the successful
reservation and leaves the System. If the actor cancels before submitting acceptable
credit card information, the use case ends without a successful reservation.

This narration form is often the first approach used to specify the behavior of a use case. However, many
ultimately prefer an approach that breaks the flow of events into individual numbered actions so that they are
easier to see and refer to when necessary. A typical approach that works this way is called the use-case flow
of events. This approach allows you to clarify whether an event is actor- or system-initiated, using indentation
or numbering. The top-level statements describe the actions that the actor performs. The indented, lower-level
statements describe the responses of the system. The following is a partial example of this technique:

Use-case name: Make Room Reservation

Description: This use case allows the actor, Potential Guest, to use a Web browser to
specify the desired room features and dates and to obtain from the system a confirmed
room reservation.

Main course:
1. This use case starts when the actor visits the opening Web page.
1.1 The System prompts for the span of reservation days and room type.

2. The actor identifies type of room (bed size and smoking or non- smoking) and
reservation day span.

2.1 The System validates inputs.

2.2 The System determines available matching room classes.



2.3 For each available room class, the System determines reservation costs.
2.4 The System displays possible reservations.
2.5 The System prompts for actor selection.

3. The actor identifies type of room (bed size and smoking or non- smoking) and
reservation day span.

31...

We generally recommend writing the narration first—and having that reviewed by your stakeholders before
you construct the flow of events. Afterward you may be able to discard the narration.

One important consideration using this flow of events approach is that a flow captures only one path
throughout the system. As you use the numbering and indentation to convey order and initiator, they are not
available to you to indicate looping or decision. Therefore, when using the flow of events approach to
documenting a use case, you will need to use multiple different flows or courses to document the entire use
case. You start with documenting the main course. This is the course of events that is the most common and
straightforward approach to achieve the actor’s goals with the use case. (You may also hear the main course
called the main flow or main path through the use case.)

Setting pre- and postconditions

Most use case specification templates will ask you to supply pre- and postconditions for the course of events.
The preconditions specify the state of the world that must hold before the course can be triggered. The
postconditions specify the state of the world the will hold after the course has been successfully completed.

When documenting the main course of most use cases, we have found that the preconditions are often simple
as they just tell where the actor must be to start the use case. Likewise, the postconditions of the main course
may also be simple if they are just statements that the actor’s goals have been reached. However, sometime
the conditions can be very complex, especially when describing the conditions for T!Igmatg or error I]Qwi. You
can see some examples of not-too-complex pre- and postconditions in the section PIndicating Alternative

Courses of Behavior.

We normally use natural language statements to capture constraints on the world, but we often find it useful to
be more formal if the English could be ambiguous. In these circumstances, you might use Object Constraint
Language (OCL) to indicate formal relationshjps among objects and attributes from the domain model. (You
can find more about using OCL in [Chapter 11].) For even more clarity, you may consider drawing object
diagrams. We discuss these diagrams as the underpinning of collaboration diagrams in

Avoid the Happy Path

Occasionally people will refer to the use-case main course as the Happy Path. We believe that the
term Happy Path, despite its popularity, is often inappropriate and should be avoided. The adjective
happy is a matter of opinion and has to do with interpretation of whether the actor’s desired goal is also
desirable. There are many circumstances in which happy will be incongruous, such as Cancel
Reservation, Close Hotel, or (more darkly) Execute Prisoner. Generally, you will be more professional if
you avoid value judgments in your terminology.




Indicating Alternative Courses of Behavior

As the main course is just one possible course through the use case, if there are other ways of reaching the
actor’s goals, you need to construct other courses for each way. Each possible path through a use case is
",:i fij fijenario. Consider a scenario as an instance of a use case, which you may diagram as shown in
Figure 9-4. The use-case instances use the same oval notation as the use cases, but have their instance
name, in the standard underlined format, as follows:

scenario name: use-case name
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Figure 9-2: Scenarios of a use case.

The modeling notation shown in is similar to that of classes and their instances, objects, which is
covered in . Name each scenario so that they are easily distinguished using the format for object
instances.

There are often infinite potential instances of use cases, each of which is a slightly different path through the
use case, with different values for user input, or different number of errors occurring in different orders.
However, don't bother to even try to identify all of these. You should just identify the ones that yield
guantitatively different results. For example, identify different ways of meeting the goals or different error
messages. Construct scenarios that span all errors, exceptions, or variations of flow. Ultimately, the set of
scenarios that you identify should exhaust all the logic of the use case.

Each scenario you identify has to be a possible path through the use cases. Thus you'll probably have to
construct a separate flow of events for every scenario you've found. Each of these additional flows is usually
called an alternate course. Document the alternate courses in the same way as the main course.

This might seem a bit redundant. The scenario in which the credit card is accepted is very similar to the
scenario in which the credit card is rejected, at least, up to the point of rejection. Luckily, it's not necessary to
duplicate steps mentioned in previous courses. When you start an alternate course, indicate the step from
which it branches off and the conditions that cause the branch off.

When you end an alternate course, it has several possibilities:

B The use case ends because the goal is reached in an alternative way. Write a postcondition

to indicate the results of this course.
| ]

The use case ends because it's not possible to reach a successful conclusion. Write a




postcondition to indicate the results of abandoning the use case.

B The use case resumes at a previous step to re-attempt a failed behavior. Indicate the next
step in the original course that follows.

B The use case accomplishes a subgoal in a different way so that it skips a group of steps and
rejoins at a latter step. Indicate the next step in the original course that follows.

Here’s an example of an alternate course
Alternate course #1: Invalid reservation day span.

Precondition: At Step 2, the actor enters an invalid reservation day span (more than 1
month, or less than 1 day).

The System validates inputs but the reservation day span fails validation.

The System displays an error message indicating the problem to be
fixed.

The System prompts for correct reservation span.
Processing continues with Step 2.1 of the main course.

You may become tempted to use control syntax, such as IF, ENDIF, DO, FOR, or CONTINUE AT, to
minimize the number of alternate flows in a use case, but it's best to avoid such things altogether. If you yield
to temptation, you'll find in hard to stop and the flow would quickly become unreadable.

When you describe use cases to specify requirements for your system, you want to use the
language of the user. That way, your users will be able to clearly understand what the system does for
them—and they can better review and critique your use cases.

Another common approach to capturing the courses or flow that you might use is table-oriented steps. The
following example shows how a main course and a few of the possible alternate courses could be captured
using the table-oriented steps:

Use-case name: Make Room Reservation

Description: The actor Potential Guest uses a Web browser to specify desired room
features and dates, and to obtain from the system a confirmed room reservation.

Main course of events: Successful credit card transaction.
Precondition: Actor reaches the hotel's home Web page wanting to make a reservation.

Successful postcondition: Actor has a confirmed room reservation.

Potential Guest System Credit Card
Authorization
System

1. This use case starts 2. Prompts for span of reservation (in days)

when the actor visits the and room type.

opening Web page.

3. Identifies type of room 4. Validates inputs using Data-Validation
(bed size and is smoking Rulesl and 2.

allowed) and span (in
days) of reservation.




Potential Guest

System

Credit Card
Authorization

System
5. Determines available matching room
classes.
6. For each available room class, determines
reservation cost. (See Business Rule 1.)
7. Displays possible reservations.
8. Prompts for a choice.
9. Selects desired room. 10. Prompts for billing information.
11. Supplies name, billing 12. Validates the inputs, using Data-Validation
address, credit card Rules 3 through 6.
number, and expiration
date.
13. Sends transaction to Credit Card 14. Reports
Authorization system. transaction is
accepted.

15. Marks room as reserved byPotential Guest
over the specified time period (to prevent
subsequent reservations).

16. Calculates unique reservation number.
(See Business Rule 2.)

17. Informs Potential Guest of success.

18. This use case ends
when the actor, satisfied
with the reservation,
leaves the system.

Alternate course #1: Invalid reservation day span.

Precondition: At Step 3 of the main course, the actor enters an invalid reservation day
span (more than 1 month, or less than 1 day).

Potential System Credit Card Authorization
Guest System
1. Fails Reservation Day Span validation.
2. Displays error message, indicating problem to be
fixed.
3. Prompts for corrected reservation span (days).
4, Use case
continues
with Step 3
of the main




Potential System Credit Card Authorization
Guest System

course.

Alternate course #2: Credit card authorization fails.

Precondition: At Step 14 of the main course, the Credit Card Authorization System rejects
the transaction.

Potential Guest System Credit Card Authorization
System

1. Rejects transaction.

2. Informs Actor of transaction rejection.

3. Prompts for corrected or different credit card.

4. Use case
continues with Step
11 of the main
course

Alternate course #3: Reservation canceled.

Precondition: At any of Steps 3, 9, or 11 in the main course, the actor desires to cancel
the reservation.

Postcondition: This use case ends with no reservation made.

Potential Guest System Credit Card Authorization
System
1. Indicates Cancel or 2. Cancels ongoing leaves Web
page.transaction.

In this example, we occasionally refer to Business Rules (for example, Step 6) and Data-Validation Rules
(Steps 4 and 12). Some use-case authors place the details of the field validations and algorithmic calculations
in line with the steps. This is acceptable, but we prefer to refer to the rules, and place them somewhere else,
usually at the end of the document. If you place the rules right inside of the steps, the steps can get very long
and difficult to read. Readability should be one of your most important goals when you write use cases,
because you are attempting to get agreement and buy-in from your stakeholders and other developers. In
addition, business rules and data validations tend to change often—so it's best to take the ones shown here
out of your final steps so the steps don't have to change.

Here are some examples of the business and data-validation rules that we referred to in our example. The
business rule helps calculate the room prices; the data-validation rules prevents reservations of less than one
day or more than one month. Here’s what they look like:

Business Rules:
1. DoubleOccupancyPrice = 1.75*BaseRoomPrice

Data-Validation Rules:

2. Day Span: Datel -- Date2
Format: MM/DD/YY -- MM/DD/YY
aDate2 > Datel

bDate2 - Datel = 1
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Chapter 10: Relating Use Cases to Each Other

Overview

In This Chapter
B Using «include» relationships to extract common flows among use cases
B Generalizing and specializing use cases to show common goals
B Showing optionality with extended use cases

No one likes to do redundant work—and normally your use cases shouldn’t require it. In this chapter, we show
you some techniques to help you keep duplicate work to a minimum, using two general approaches:

B Extracting areas of commonality with included or generalized use cases can save you work
(you only have to document the common parts once).

B Extracting and emphasizing optionality—that is, identifying variations (as with extended use
cases)—lets you simplify your work.




Linking Use Cases with «include»

You'll often run into déja vu as you document your use cases—especially when several of them show an
identical sequence of events exchanged between an actor and the system. This is more than coincidence;
multiple use cases often have common subsequences. Usually (for example), some common setups or
prerequisites must be established before work even begins—and common subgoals have to be reached on
the way to accomplishing the actor’s goals.

Recognizing this commonality is good—because if you don’t recognize it, you can end up doing your use-case
work twice. Doing the same thing over again is bad enough, but the consequences to your project can be
worse. If you document your use cases twice, you'll likely document them differently—which leads to
designing, implementing, and testing them differently. Such systems are also costly because such a lack of
reuse adds complexity—and your users may easily get lost in a system that shows no cohesion. They’'ll have
to learn and remember different techniques to accomplish the same goals in different contexts.

To save everyone some hassle, it's worth looking for opportunities to reuse common pieces of use-case
interactions between an actor and the system.

In the Hotel Reservation system diagrammed in , the actor Potential Guest may trigger the use case
Make Room Reservation—and another actor, Event Organizer, may trigger the use case Make Facility Reservation.
Both use cases involve an additional actor, the Credit Card Authorization System, to guarantee a reservation.

Hotel Rasarvaticon
5.:|r~5'|r.~m

" - = - .-'H.
e ¢ Blaka Boom
. Raseryation 2

" .

o _,.i"-.__\_... I
Y — ~a) cACton

Potential Guest Lredit Card
Authorization
- i _.--"'.?ﬂ 5'.l'|l5'. 21T
“';". ¢ Blakn Fac Illqu'.-.
ﬂ : 'H.:-!I"-I-l'\.'-ll ..I:-___-"
Evant | Irganizar

Figure 10-1: Potential commonality in use cases.

After a little thought, you may notice a set of interactions that Make Room Reservation and Make Facility
Reservation have in common: the process of verifying the credit card. This common set of interactions begins
with the actor requesting to pay by credit card, and the system responding with prompts for credit-card
information (such as type, number, date, and name). After the actor fills in the fields, the system validates their
values, and passes the information to the Credit Card Authorization system, along with an estimate of cost for the
room or event. Here the information is verified; if it's acceptable, the system puts a hold on the credit card for
the estimated cost. There are several alternate paths to this result—for example, validation errors, insufficient

credit, card reported stolen, and so on. (You can see the Make Room Reservation use case, which includes
these flows, documented in .)

You can add such sets of common interactions to a new use case of their own—which you can then include
wherever you need it.

In , for example, you can see that we pulled out the common interactions of two use cases and
placed them in a new use case called Guarantee Reservation. We show the relationship by drawing a dashed
arrow between the base use cases (the ones doing the including because it needs the common behavior) and
the common (included) behavior, labeling the arrow with the stereotype «include». The resulting include




relationship points from the base use case to the included use case, indicating that the included use case is a
necessary part of the base. This included use case is a real use case; you document it in the same manner as
a base use case.

Though it uses a different notation, the «include» relationship is similar to the aggregation relationship
discussed in
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Figure 10-2: An included use case.

An included use case is often handy (and needed) when several use cases share a secondary actor,
such as Credit Card Authorization System. Often these secondary actors are dealt with in common ways (share
common exchanges of events) from a number of different use cases. If the interactions with the actor are the
same and significant, it's worth your time to make a new use case for those interactions so you can simply
«include» them.

Documenting included use cases

You may have one difficulty when you attempt to document the included use case: How do you identify the
primary actor? After all, three different actors are involved with the Guarantee Reservation use case—and at
least two of them are potential primary actors. In fact, you should consider both Potential Guest and Event
Organizer as primary actors (yes, there can be more than one). Any primary actor for any base use case is also
a primary actor for the included use case. You must document the included use case in a way that allows any
primary actor to interact with the system being built. You can see one way of doing this in the following
example, which is the beginning of the documentation for the Guarantee Reservation use case.

There’s also a bit of controversy about how to document these included use cases. If you look at
the following, you can see that we have a spot in the header to list the base use cases (Make Room Reservation
and Make Facility Reservation). Normally, object-oriented principles guide us to hide the identity of the callers
from the called. This bit of information hiding allows us to change the identity and number of callers (that is, the
base use cases) without requiring us to rework the called (that is, the included use cases). When you
implement your use cases, however, it's often worthwhile to ease up on the information hiding when you're
doing the documentation. As you may expect, too much information hiding makes it hard to communicate well.
(For more about object-oriented principles of information hiding, see [Chapter 2.)

Use-case name: Guarantee Reservation

Description: This use case allows the actor, either Potential Guest or Event Organizer, to
guarantee a reservation using a credit card.

Base use cases: Make Room Reservation, Make Facility Reservation
Main course of events: Successful credit card guarantee.

Precondition: Actor is ready to guarantee the room or facility reservation with a credit
card. The system already knows the expected cost of the reservation.



Successful post condition:

Actor has guaranteed the reservation.

Potential Guest or

System

Credit Card Event Organizer
Authorization System

1. This use case starts when
the actor is ready to guarantee
the reservation.

2. Prompts for billing
information.

3. Supplies name, billing
address, credit card number,

4. Validates inputs data
validation rules X through Y.

6. Reports transaction is
accepted.

and expiration date. 5. Sends transaction to Credit

Card Authorization system.

7. This use case ends when
the guarantee is accepted by
the system.

Generalizing actors in included use cases

You may also generalize the potential actors and refer to them in their generalized form. In , we've
generalized Potential Guest and Event Organizer into a new actor named Reserver. In this situation, the Potential
Guest actor and the Event Organizer actor—for as long as they’re participating in the Guarantee Reservation use
case—share common goals and purposes. Thus, when you document the included use case, you can refer to
Reserver as the actor. This is an especially good technique when you have many base use cases, each with its
own primary actor. If you don’t have to explicitly refer to each individual actor, you improve readability, save
some documentation costs, and produce more change-tolerant documentation.
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Figure 10-3: Generalizing actors.

These advantages come with a caveat: When you produce the use-case diagram, don’t connect the
included use case directly to the generalized actor. That way lies confusion; primary actors of an included use
case are implicitly the actors of the base use case(s). Adding a connection to the generalized actor just adds
another actor to the use case—one actor too many. This common diagramming error indicates that another
actor instance is required to execute the use case—when it isn’t.

Use-case diagrams are, by and large, graphically simple. With only a few actors and a few ovals per actor, you
can convey lots of information about your system (such as its users and services). Adding «include»
relationships can complicate the diagram slightly, but you gain clarity by highlighting areas of commonality and



regularity. It's comforting to understand a system deeply enough to identify areas of uniformity—and practical,
because it enables reuse and predictability.

(rrevious e o



Using Generalization with Use Cases

Sometimes there’s more than one way to reach a goal. When you find common purposes or goals in UML,
you have an opportunity to use generalization—the object-oriented technique of specifying comman features
in a more general way to enable the reuse of objects,_(For more about generalization, check out; for
more about the UML notation for generalization, see [Chapter §.)

There are two common circumstances where you'll find opportunities to generalize use cases:

B Differing mechanisms for the same goal: If there’s more than one alternative technique or
approach that the system uses to help the actors get their goals accomplished, they may
share only a little implementation in common. If they meet the same goal, however, then the
approaches will be still be sharing quite a bit: requirements, business rules, and data
validations. With generalization, we can make this sharing explicit and save on duplications,
by putting the common stuff in a single use case.

B Differing agents for the same goal: If there is more than one actor trying to accomplish the
same goal, you may be able to generalize the actors as we explain in the section above on
generalizing actors in included use cases, However, you will find that often the actors have
separate privileges, capabilities, or user interface. This is especially common when one
actor acts as an agent or intermediary for the other. Generalizing the actors might still help,
but now we want to explain how the use case works differently for each type of actor.
Instead of generalizing the actors, generalize the use cases, placing in the generalized use
case the common documentation, requirements, business rules, data validations, and
perhaps implementation that they share. Using generalization will help you corral this
common stuff and put it in its place (in a separate single use case).

Generalizing differing mechanisms

As technology evolves, your systems evolve as well. But it's rare that you can completely eliminate legacy
(pre-existing) solutions to long-standing needs. This can mean that at any one time, there are often several
different ways to achieve the same goal.

Sometimes it's not a question of retaining legacy approaches; you may just be hedging your bets with two
different solutions to the same problem. Perhaps it's because of uncertainly about what will become the
dominant technology, or a desire to cater to diverse user populations with different preferences.

We show a typical example of such use-case generalization in . The actor Potential Guest connects
to the generalized use case Make Room Reservation. You place the common requirements, business rules, and
even most of the flow description inside that use case. Then, in your lower-level (specialized) use cases, you
have to document only the specific behavior required for their implementation mechanisms—that is, only the
differences. In the figure, we show that we have to implement the same Make Room Reservation using
modern HTTP Web technology, old-fashioned, VT100 technology, and IVR (Interactive Voice Response)
pushbutton telephone technology.
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Figure 10-4: Generalizing use cases by mechanism.

You'll find that when you generalize a use case in this manner, what you get is typically an abstract use
case—one you can't implement directly (because the details are missing) and that you can only put into action
by implementing the specialized concrete use cases that specify the detailed mechanism. (UML indicates that
a use case is abstract by italicizing its name and adding the {abstract} property tag.) There’s a discussion on
abstract and concrete and how to indicate them in ..

As part of the generalization notation, you can label the generalization (this label is called a discriminator) to
clarify the basis or reasons for the generalization. We use the discriminator mechanism when we separate the
implementation mechanisms in the diagram.

If your use cases are only for identifying requirements and documentation, generalizing by
mechanism can actually work against you. Instead, try putting the requirements, common business rules, and
field validations in the generalized use case—don’t bother creating the specialized use cases at all (if you
already created them, you can delete them). Unless you have to mention requirements that arise from the
mechanism, specialized use cases may not offer much new to say. For many organizations, however, use
cases serve purposes other than just gathering requirements—for example, they can help with scheduling and
document organizing, or serve as a powerful explanatory tool. In such circumstances, generalizing by
mechanism can still be valuable.

Generalizing differing agents

In the traditional model for service-oriented business, a customer contacts the business and requests some
service. A worker—a cashier, library-circulation clerk, or hotel phone-reservation agent—performs the service
for the customer. However, in our increasingly technological world, the customer may be able to interact
directly with the system without using an intermediary (worker). Improving technology enables this trend
toward disintermediation—in effect, losing the middleman—as a major thrust for Internet growth.

Your systems may have to support both direct (without an intermediary) and indirect (with an intermediary)
usage—and traditionally you would construct a separate use case for each approach. Generalizing offers you
an alternative. Figure 10-§ (for example) shows two different approaches to making hotel reservations—one
direct (by Potential Guest over the Internet), and the other indirect (Potential Guest contacts a Reservation Clerk
to do the work of making the reservation).
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When you generalize your use cases, you also add complexity to the diagrams—but what you get back is
thoroughness: You can diagram the generalized use cases, which map to the essential goals of the actors, as
well as the different specialized variants on the themes.



Extending Use Cases

Your use-case diagrams can convey lots of information packed into a simple form—but most information
developed in the analysis stage ends up inside the use case, serving as its specifications (discussed more
fully in ). In practice, use-case flows get much of their true complexity from the entanglement of
multiple alternate courses and paths.

When you draw use-case diagrams, you're practicing the good object-oriented principles of abstraction and
information hiding (as described in) to simplify the tangle—communicating the essence without the

distraction of suppressible details.

Hiding complexity is generally good, but sometimes you have to expose some details to gain clarity
somewhere else. With UML, you can depict important alternate flows graphically by making them into their
own use cases. Then you can connect these new use cases to their base use cases by establishing an
«extend» relationship. Thus, you can emphasize otherwise-hidden information when the reviewers of your
use-case diagram want to see it. Some reasons this might be desirable are as follows:

B Changed capability: If you have changed a use case significantly— perhaps because of a
later release—you may find it useful (and perhaps politic) to emphasize that the change has
occurred, rather than burying it in the use-case specification.

B Major variation: If you have a major alternative path in the use case, and it's complex
enough to have its own alternative paths, then placing it on your diagram will honestly
expose the complexity—which is helpful in costing, assignment, and scheduling.

B Optional subgoal: If you have parts of the use case that would be optional to implement (or
even optional to execute) to meet the actor’s goals, put those parts into their own use case.
Doing so clarifies the relationships between actors and their goals. It also emphasizes that
you may deliver these optional goals in later releases.

Showing a new release

When you have significantly changed a capability in a new release (a new delivery of code to the users), it's
often best to create a hew extension use case that extends the existing use case. , for example,
shows Make Room Reservation V2.0 as an extension use case of the original Make Room Reservation. The
«extend» relationship uses an open-headed, dashed arrow that points from the extension to the base use
case.

When you document the changes in such an extension use case, you save yourself the work of changing any
existing documentation. | it's considered incorrect for a base use-case specification (the textual
description discussed in Chapter 9) to mention that it's extended (except for listing extension points, as
discussed in a moment). This prohibition supports encapsulation—so you can extend at whim without having
to change any existing use cases. As an added bonus, you shield your existing use cases from extra review or
criticism.
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it, where the extension use case came from), is called the extension point.

A dashed arrow pointing from the extension to the base conpects the base use case and extension use case.
Label the arrow with the stereotype of «extend». Figure 10-71 shows the ongoing example.
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Figure 10-7: An extension and extension points.

Almost everyone is initially confused about the direction of the «extend» arrow. It points from the
new extension use case to the base, in the opposite way from that of the «include» relationship discussed
earlier. In Eigure 10-4, you should read the relationship as, “Upgrade Reservation extends Make Room
Reservation”, or if you prefer reading in the other direction, ‘Make Room Reservation is extended by Upgrade

Reservation”.

Besides the basic notation for the «extend» relationship, there is some optional UML notation that you may
find useful. In the lower section of the oval that represents the base use case, you can list the extension
points—places where extension use cases may be |nserted. Fach of these identifies a step (or range of steps)
in the flow of events in the base use case shown in [Chapter 4. The numbering techniques given in that chapter
to identify the location of an alternate course can be used to identify the location of the extension points (for
example, Main Course Step 5; Alternate Course 2, Steps 3-6). To avoid exposing the inner details of the step
numbering (which would require the diagram to change too often), we recommend that you use a easily

is name should be mapped to the step numbers in the

, for example, the extension point is identified as Entering

remembered name for each extension point, Th
specification for the base use case. In
Affinity Plans.

Another way of identifying an extension point is to name of the activity that the use case must
nh

be executing when the extension is inserted. Check out Chapter 13 for using UML activity diagrams to diagram
the steps of a use case.

The figure also shows how you can attach to the «extend» relationship a comment indicating the condition
under which the extension applies. To completely read the diagram with the optional UML notation, it would go
something like this: “Upgrade Reservation extends Make Room Reservation when the condition {Customer is in an
acceptable affinity plan} is true at the point the Make Room Reservation reaches the extension point Entering
Affinity Plans”.

Extending with optional goals

Believe it or not, you may have to add an activity to a use case that’s not needed to achieve its goal. For
example, you may want to request that any Potential Guest answer a marketing survey when making a room
reservation (as in ). This may become a mandatory insertion, but it's optional to the actor’s
goals—you could, in theory, eliminate it—so it's best modeled as an extension.
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Figure 10-8: Mandatory use case with optional goal.

Misusing extends

You may have problems determining when to employ extensions (as opposed to other techniques such as
inclusion or generalization discussed earlier in this chapter). Unfortunately, the advice typically given isn’t
sufficient to end controversy. You're usually told that the extension use cases must be optional when invoked
from their base use cases—and that the extension use cases cannot depend on their base use cases.

One problem with such pronouncements is that the term optional isn’t well defined. There are at least two
possible meanings here. An extension use case could be optional to implement or optional to execute at
runtime. Most practitioners prefer the second approach because it seems easy to see whether a use case has
a condition to test before it executes. For many use cases, however, it's hard to define whether something is
truly optional to execute. For example, if the runtime test is always true, is the use case really optional to run?
And if you can’t decide which course is the main course and which is an alternative course, would a use case
be an extension if it's used by the alternative course—but considered included if it's used by the main course?

Okay, we do have some subtle reasons to believe it's better to interpret optional to mean optional to implement.
For openers, we believe that UML directed arrow requires that base use case not depend on extension use
cases, but a base use case can depend on included use case. If you follow this guideline, your use-case
diagram can (and should) determine required implementation order. This approach leads to two other clear
requirements:

B You must deliver any included use case along with its base use case.
B You may deliver any extended use case later than its base use case.
Not only is this information valuable for scheduling work, it's easy to understand visually.

On the other hand, we've seen civilized discussions on whether a use case should be an extension or an
inclusion become disagreements, then arguments, and ultimately—well, they can cost your project a lot of
time, money, and good will. You're probably best off if you don’t take a hard line on such issues; this chapter's
three guidelines for extending use cases (listed earlier) will steer you in an effective direction.
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In this part . ..

When you're specifying use cases or designing operations, you are doing functional modeling — and UML has
some tools for you. The chapters in this part get you started with the notations and techniques that make up
your toolkit for functional modeling.

We cover several different ways of representing the details of your system’s functionality and behavior:
sequence diagrams (which show the event exchange among objects), activity diagrams (which show workflow
and decision-making), and communication diagrams (which show collaboration among objects to accomplish
some behavior). We even cover some UML-based ways to use text that are sure to come in handy.
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11: Introducing Functional Modeling

Realizing your use cases

Modeling the details of behaviors

Choosing the best functional modeling approach
Harnessing the power of OCL

Writing text-based specifications

Use cases (discussed in detail in , E and E} capture your system’s behavior as seen by the actors
of the system. However, use cases are services your system offers to the outside—before the system can
deliver results to the outside, you have to deliver the insides, that is, you must specify, design, and develop the
inside parts of the system that accomplishes these use cases. This is the point at which you have to worry
about use-case realization—how to realize (accomplish) the use cases.

This chapter introduces some UML capabilities available for designing and capturing the details of
behavior—and offers guidelines on how to model behavior.




Modeling Functions from an Object-Oriented Perspective

Before object-oriented analysis and design methodology captured the imaginations of software developers,
the primary methods they used to ply their trade either emphasized the functions (the behavior) or
emphasized the structure (the data).

Actually, the most common technique was (and still is) hacking—in effect, a mostly undisciplined, unrepeatable
approach—but styles of hacking continue to evolve, influenced by fashionable programming languages,
concepts, and other fads of the day.

The predominant style then separated out functional development (analysis, design, and implementation of the
behaviors) from that of structural development (analysis, design, and implementation of the data). That is,
people designed their behaviors (the things the system does) independently from that of their data structures
(the values, fields, records, and database that contain the data of the system).

These approaches worked, but they tended to result in fragile, hard-to-maintain systems. Someone always
wanted to change a behavior (which was on one set of models), or change a data structure (which was on
another set of models)—without seeing both views—and with no encapsulation or information hiding to limit
complexity, the system usually broke. Every change propagated ripple effects that could change everything
e more about encapsulation, information hiding, and other good development principles, review
Ehapter 2.)

Object-oriented techniques help you address these problems by keeping an eye on some aspects of the
functional view (seeing the operation in terms of behavior and control) and the structural view (focusing on
objects) at the same time.

UML tries very hard to prevent this dangerous decoupling of behavi data. Because UML arose from the
principles of object-oriented development (such as described in [Chapter 9), it presents a unified view of

behavior and the objects that do the behavior. Each diagram emphasi another aspect of
the system, but no diagram type is exclusively functional. In [Table 11-7 (in theEext sectior]), we show some of

the modeling techniques you can use when you need to concentrate on the details of a behavior.

You can’t get away with ignoring the objects that do the behavior and considering only the objects
that the behavior works on. There is no pure functional diagram in UML.

When use cases aren’t enough

Often your use cases will be si viors of your system. The text-based approach to their
documentation, as explained in Ehagter 9, will be sufficient to document their externally visible behavior. Your
use-case courses—the main course and the alternate course(s)—describe a set of interactions between an
actor and the system. It's simple when there are only two objects. However, you may have secondary actors
involved, in which case your interactions can get complicated with three or more participating objects. You
also may have many alternate courses, or alternate courses of alternate courses. You may find the simple
text-based main and alternate course approach sufficient for requirements understanding, but you will be
challenged to use it to help in design.

UML has several possihes that might help you in explaining the details of behavior. We outline the
different approaches in and give you some idea of their domain of suitability. You might use any of

them to capture the use-case flows graphically, which can help you in designing them—and understanding
them. Often you need more than one modeling approach to properly clarify the behavior of interest. These
techniques are available for exploring the details of any behavior, so you can apply them to use cases as well
as operations in your work.




Table 11-1: Functional/Behavioral Modeling Techniques

Technique

Indicates . . .

You'll Find more Info . . .

Use case diagrams

Externally visible behavior
from actor’s point of view.
Covers all scenarios at the
same time, may call out some
variations graphically . Good
for high-level overview and
under standing and specifying
requirements.

, H andE (and later

in this chapter)

Operations (Class diagrams)

Name, signature, arguments.
Good for simple presentation
and showing how to call
behaviors on objects.

(and later in this

chapter)

Sequence diagrams

Participating objects,
exchanging events. Usually a
single scenario at a time.
Good for application analysis
and system design.

Activity diagrams

Ongoing activities,
concurrency, data flow. May
cover several scenarios at a
time. Good for capturing and
designing repeating or
concurrent activities, or finding
target objects for lower-level
behavior.

Communication diagrams

Detailed operation design
playing out over static
structure. Usually a single
scenario at a time. Good for
capturing and designing
complex perations, algorithm
design, and design patterns.

State diagrams

Response to complex events.
Usually covers all scenarios at
the same time. Good for
capturing and designing event
driven behavior or state
machines.

Enepters 14 [ andhd

Text-based specifications

Flows and scenarios.
Constraints, pre- and
postconditions. Usually covers
all possible scenarios. Good
for requirements specification,
mathematical algorithm
design, language-independent
programming. Often used
along with other techniques.

Later in this chapter




One reason that you will find these techniques useful for all sorts of behavior is that use cases may describe
behavior offered up by any class-like entity in UML. For our purposes, the subject of a use case may be a
system, subsystem, class, or a component.

Describing behavior with use cases

As we explain in , use cases describe the behavior of the system as seen frii flf ffffrs who are
outside of the system. The actors consider the use cases as the system’s operations. figure 11-1 shows part
of a use case diagram for the Hotel Reservation System. Any model element in UML that exhibits behavior can
be the subject of a use case, so you can describe the behavior with use cases at any level.

Hotel Reservation System
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Figure 11-1: Use class of a system.

We recommend that you draw use case diagrams for the system as a whole. We also recommend that
you draw use case diagrams whenever you find you have a complex subject that needs to be treated as a
black box, where the external and visible behavior needs to be specified, but the internal behavior is hidden.
You'll find that this will apply to all systems, because you need to distinguish the testable, required (visible)
behaviors that the users want from the designable (hidden) insides that you want to develop.

In larger systems, this need for use cases will also apply to subsystems. As you decompose the system into
subsystems, these subsystems can be treated as use-case subjects. Their g i those entities that are
external as you look at each subsystem in turn. For example, the top part of Fi;ure ll-j shows a piece of the
Hotel Reservation System context diagram—emphasizing the system and its surrounding context. They are
good for quick communication of what in and what's out of the system. The bottom part of the same figure
shows the results of portioning the complex system into three simpler subsystems (User Interface, Business
Logic, and Persistent Store).
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Figure 11-2: System decomposition showing lower-level use-case subjects.



When you do this type of partitioning, treat these subsystems as the subjects of their own use cases with their
own actors. The actors of the User Interface subsystem are the original Potential Guest and the neighboring
Business Logic subsystem. From the Business Logic subsystem point of view, you would treat as actors the
User Interface subsystem and the Persistent Store (DB) subsystem. (By the way, the tuning-fork symbol in the
upper-right hand corner is the optional UML icon for the «system» or «subsystem>» stereotype—some tools will
use it and some won't.)

As with the subsystems, you may find that documenting with use cases would even apply to lower-level
decompositions, either to the behaviors of lower-level subsystems or to the behaviors of large components or
classes. This is most useful for you in the larger development efforts where different development teams may
be assigned these large components and classes. You'll be taking advantage of the suitability of use cases for

separating requirements from internals, when you use them to spec out (specify) the requirements for each
development team. For another look at this sort of leveled decomposition, see

Converting use cases into operations (class diagrams)

To map use cases directly to system level operations, you can start by converting all directly actor-accessible
use cases to public operations on a class representing the system. Remember, operations are behaviors that
a class may be asked to perform. They must be public because they are visible to the actors.

You typically convert other use cases—such as included use cases (connected by an «include» relationship) or
extended use cases (connected by an «extend» relationship)—to private operations—while they are behaviors

the system needs to perform, they can’t be invoked directly by an actor. If you were to convert the use cases
from Eigure 11-7 into and use the UML ?iﬁff? fﬂ operations and visibility that we explain in, you
would arrive at the system as shown in figure 11-3J. Remember that the + sign indicates public visibility, and
(you guessed it) the — sign indicates private visibility.

--:5.:|r~5'|r.~n'.|:--
Hatel Ressrdation System
= makekoomiasardatiani )
= makarac |.'|l seservatiom] )
- guaranteafeservation]estPrice Money,
alard : Cardinfo) @ Boolean
fillinkarketingSureay()

Figure 11-3: Use cases as system operations.

Converting the use cases to operations is really one of the first steps you can do to design your system. It's
simple, but it's a start at identifying the operations. The next step for each operation in would be to
add the operation’s return type and arguments, and the arguments’ types, directions, and default values.

showsils for the guaranteeReservation operation indicated in bold. From the description
nhater 10

of the use case in , it is clear that this operation needs to be passed a price and card information for
use by the Credit Card Authorization system. We choose estPrice:Money and aCard:Cardinfo as the arguments
and their types. They are shown in the argument list of the guaranteeReservation operation in the figure. We
also determined that the including use case, Make A Reservation, would need to know if the
guaranteeReservation use case was successful, so we indicated a Boolean (True/False) success flag to be
returned from the operation.

If you continued with this design, you would define the details of Cardinfo, which includes, at least,

ne, CardNumber, and ExpirationDate, in a separate class box called Cardinfo using the techniques of
EhaZter 3. We won't do that here. You might also find that the operation needs other information or returns
other information—if so, capture them as input or output arguments to the operation. When you do this design,
you may come up with slightly different results, but go ahead, it's your design.

| Toam 1in |
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Writing Text-Based Behavioral Specifications

One of the most common ways to capture the details of a behavior is to use text-based specifications—using
text in a semiformal way to express what the behavior does. You have several different forms to choose from,
based on what you exactly want to accomplish, your tools, and your organization’s standards. For example,
you may have to type these text-based specifications directly into your UML tool after opening up the use case
ovals or you may need to place them in separate documents. You may have strict templates to follow or you
may have considerable freedom. And, you may use a different approach when documenting use case
behaviors than when documenting operation behaviors. With whatever restriction you have, keep the following
considerations in mind when using text-based approaches:

B Don't descend to pure functional thinking. Pay attention to the objects that are performing
the behavior or the behavior is being performed on.

B Consider your audience. Text-based approaches can easily become exercises of codelike
complexity or pure expressions of logic and set theory. Unless your audience will
understand what you are writing, you're wasting your time.

B Choose the right level of abstraction. Keep away from lower-level details unless you need
them to explain the intent of the behavior. Object-oriented approaches tend to have many
small behaviors that collaborate to accomplish larger goals. Sometimes you'll be
documenting those small behaviors; sometimes you'll be documenting how they collaborate.
The description of the behaviors should be consistent with the current level of
abstraction—which you have a chance to bring lower when you write the code itself.

B Maximize cohesion. Follow this traditional advice for any design of behavior. When you
trigger a behavior, the effects should be all working together to a common goal. If a part or
piece of behavior seems extraneous, drop it or move it somewhere else. If the parts and
behaviors work together well, and all of them are needed, then you have high cohesion. If
the name of the behavior, operation, or use case requires an and, reconsider if the behavior
is properly focused on a single coherent behavior. For example, if the use case were called
Reserve Room and Order Room Service, you'd know pretty quickly that the use case is trying
to do too much.

Writing use-case specifications

The traditional documentation approaches for use cases (discussed in ) are possible choices for
behavioral specification. Although there are several different ways of documenting use cases, they typically
describe one main course (flow), with alternatives described afterwards, without disturbing the main flow.

| recommend using this main-and-alternate-flow approach whenever the requirements for a behavior seem
unclear, and when the complexity of seeing too many scenarios at once starts to boggle your mind. It's very
good for documenting externally visible behavior and requirements—but this technique isn’t quite as good for
capturing algorithmic, design, or implementation ideas.

Writing pre- and postconditions

One common and very useful style of documenting behaviors of all sorts that you may use is the establishing
of pre- and postconditions. These may be used along with other text-based approaches, or with the graphical

approaches:
|

Precondition: A precondition is a statement that must be true about the world before a
behavior is started. Its existence serves to guarantee that the behavior proceeds as




planned. For example, before you can cancel a room reservation, there must be an active
room reservation, and you must be the reserver or a representative.

B postcondition: A postcondition is any statement that must be true about the world after the
behavior successfully completes. For example, after you cancel a room reservation, the
room is marked as free and any credit hold on your card is dropped.

B |hvariants: Besides pre- and postconditions, you must guarantee your invariants—conditions
that must be true both before and after a behavior executes. For example, the number of
occupants for a room on a given day is never, never less than zero.

Invariants are really conditions that must be true any time another object queries (or looks at)
the object executing the operation. In the presence of multithreading, where an object can do more than one
thing at a time, it's possible for an object to be executing an operation while reporting on its condition. This
means that the invariant can’t be violated even temporarily while the operation is running.

When you supply a complete set of preconditions and postconditions for a behavior, you define that behavior
without implying a design. Any caller or invoker of a behavior or operation tries to guarantee that the
preconditions are met before the behavior is called. Then the object offering the operation guarantees that the
postconditions are met—after the behavior finishes. This approach is sometimes called design-by-contract. It
allows the designers to do whatever they want as long as the contract is upheld.

Writing OCL constraints

Though you can write constraints in any language, you may use a special language that is part of UML when
writing these constraints. The Object Constraint Language (OCL) was built upon the underlying concepts of
UML and can refer explicitly to the objects, attributes, and links within your own class diagrams. By using OCL,
you can be sure that your constraints are unambiguous.

OCL is a very complex and complete language. If you use OCL for complex expressions, you tend to sacrifice
readability for precision. However, with some of the UML tools, the OCL may be formally processed and
verified. If you can properly construct the OCL constraint, it means that you have enough information in your
models to enforce the constraint. When you write in a natural language such as English, you can easily write a
constraint that just cannot be enforced because there is missing information in the model. Of course, knowing
it's possible to enforce a constraint doesn’'t mean the enforcement is easy.

When you use OCL constraints, you refer directly to features that appear on the class diagram—for example,
classes, attributes, roles, and operations. This direct reference prevents you from divorcing your functional
definition from the objects the behavior actually operates on.

Harnessing OCL constraint syntax and applying the OCL dot operator

When you're writing an OCL constraint, you usually attach it to an operation in a note box (see ).
Here’s the basic syntax for OCL constraints for operations:

context Type::behaviorName(paral:Typel, . . .): ReturnType
pre ConstraintName: OCLExpression

post ConstraintName: OCLExpression

inv ConstraintName: OCLExpression

The following list details the syntax used in OCL constraints for operations:

B context: The keyword that starts up the OCL constraints. It precedes the definition of the
constraint context, where the applicability of the constraints is indicated.

B Type: The subject of this behavior. It's the name, the system, subsystem, class, or type
where you're defining the behavior.

B pehaviorName: The name of the operation or use case.



paral:Typel, . ..: The parameter list for the behavior.
ReturnType: The type of any return value from the behavior.

pre, post, or inv: Keywords that indicate the type of constraint. They indicate precondition,
postcondition, and invariant respectively.

ConstraintName: An optional name for the constraint so that it can be referred to again.

OCLExpression: A logical expression that must evaluate to true or false.

We show an example in , using both pre- and postconditions on the operation Reservation::cancel().
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Figure 11-4: Pre- and post- conditions usiing OCL.

In this example, the Reservation::cancel() operation has three parameters: a number (num) and two dates (start
and end). There are also two preconditions and two postconditions.

First, the context keyword establishes that this set of constraints is for the operation Reservation::cancel(), that
is, the operation cancel defined in the class Reservation. The context also defines the object that owns the
operation. You can refer to the owning object (the object of the class Reservation that is running the operation)
by using the keyword self.

The first constraint in , the precondition named pr1, refers to the isCanceled attribute of the self
object and requires it to have the value of the enumerated literal False, as defined in the Boolean type. (An
enumerated literal is one of the possible values of finite-valued type where all the possible values are listed
when the type is defined.) What it's saying is that you can’t cancel an already-canceled reservation.

The dot (.) operator in OCL has several possible meanings, as shown in [Table 11-2.



Table 11-2: OCL Dot Operator

A.B Refers to
object.attribute The attribute(s) B of the object A
object.queryOperation The results of calling the query operation B on

the object A. Query operations return values but
doesn’t change any values.

Class.staticAttribute The static attribute B of the class A. Static
attributes are owned by a class as a whole and
not by individual objects.

object.rolename The set of object(s) playing the role B across
the association from A

EnumeratedType.literal The value represented by the literal B of the
enumerated datatype A

The dot operator has one more property that is interesting; you can successively apply it to the results of a
previous dot operation. In practical terms, A.B.C is the same as (A.B).C.

You might take advantage of some common ways of reading complex OCL dot expressions, such as
A.B.C can be read as “A’s B's C” or “the C of the B of the A”".

The second constraint in , the precondition named pr2, requires the input parameter num to match
either the confirmation number or the credit number of the reserver. Using the approach discussed above to
read these complex statements. The expression self.reserver.creditCard refers to self's (current object) reserver's
creditCard, or the creditCard of the reserver of the current object (self). If the creditCard number is used the
correct startDate and stopDate must also be supplied.

Finally, two postconditions are shown in . The first requires the operation to leave the isCanceled
flag set to true. The second indicates that the result of the operation is also set to true.

Writing general algorithms

You may have occasion to specify a mathematical, scientific, or computer- science algorithm. This is rare for
most developers, but if you find yourself in these situations, it's usually best simply to refer to a document
where the algorithm is predefined.

You may define an algorithm with pseudocode—codelike sequences of characters that describe an operation.
The purpose of pseudocode is to describe an algorithm in sufficient detail so (technically oriented)
non-programmers can understand it, without forcing the use of a particular programming language.

When using pseudocode, describe the essence of the algorithm—don’t go too deep by writing
nearly pure code. You may find this goal hard to achieve. We generally recommend utilizing alternative
phica@echniques other than writing pseudocode. You can see some of these techniques in ,

, and [L4].

UML developers forced to use pseudocode (whether by corporate standards or because the operation
uses lots of algorithms) often base their pseudocode on OCL. Unfortunately, OCL is only a constraint
language; it can’t actually change the value of anything. In addition, OCL has only limited control structures.
The common strategy uses two different syntaxes:

B You can adopt the syntax of your current programming language for assignment and control
statements.



B \When you need to refer to elements in the class diagram, use the OCL dot notation as your
navigation syntax.

Using this approach for writing OCL-based pseudocode can help you design and write creditable algorithms.

Another approach may soon be commonly possible. Recently added to UML, and formally incorporated into
UML 2 are the Action Semantics. The Action Semantics define a metamodel (a model made up of models) for
specifying behavior independent of implementation—that is, suitable for automatic machine translation into
various implementations for various architectures. This is part of OMG’s Model-Driven Architecture (MDA)
allowing developers to skip writing code in programming languages. By constructing very complete models
and formally defining the behaviors, developers can target implementation on different platforms or
architectures without changing the models.

Several syntaxes for the Action Semantics are possible. Different tools support MDA differently—for different
types of problems and different ranges of architectures. Tool support is already available in the embedded and
real-time development areas.




Chapter 12: Capturing Scenarios with Sequence Diagrams

Overview
In This Chapter
B Seeing your object’s lifelines
B sending messages to other objects
B Capturing scenarios in sequence diagrams
B Composing interactions from fragments

Whenever you need to understand how some objects interact, you should consider creating some type of
UML interaction diagram. UML has a rich assortment of these diagrams to choose from, such as sequence
diagrams, communication diagrams, activity diagrams, and timing diagrams, all of which are designed for the
specific purpose of helping you express the details of how objects interact and collaborate to accomplish a
behavior. And UML even allows you to mix these diagrams together. Don't be bewildered. Following the
guidelines given in and the techniques of this chapter, you'll come to rely upon sequence diagrams
as your first choice in many circumstances.

Sequence diagrams, especially in their basic form, simply display the lifelines of participating objects as they
exchange messages in a single scenario. (A lifeline represents the evolving life of the participating object by
showing relevant events that are important to the object.) Of all available UML interaction diagrams, the
sequence diagrams are usually the best suited to exploring the scenarios or flows of a particular use case. Not
only are they easiest to draw, they are also easy for developers and clients alike to understand.

In this chapter, we introduce the features of sequence diagrams and help you depict interactions among your
objects.




Diagramming an Interaction Scenario

All interaction diagrams capture at least one interaction, which is the interplay of messages sent between objects over
time for a specific purpose. Usually the most important interactions you document are the major use-case s¢enarios. |n
this context, we use the term scenario as defined inan instance of a use case. As discussed in ,
each use case has a generalized description of its most common scenario—its main course or main flow. In such a flow,

you describe the interaction of participating objects as an ordered set of steps or actions that an actor (or system) takes
as the flow plays out.

A participating object takes a set of actions, communicating the results of one or more of these actions in a message to

another participating object—which (in turn) takes its own set of actions and communicates. Sometimes the participating
object needs help from other object, so it requests a service in a message to another participating object, which (in turn)
takes its own set of actions and communicates. When you draw an interaction diagram, you emphasize the message

sequences among the participating objects, as shown in figure 12-1|, and (usually) hide the internal actions.

sd Basic Interaction ;_,
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Figure 12-1: A basic sequence diagram.

In the sample diagram in , you can see the basic features of a sequence diagram. You diagram the
participating objects as vertical lifelines. These lifelines consist of an icon indicating the type of participant (such as an
object or an actor instance) at the top of a dashed line where you can indicate the messages sent and received by the
participating object. Show the messages among the objects as directed arrows from sender to target object. In this
diagram, the FirstObject informs the SecondObject that It's Your Tum, and later, the SecondObject informs the
FirstObject that Now It's Your Turn. The convention is that time passes as you read down the page, though you can turn
the diagrams so time runs from left to right. As is typical in these diagrams, the messages alternate.

Place the interaction in the contents area of a frame, and then place the diagram interaction’s title in the odd-shaped
heading area (a rectangle with a cut-off corner) in the upper-left corner. The heading contains a prefix that describes the
type of interaction you've plaged in the frame e sample diagram shows the interaction as a sequence diagram, so
the descriptive prefix can be (for which the typical abbreviation is sd).

The frame and heading, new in UML 2, are applicable to all UML diagrams. Because UML 2 must be
backward-compatible with previous work, the frame and heading are optional, and for the most part, you don’t need to
use them. However, we recommend using them with interaction and behavioral modeling as they form the basis for
behavioral decomposition (as shown later in this chapter).

In Eigure 12-2, we've diagrammed the main course from the Make Room Reservation use case discussed in [Chapter g

(and added a bit more detail for illustrative purposes). In this diagram, you can see how we used the sequence diagram
to extract and show specific instances of communication among interacting entities. You don’t show details of what must
be done, just the messages—which makes it easy to see what's going on. This is an example of how UML uses
abstraction to make your work understandable by hiding the details of internal behavior.
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Figure 12-2: A sequence diagram for the Make Room Reservation use case.

Choosing your interaction scenarios during analysis

You probably noti t the basic sequence diagram doesn’t add much more than the textual approach to use cases
(discussed in Chapter g). Of the two techniqgues—textual use cases and graphical sequence diagrams—textual use
cases actually contain more information. Sequence diagrams just extract and show the messages that move among the
objects; the use case tells more about what the system has to do—which makes for a fuller picture of the requirements
it must meet.

So, if you fully document a simple use case in text (using the technigues of ), you probably won't need to draw
additional sequence diagrams to account for every flow. On the other hand, pictures are worth thousands of
words—and sequence diagrams are very communicative. Often the quickest way to get a team to understand a
scenario is to put a sequence diagram on a whiteboard, extracting the essence of the scenario. This is an application of
the principle of abstraction to improve communication.

Our practical advice—for initial analysis, anyway—is that you draw sequence diagrams for only those scenarios that
need better explaining or supplemental communication. Drawing up the main course and one other illustrative scenario
would suffice for a typical complex use case. (Even that might be too much for some simple use cases.)

If you need to draw other scenarios of a particular use case, abstract out the essences of those scenarios and
draw only the differences—that is, capture the alternate flows, not entire alternate scenarios. Try to avoid getting
yourself bogged down with redundant diagramming.

Examining object lifelines

shows the lifelines of three interacting participants: the actor Potential Guest, the system being built, and

another actor—the Credit Card Authorization System. You can have vour sequence diagram contain any UML_entity
that can exhibit behavior, Normally, these will be actors (see andﬁ; ems or subsystems (see
and Rd), objects (see , parts (see ), and components (see [Chapter 19). For sequence diagrams

done during analysis (that is, before you do the design) that you use to diagram a use-case flow, you will normally be
restricted to actors and systems. As you move into design, additional participants (usually objects) will start to appear.




These will be the objects added to realize the scenario. At an even lower level, if you use a sequence diagram to
diagram an operation’s method, you can show lifelines for parameters and return values. Whatever type of participant
you have, place its representative symbol at the top of the diagram and extend its dashed line to the bottom of diagram.

As the messages play across the lifelines, they tell the reader a story of the scenario. In my example, the actor,
Potential Guest, visits the appropriate Web page, which notifies the system of his/her presence. The system displays
prompts for necessary information, to which the actor responds. This alternates until the actor enters his/her billing
information. Then, the system forwards the billing information to the external Credit Card Authorization. As authorization
is granted, the system tells the Potential Guest that the reservation is guaranteed and the scenario ends.

Creating and destroying objects

Not every participant exists throughout the entire interaction. Although the external participants may be out of your
scope, every internal object you must create somewhere and you r?liif g-jffffj somewhere. Before you finish design,
you should find out those wheres for each major internal object. Infigure 12-3, for example, the object Reservation is
created in this interaction (as indicated by a dashed line directly into the object’s box), and the lifeline starts down from
that point.

You can also indicate that you want to destroy an object in an interaction. In , we show that the object
Reservation is destroyed if the Potential Guest cancels his reservation. You can indicate this graphically by ending the
lifeline with a large graphic X. In this diagram, we also show that one can use a selector or qualifier to indicate which
specific object is participating. You can do this yourself by putting the selector in the qualifier brackets before the class
name of the object.
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Figure 12-3: Guarantee Reservation and creating an object within the Guarantee Reservation system.

The basic notation for a participating entity’s name includes such parts as qualifier, selector, and class name, ordered
as follows:

roleName [qualifier/selector] :ClassName

Place the name in the participant’s box (or under it) on top of its dashed line. In , the rightmost lifeline



represents the participating Reservation object. Though we didn’t bother giving it a specific role name (it's optional), it's
not just any Reservation object that gets destroyed. (We use resNum as the selector to choose the correct Reservation
object.) As the figure indicates, the Cancel Reservation interaction requests a reservation number from the Potential
Guest and uses the input resNum to identify and delete the correct Reservation.
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Figure 12-4: Destroying an object in the cancel Reservation system.

You may flag the creating message with the stereotype «create» (as we did in the ) and the destroying
message with the stereotype «destroy», (as we did in , but such redundancies often clutter up diagrams.
Use them only if your UML tool requires them for code-generation purposes.

Sending messages

The lives of objects would be very boring if they didn’'t get messages from other objects. Each incoming message may
stimulate it to calculate a result, to start a behavior, to create another object, or to die. The arrows from lifeline to lifeline
indicate one object sending a message to another object to stir up some activity or response.

When you have an object receive a message, it's a big event in the life of the object. It's called a ReceiveEvent and it
occurs at the tip of the arrowhead where it touches the lifeline. (As you can imagine, the sending of an object is called a
SendEvent, but those are less useful.) ReceiveEvents are important because they are the primary way an object gets to
change its state. If you go to your state diagrams for the target object, you should find an incoming event for every
possible ReceiveEvent and a corresponding state transition (a change of state caused by an incoming event) or internal
transition (a response to an event without changing the state). By examining and combining all sequence diagrams that
an object of a particular class participates in, you can complete the state diagram for that class. find more
about state diagrams, transitions, and using sequence diagrams to construct state diagrams in Eha:ter 14.)

You use the directed line to show the sending of messages from one object to another. While you do requirements and
analysis work, or are early in your project, you'll probably be using the plain “V” arrow (?) to show messages. (You can
see several examples to this type of arrow if you refer to through 12-4.) When you use this arrowhead
shape, you indicate that the message is sent and received in an unspecified manner, by some undefined signaling
technique. That is, the sender may tap the shoulder of the receiver, pass a note, call on the receiver’s telephone, or call
on the receiver’s operation. During design or later in the project, you need to be more precise. At that point, the ? arrow

indicates asynchronous messages, which we discuss in the section “Going on without an answer (asynchronous call)’
later in this chapter.

Naming your messages

When you diagram a message, center the name of the message above the arrow to indicate what the sender wants the
receiver to know. You can choose any of several message-naming styles. We generally recommend a naming approach
that's informative or interrogative, but not procedural. (If the message tells the receiver that something happened, it's
informative. If the message tells the receiver that the sender wants something, it's interrogative. But if the message
doesn't tell the receiver what to do about the situation, then it's procedural.)



Good examples appear in , where the Potential Guest tells the System, I'm Ready to Guarantee, and in
Figure 12-4 the Potential Guest tells the System, Here’s my num(resNum). The sender tells the receiver that some
information is available, and that an event has happened, is happening, or has stopped happening. Grammatically,
these message names are declarative and are in the present or past tense. This naming approach is the most flexible
because it assumes nothing about the nature of the relationship between sender and receiver. By using it, you support
the good practice of decoupling, which entails encouraging flexibility by limiting dependencies between the participants.

Using parameters and arguments with messages

Messages can have parameters or arguments if you want to indicate data or an object being passed along with the
message. The syntax for an argument (in a message or an operation) is as follows:

direction argumentName: ArgumentType [Multiplicity] = defaultValue

The direction is either in, out, or inout, indicating whether the argument is input to the message, output
from the message, or both. If you don'’t specify the direction for argument, it defaults to in.

If there’s a particular argument in the list that you don't need to specify because it's not relevant to your flow, you should
replace it with a hyphen (-).

Use the defaultValue to show any explicit value that the argument takes in this scenario. By doing this, you make
the story explicit and easy to follow. When you need to develop test scripts (later in the process of development), you'll
find it convenient to use these seguence diagrams as a source if they have the values indicated. The following example
of this technique also appears in ,; here the result from the Credit Card Authorization System is a status of
OK:

Transaction Results (status=OK, authCode)

Early in your project's development, avoid getting too formal about your arguments; often the reader of the diagram can
infer an argument from the name of a message. We recommend that you use actual message arguments for only the
most important information you want the system to pass. Concentrate on the following tasks instead:

B Keep your use case consistent: There is often information you need to track for use-case purposes.
Use high-level argument names and document them as classes in your class diagrams and/or in
tables of text in your use-case specifications. By using the arguments in this way, you allow the use
case’s reader to track the information flow and check for completeness. Later, you should decompose
these arguments into detailed components as they help the user-interface designer to determine what
fields need to be included in the interface.

B pocumenting workflow: A common pattern to these sequence diagrams is where the sender passes
an object to receiver, who might do some work with it, but then passes it along to another receiver.

This is an example of warkflow, which might best be documented with a UML activity diagram
(described in). However, you'll often find workflow illustrated in a sequence diagram.
When you do, show the passed object as an argument in the messages as they go back and forth
among the objects. , for example, uses the argument binginfo (short for BillingIinfo) to
stand for the information that the actor Potential Guest passes to the System, which passes it on to
the Credit Card Authorization System.

Don't forget to consider drawing a state diagram (as discussed in ) for the passed object if it
changes state as other objects take turns dealing with it. And (of course) document the passed object in an appropriate
class diagram.

As you start doing detailed design, replace any informal argument descriptions with complete definitions. Doing so
allows your UML tool to check for consistency and automatically generate code.

Quoting a message

Another common approach is to put the message name in quotes when you mean that there is a literal error message
or screen message that needs to be displayed. Even if the text is not meant to be the literal message text, using the
quotes flags to the reader that a literal message needs to be written or a screen displayed. You might think of the
quotes around “Enter Reservation Number” as shorthand for the wordier I've Sent To You(msg:String="A Literal
Message”).

Designing a message name



During design and implementation, you should make the message names and their arguments match your intended
implementation. If you implement your messages with an operation call (as most messages are), their names and their
arguments should match your standard for writing operations. You can still use the informative and interrogative forms
(described earlier in this chapter in section “Naming your messages”), but you may find it more useful to use imperative
forms to the messages. For example, instead of System, I'm Ready to Guarantee, you're more likely to use something
like System Guarantee My Reservation or System.guaranteeReservation(res : myReservation).

Pressing a button

Another shortcut—used in naming messages and their parameters—you can apply when the argument of the
message is a button name. This is the case when an actor sends the message by pushing a real physical button on the
hardware (or by clicking a visual button on-screen). For example, instead of naming the message something like

buttonSelected(buttonName : ButtonNameType="Submit")

we recommend

selected Submit or submit Selected

or the even the simplest: submit.

We use the underline to replace the whole rigmarole of indicating the operation name, argument name and value. Yet it
makes the message clearer to the reader and more likely to fit above the very small arrows that volley across typical
sequence diagrams. For an example of how this looks in a diagram, you can refer to later in this chapter; it

uses a cancel to indicate that the actor presses the Cancel button.

Your use-case specifications and their sequence diagrams typically shouldn’t be so detailed that they
contain user-interface button or key names. However, as you do more design, this shorthand allows you to be brief but
precise in the more design-focused sequence diagrams that capture the details of the user-interface.

Designing messages and their methods

Using the plain, unadorned “V” arrow (?) during analysis indicates that you plan to use an unspecified signaling method
to send a specified message. This approach may be acceptable while you're doing requirements and analysis, but it
won't cut it when you're trying to implement the system. In-between the analysis and implementation phases, you have
the chance to state exactly what you want to happen and how it should be done. This phase is called design.

Calling on a neighbor object

The most common mechanism for sending a message between objects is an operation call that uses standard software
techniques. (Examples include a Java method, a C++ member function, and sending a message to a Smalltalk object.)
You indicate that you want to use a standard call by using the solid triaggular arrowhead (>) pointing in the direction of
the call (that is either left or right, as the case might be). In and 12-4, we use standard calls to create and
cancel the reservation.

Returning from a call on a neighbor

In these standard calls, control of the process transfers from the sender to the receiver. The sender pauses until the
receiver finishes and returns. You may want to indicate the return (that is, the result you get) from a standard call as a
message as well. Why? Because the return may bring in important values, information, or an object that you need to
use. Or the return itself may be the significant event that transfers control. Returns are optional to indicate, but when

you do so, you use a da

object (as in

In , we diagram a fragment of an interaction diagram in which an actor selects a hotel from a hotel chain and
then prints out the information about the hotel. Because we've decided to make this a design-time diagram, we have
dropped the actors from the diagram and have replaced them with design-time boundary objects (system components
that act as the interface or boundary to the actor) we have chosen as part of our design. This is common step in moving
to the details of the design-time modeling. Although actors are important to understand when you're modeling domains
and requirements, they're usually not under your control when you're designing, so they're less important during this
phase.

), it returns the reservationNumber to the System for later use.

In , we've chosen a common architectural design pattern in which a centralized controller maintains detailed,
serialized control of the use case in a tightly scripted Kiosk environment. Here the Controller calls each input boundary



device in turn, and waits until it gets a response. Messages such as these—going to the boundary objects from the
central controller where the central controller has to wait for a response—are indicated with a solid triangular arrowhead
(>). You indicate explicit returns with the “??7? - - and place the return value on top of the arrow.
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Figure 12-5: Centralized pattern architecture.

You need not always mark the return message explicitly. If the message expression uses the operation form and
indicates the return type (orif nothing of interest is returned), you can drop some clutter by dropping the return
, both the needHotelChain(:ChainList) and the display(:HotelList) messages are
sent as calls from the Controller to the TouchScreen boundary object. The Controller waits for a reply from the
TouchScreen for the selected HotelChain, but does not wait on the TouchScreen for a reply for the display(:HotelList)
call, so we decided to skip the explicit return arrow. The Controller does need to know the selected hotel, but we
designed that to return via a separate call to the Keyboard.

message. For example, in

Going on without an answer (asynchronous call)

Sometimes you don't want to transfer control—or don’t want to wait at all. You want the sender of the message to keep
on going. This situation is called an asynchronous call and it's where you use the V-shaped arrow (?) during design.

Although the use of asynchronous calls is becoming more common, technically you may use them only if

there are multiple threads of confrol i system (physically or logically), that is, only if the sender can remain running
while the receiver is working. In Eigure 12-§, the Controller call to the Printer is an asynchronous call—which is logical

because you rarely want to wait until the printer is done before you go on to the next task. Most systems allow spooling
of the print job to the printer and concurrent printing and computing.

Signaling by other means

You may find it useful to choose other specific mechanisms for sending a message. Every operating system has several
underlying message communications techniques. While they are rare to be used directly for most object-oriented
developers, if you need to use them and don’t mind breaking portability you can indicate the mechanism by stereotyping
the message with the mechanism, such as «interrupt», «spin-lock», «semaphore». If you use a particular mechanism
often, you may want to create a specialized graphic adornment to indicate your mechanism. In , we list the
standard adornments, plus a few common ones we've used that are not currently part of the base UML 2 standard.
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Figure 12-6: Some possible message adornments.

Choosing your interaction scenarios during design

Using interaction diagrams (such as sequence diagrams) during your design activity is very different from using them to
gather requirements or assist in analysis. Interaction diagrams can approach the detail and specificity of code. If you are
a programmer, you're likely to be reluctant to be so precise without obvious gain.

There are three primary reasons to consider using sequence diagrams for design:

B mproved understanding before coding: While you're likely to be more familiar with coding (and
therefore more comfortable with it), UML diagramming—whether with a good-quality tool or a
whiteboard—is actually easier to do. It's worth investing your time to do it well. Once it becomes
second nature to you, you'll find that you can see the general outline of your design in
advance—before you even start coding—and you can check it out to make it better, safer, and more
complete. To get a visual handle on complicated interactions, you can draw UML interaction
diagrams of them before coding them.

B mproved communication: If you're a designer responsible for leading several people’s
implementations or tests, you'll find that communicating a design is a lot easier when you use
diagrams. The way you want a behavior to work is a lot easier to explain (especially when it involves
several objects) if you use UML interaction diagrams. Showing someone a pile of code won't do much
to convey the big picture, nor offer much insight into the way multiple operations work together. Draw
UML diagrams to communicate your design for prototypical interactions—and to communicate the
sense of how similar interactions are to work.

B mproved testing and execution: Increasingly the UML tools can test the logic and generate complete
code from diagrams such as the interaction diagrams. When using such tools, you won't need to be
thinking as much in a code-specific or language-specific manner unless performance considerations
become paramount. Visual modeling and visual testing increasingly eliminate the need for much of
the implementation phase—and its associated costs. Of course, reaping that benefit requires
near-codelike specificity in the diagrams, but the result is a design that can operate independently of
any particular implementation—which saves money and time. If you're modeling with a tool capable
of generating quality code and/or tests, plan on modeling sufficient scenarios to exercise all the logic.




Composing Interaction Diagrams

We discussed the basic parts of a sequence diagram earlier in this chapter: the participating objects and their
lifelines, events, and messages. But a problem that occurs with sequence diagrams, as with any sort of
scenario-based documentation or diagramming is that they can become complex as well as redundant. The
scenario and its corresponding sequence diagram, for a Potential Guest making a successful online reservation
is very long, and the scenario for failing to so (because of a rejected credit card) is just as long and mostly the
same. If you run into this problem while constructing use cases, simply capture one scenario as the main flow,
abstract out the esseptial differences between the scenarios, and document the differences in an alternate
flow,(as described in [Chapter 9).

In sequence diagrams, you do almost the same thing. Instead of documenting the essential differences
somewhere else, you use the power of graphical representation to display the variations side by side.
(Remember, however, that you can suppress details for readability’s sake, and present them later.) In this
section, we cover some ways you can use UML to document complex scenarios.

Referencing and reusing interactions

The most common problem with sequence diagrams—or, for that matter, with any interaction diagram—is that
you can't quite avoid redundancy with another sequence diagram: Often two scenarios overlap. The solution
here is to make (and document) an interaction occurrence that you can refer to in several other diagrams. The
technique is easy and pretty slick: Any named interaction diagram can be referred to by name and inserted
into another diagram.

Earlier in this chapter, we provided a sequence diagram for the scenario of guaranteeing a reservation
(shown in ). Suppose that diagram contains an interaction that we want to reuse elsewhere—or
from which we want to extract the details for encapsulation. To refer to this interaction, we use what UML 2
calls an interaction occurrence, which is a reference to a reusable piece of an interaction defined elsewhere.

In , we first define the sequence diagram for Validate Credit Card. Here the interaction is simple,
consisting of two objects and two messages, but it could be very complex.
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Figure 12-7: An interaction called Validate Credit Card.

In , we refer to our defined interaction by using a UML frame with the operator in the label box, ref,
and the title of the interaction in the body section of the frame. This reference is an occurrence of the
interaction Validate Credit Card, hence the name interaction occurrence. You can use a reference like this
anywhere in an interaction diagram. In typical use, it just means inserting the referenced behavior into the
larger diagram. This approach is a suitable way (especially for use cases) to eliminate redundant
diagramming.
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Figure 12-8: Incorporating a reference.

Adding parameters to an interaction

You can use this sort of reference anywhere in an interaction diagram. In the typical use, it just means that
there is an insertion of the referenced behavior into the larger diagram. However, you often find that the
behavior has some slight differences in each occurrence. You need to be able to tailor the inserted sequence

diagram to the current situation.

You can be more explicit about how the inserted
input and output parameters to the interaction. In

ha yorks while making it more reusable if you add
, for example we've redefined the inserted

sequence diagram to indicate that it needs fee and binginfo as inputs and that it returns status as a return value

and authCode as an out paramete

shown for operations in

hapter 3.

. The syntax for indicating the input and output parameters is the same as
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Figure 12-9: Adding arguments to an interaction.

shows how these returned values are now used. You indicate where you want to assign the
[f:tu?fg_j f!;res in the reference to the interaction. In the reference to the Validate Credit Card interaction of
Figure 12-1d, the System.Transaction.Status attribute is assigned the return value from the interaction (the use
of the equal sign indicates the assignment), and the System.Transaction.AC is assigned the value of the out
parameter authCode. When the Validate Credit Card interaction finishes, both output parameters (the return
value status and authCode) are assigned to some attribute of the Transaction object that is part of the System
object.
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Figure 12-10: Passing and returning arguments from an interaction.



Alternating interactions with combined fragments

One common difficulty occurs when the main path splits into several paths and
message (or some other condition) before it can proceed.

V%4 UML 2 gives you several different operators to use in this situation; you

depends on the return from a

can indicate whether a

sequence may be optional (opt), may be repeated (loop), or may have an alternative (alt).

Taking an optional path

You can use a frame with the opt operator to indicate that it may not be used under some circumstances.
Usually you place an explicit guard (that is, a test) in square brackets to indicate such a condition.

In the example shown in , we've changed the referenw

Credit Card to return a generic Status from the previous example of Eigure 12-10
OK. This is followed by a frame with the opt operator. The whole interaction frag

raction occurrence of Validate
], where we set the Status to
ment contained in the frame is

optional—and can only occur if the guard [status=OK] is true. You can also put the guard in the label along with

the operator opt [status=OK].
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Figure 12-11: An optional interaction.



Looping around a path
In some situations, instead of an interaction occurring zero times or one time, it may be repeatable multiple
times. That's when you use the loop operator, which looks like this:

loop minint, maxint, [guard]
You replace minint, maxint, guard with actual values as follows:
B minint: Must loop at least this number of times.

B maxint This parameter is optional. The interaction may not loop more than this number of
times. If not given, maxint = minint.

B guard: A guard is an optional condition shown in square brackets. After the first minint
iterations, the condition is tested before each additional loop iteration. If the condition is
false, then the loop is abandoned. If the guard is not specified, it is assumed to be true, so
the loop continues to iterate until the maxint iterations are performed.

An example of a loop is shown in . We allow the Potential Guest three tries to find a credit card to
be good. By setting the minint to 1, we're requiring the loop to be executed at least one time. By setting the
maxint to 3, we’re requiring the loop to execute no more than three times. The loop exits early if it tries to start
the second or third iteration and the guard, [status= bad] is false, which will be the case if the card’s status is
good.

Breaking out of aloop

Loops can be sticky, and often you'll find you need a way of escaping from them. UML supplies the break
operator for that purpose; you can use it to indicate the scenario that causes escape from aloop (or from any
enclosing segment) and that processing continues with the first message after the loop. In , we

show that if the actor selects the Cancel key/button, the loop is immediately escaped.

Making a decision on the path

If you have two more choices for the path to take, you can set yourself up with the alt operator. Divide your
frame into sections with interactions inside each of the sections. Place a guard to control whether the section is
entered. You can use [else] as the guard to the—it will be entered if none of the above sections are
entered (because all the other guards are false).

The alt operator is the construct to use if you're thinking of including an if or case statement in your code. In the
example shown in , the top section of the alt operator is executed if status=OK. If the status is not

OK—say, because the loop executed three times without success or because the actor hit the Cancel

key/button—then a warning message is issued instead.
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Figure 12-12: Looping and alternatives.

Choosing advanced operators

UML 2 gives you many operators to use if you want to compose complex interaction diagrams. The
operators indicate which of several interactions would be executed (such as alt), how many times to execute a

particular interaction (loop, opt, break), how to interpret the interaction (assert,
interaction with other ongoing interactions and events (par, region). [fable 12-

eg), and the relationship of the
shows some of these operators

and how you can use them. For the programmers among you, we give some idea of the programming

statements that correspond to some of these operators.



Table 12-1: Operators in an Interaction Diagram

Operator

Keywords

Description

alt

[guard1] ...
[guard?] ...
[else] ...

Selects one interaction to
execute from a set of
interactions. The selected
interaction follows a true
guard condition or an [else]
condition if none of the guard
conditions are true. In
programming, this
corresponds to statements like
case orif] ... then ... else ...
endif.

assert

The selected interaction must
occur exactly in the way
indicated. If it doesn’t, you
have an invalid interaction.

break

If the selected interaction
occurs, the enclosing
interaction (usually a loop) is
abandoned. You may be
familiar with this as the
programming statements of
break or escape.

loop

minint,
maxint,
[guard]

Execute the interaction minint
times, then execute the
interaction up to maxint times
as long as the [guard] is true.
This corresponds to
programming statements such
as do ... until, while, orfor ....

neg

This interaction is invalid and
can’'t occur.

opt

[guard]

This interaction only occurs if
the [guard] is true. This
corresponds to the
programming statement
if...endif .

par

This operator indicates
several interactions that may
run concurrently (overlapped
in time). For example, several
threads of the interactions
Make Room Reservation and
Canceling a Reservation may
be running in parallel.

ref

Refers to an interaction
defined elsewhere. This
corresponds to the




Operator Keywords Description
or invoke or the use case
concept of «include».

region The enclosed interaction is a

critical region. No other
messages can interleave. A
critical region is needed when
a shared resource is updated
to prevent the updates from
overlapping and producing
inconsistent results. You
would typically use this within
parallel interactions. For
example, many threads of the
Make Room Reservation may
be running in parallel, but a
critical region is needed when
you seize the room, or else
several Potential Guests may
wind up reserving the same
room.




Chapter 13: Specifying Workflows with Activity Diagrams

Overview
In This Chapter
B Defining activities
B Documenting business processes
B Ordering operations
B Controlling object flow

Sometimes, when you are modeling a system or developing software, you need a good old-fashioned dataflow
diagram, workflow djagram, or behavior flow diagram. UML has a sort of updated version of the dataflow
diagram—called an pctivity diagrant—to help you out in just such a situation. Class diagrams show you who
(which class or classes) is related (associations and generalizations) with whom (other classes)—and what
each can do (each class’s operations). Sometimes even all that isn’t enough. In this chapter, we show you
how to use activity diagrams when you want to emphasize the order of behavior and not necessarily who does
the behavior. We give you some tips for modeling complex operations, intricate use-case interactions, and
business workflows.




Ordering the Flow of Behavior

When you wantm_enmﬁe the havior across classes, use an activity diagram. Although your class
hapter

diagrams (see

and Chapter 7) tell you who performs what operati don’t show a valid
sequence of operations across classes. If you build a state diagram (see [Chapter 16), you show a sequence
of operations—but a state diagram limits you to the operations within a single class. The activity diagram, on

the other hand, allows you to show the flow of behavior across multiple classes. Use activity diagrams
whenever you want to show object flow, dataflow, or the flow of control across different classes.

Dissecting an activity diagram

All activity diagrams have a few basic elements. Normally you use the following pieces to diagram the flow of

behavior:

Action: A simple piece of behavior is called an action. An action cannot be further
decomposed into smaller actions. You can specify pre- and postconditions for an
action—defining what must be true before the action can execute and what must be true after
the action executes. An action could be any of the following:

o Getting or setting an attribute value

o Invoking the operation of another class

o Calling a function

o Invoking an activity that contains actions

o Sending a signal or notification of an event to a group of objects

You show an action in UML notation as a rounded rectangle. Place the name of the simple
behavior as text inside the rounded rectangle.

Activity: Activities contain sequences of actions and/or other activities. You use activities to
group sequences of actions together. At the level of an object-oriented class, you can use
an activity to represent the method of an operation. You can also use activities to represent
the tasks that make up a business process.

You diagram an activity as a rounded rectangle with the name of the activity inside (as with
an action). You can also show activities in a large rounded rectangle containing complex
sequences of actions, activities, object flows and control flows. The complex form of an
activity also allows you to show parameters, preconditions, postconditions, and properties of
the activity.

Control flow: Think of control as moving like a stream that connects actions and activities
together; shows the sequence of execution.

Connect your activities and actions with a line that has an arrowhead to indicate the
direction in which control is flowing. For example, you draw a control flow from an activity like
Browse Book to an activity such as Make A Note.

Object node: Your classes’ operations take in parameters and generate return results.
Activities modify objects or transform objects into other objects. You use an object node to
show these objects as they move from activity to activity.

You use a class box with the name of the object’s class to show an object node. You can
also describe the state of the object by including the name of the state in between square



brackets underneath the name of the class.

B Object flow: In the old days, this was known as “data flow.” Now the experts call the flow of
objects, object flow. You use activity diagrams to show this flow of objects from one activity
or action to another.

You place an object node between two activities or actions to show object flow. Connect the
first activity or action with a line and an arrowhead in the direction of the object node. Then
connect the object node to the second activity or action with a line and an arrowhead in the
direction of the second activity or action.

B Control node: You use control nodes to guide the flow of control (and the flow of objects)
through a group of activities and actions. Control nodes come in a variety of forms,
depending on what you need; they serve as traffic cops for the flow of control and flow of
objects. The control nodes are as follows:

O nitial: You start a sequence of activities or actions with an initial node.
An initial node is shown as a large dot.

O Final activity: When you want to end all control flows and object flows in
an activity, use the final-activity node. Show final activity with a bull's-eye
symbol.

O Final flow: If you want to end some—hbut not all—flows inside an activity,
use the final-flow node. You show a final flow as a small circle with an X
inside.

O Decision: A decision node uses a test to make sure that an object or
control flow goes down only one path. Use this node when you want to
construct an if-then-else selection for an execution path. You indicate a
decision node with a large diamond shape. Connect the diamond with
each downstream activity or action by drawing a control-flow arrow.
Place decision criteria for each path in square brackets on the control
flow line.

o Merge: You bring separate decision paths back together with a merge
node. Show your merge using a large diamond shape. This is the same
shape as a decision node. Decision nodes create divergent control paths
through an activity diagram. The merge node allows you to bring those
divergent paths back together again following a decision node. Merge
nodes do not have any decision criteria in square brackets.

O Fork: Sometimes you need activities or actions to work in parallel. To
split behavior into concurrent operations, use the fork node. A fork looks
like (you guessed it) a fork. You show a fork with one line going into the
fork and multiple lines coming out the other side.

O Joins: A join is the opposite of a fork. When you want to bring parallel
flows of operations back together, use the join, a symbol that looks like
the mirror image of a fork.

O connector: If you run out of room on your diagram and you need to
continue the flow of control to another page, use a connector —a small
circle with a label inside. The connector indicates that the flow picks up
at another location in the diagram or on another page where you find a
connector with the same label.

Y% Older versions of UML had activity diagrams, but UML 2 takes this diagram to a new level. Previously,
activity diagrams were a special kind of state diagram. You could show flow of control across classes—from



one operation to another—but the diagram limited the kinds of flow you could show. UML2 provides activity
diagrams that act like a Petri net—a flow that works kind of like a pinball machine: Instead of silver balls,
objects known as tokens (which represent other objects or the presence of control) can bounce from node to
node (that is, flow from activity to activity). In UML 2, activities and actions consume tokens and produce
tokens—so now you can construct pure flow diagrams that pass the tokens around.

Utilizing activity diagrams
We recommend using activity diagrams in several different situations:

B High-level operations: When you have a class with a complex operation that involves many
steps, use an activity diagram to show those steps as a sequence of activities.

B yse-case details: If one of your use cases is really a group of steps performed concurrently,
use an interaction-overview diagram—a form of activity diagram that shows the flow of
interaction between the main success scenario and any alternative scenarios. We show you
an example interaction overview diagram a little later in this chapter.

B \workflow or business-process flow: Activity diagrams are great for modeling business
processes, not just software operations. You show who performs activities, which decisions
must be made, and what documents the business process generates.

B process modeling: Since activity diagrams are the latest form of the good old data-flow
diagram, you can use them to model any process. You model the steps in a process as
activities and show sequencing with control flows and control nodes.

B summarize many sequence diagrams: If you find yourself generating lots of sequence
diagrams for a use case—usually to make sure you capture all allowable orderings of
events—then consider creating an activity diagram to summarize those sequence diagrams.
The complex behavior of your use case—with its concurrent sequences—may be easiest to
grasp as an activity diagram.

Avoid the function trap. If you use the activity diagram as a way to pick apart functions into
subfunctions (and the subfunctions into subsubfunctions), then beware—you may have fallen into the
“functional decomposition” trap that lies in wait for anyone who builds object-oriented systems and software.
After all, your system or software is composed of objects, not functions. Each object has a responsibility to
perform certain behavior when asked. Functionality emerges from the collaboration of objects invoking
behavior on each other. To avoid the functional trap, keep in mind who performs each action and who is
responsible for each activity.

kigure 13—3] and Eigure 13—d illustrate the basic use of activity diagrams to document a high-level operation.
This example focuses on the planTrip operation of the Person class. The operation takes one

parameter—travelBooks : Book[0..*]. When you invoke the planTrip operation, you pass in zero or more
instances of objects called travelBook—instances of the class Book. When planTrip completes, it returns an
instance of the Itinerary class. The Person class has the needs attribute with the NeedKind datatype. NeedKind is
a datatype that enumerates the different needs a person may have. Those needs are shown in the NeedKind
class stereotyped with «enumeration».

| . Person «Enumeration:
I notes: Travel Mate [*] i MeadKind
neads: MeedKind vacation
planTripltravelBook @ Book]0.*]) : ltnerary :II':_IL §
ot 'TL
pay taxes

Figure 13-1: The Person class with a high-level operation: planTrip.



Suppose a person like you needs a vacation (no challenge there). To plan a trip, you get your hands on
several travel books and browse each book. If you have an interest in the locations discussed in one of the

books, you take some notes, look into the location in more detail via the Internet,_and call some friends. After
you settle on a place to go, you make reservations and end up with an itinerary. captures your

behavior for planning a trip in an activity diagram.
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Figure 13-2: Activity diagram for planning a trip.

The name of the complex activity—Plan Trip—is shown in the large, rounded rectangle in the upper-left corner.
You show parameters underneath the name of the activity. In this example, the travel-book parameter is
shown as travel book: Book. You show pre- and postconditions in an activity close to the name of the activity, in
the form of text preceded by a stereotype of the right type.

precondition and complete itinerary as the postcondition.

shows the need vacation as a

You name activities with a verb phrase._Your activities express some behavior that an object or
objects will perform. Just like use case names (see [Chapter J), activity names are best stated as an action
verb followed by a noun or simple noun phrase.
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Working through Workflow Diagrams

Your specific needs for modeling workflow can come in many shapes and sizes. The example in
illustrates the use of an activity diagram at the level of a complex operation on a class. You can also use UML
for more than developing software. We use it to model business processes, document flow, and employee
responsibilities. The activity diagram is very useful when you want to illustrate work flowing through a business
process. You can also document complex use cases with what is known as an interaction overview diagram.

Be careful not to use the activity diagram at too low (that is, detailed) a level. Activity diagrams can
potentially specify the line-by-line code for a method—but (alas) today’s UML tools don’t generate code from

activity diagrams. So if you find yourself thinking, “I could have already written the code in the time it took me
to draw this activity diagram,” then you're definitely modeling at too low a level.

Diagramming use case steps

8]Y|®4 Some of your use cases are likely to be complex enough to have a main success scenario, many
alternative flows, and error flows. UML 2 has come to the rescue by making possible a special kind of activity
diagram: the interaction-overview diagram.

In an interaction-overview diagram, you show interaction occurrence nodes connected by control flows instead
of showing action and activity nodes. An interaction occurrence is some notation for referencing a full-fledged
sequence diagram. You draw an interaction-occurrence node as a rectangle with a small thumbnail in the

upper left-hand corner, The thumbnail contains the keyword ref. The rest of the box contains the name of the
interaction. See for more details about interaction occurrences.
You can help others to understand complex use cases by giving them an overview of how the interaction

sequences flow. For example, Eigure 13-4 shows a simple use-case diagram for the process of making a room
reservation in a hotel reservation system.
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Figure 13-3: A use-case diagram for Make Room Reservation.
shows an interaction overview diagram, looking suspiciously similar to an activity diagram. Instead

of enclosing the diagram with a symbol for complex activity (a rounded rectangle), you use a
sequence-diagram frame in a regular rectangle.
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Figure 13-4: Interaction Overview diagram for making a room reservation.

Use interaction occurrences instead of activities when you need to show alternative flows. Use
decision/merge nodes and fork/join nodes to indicate the flow of control through the use case.

To construct an interaction overview diagram for your complex use cases, follow these steps:

1. Place the name of the use case in the upper-left corner just after the sd keyword.
In the example in , the name is Make Room Reservation.
2. Start your interaction with an initial node, a large dot.

3. Draw acontrol flow that starts at the initial node and goes to the first interaction
occurrence.

4. Break up your main success scenario into groups of interactions.

Draw your main success scenario, breaking it up into groups of interactions. To make a
reservation our actor, Potential Guest, must pick a room type and day span for the



reservation, select an available room type, supply billing information, and confirm the
reservation.

5. Each group of interactions becomes an interaction occurrence.

You show each interaction occurrence as a box with the ref keyword in the upper-left
corner and the name of the occurrence in the middle of the box. For example, Identify
room type and day span is a small interaction between the Potential Guest actor and the
system. You show this referenced interaction in another sequence diagram. If the
interaction is simple, you can show a mini-sequence diagram instead of an interaction
occurrence.

6. Connect the main success scenario interactions with control-flow lines to show the
correct sequence.

The Select available room type follows the Identify room type and day span interaction
occurrence.

7. When you have an alternative flow, break the control flow between interaction
occurrences and insert a decision node or a fork node.

If the alternative flow or flows are concurrent to the main success scenario, then use a
fork to indicate it; otherwise use a decision.

In the reservation example in , a decision must be made between the

Identify room type and day span and the Select available room type interactions. If invalid
day span is true, then control flows to the Day span error interaction occurrence. If cancel
is true than control flows to the Cancel reservation interaction occurrence. Otherwise,
control flows normally to the next part of the main success scenario.

Repeat this step as needed to encompass all the alternative flows for your use case.

8. Use merge or join nodes to bring any alternative paths that pass through the interaction
diagram back together (if necessary).

his is the same technique used in an activity diagram. The example illustrated in
doesn’t require any merge or join nodes.

9. You must use the activity final node in your interaction overview, because all use cases
must come to an end.

In the reservation example, the interaction ends after the Confirm reservation interaction
or the Cancel reservation interaction. To indicate this situation, you place a bull's-eye at
the bottom of the diagram with control flow lines coming from those two interaction
occurrences.

Indicating the responsible parties

UML 2 lets you show who is responsible for an activity or an action in two ways:

B swim lanes: You can divide up your activity diagram into rows or columns, called swim
lanes. To understand the concept of swim lanes, think of placing your activity diagram in a
large pool. At the head of the pool you place each person involved in the business process,
each in his or her own swim lane. Each person who dives into the pool then swims over the
various activities for which they are responsible.

You show swim lanes as parallel lines across or down the page. At the top or side of the
lane put the name of the person, job role, or organizational unit that is responsible for
performing the activities in that lane. Place the activities or actions for that party inside the
lane.



B partition names: When you can’t use swim lanes, you can just place the name of the
responsible party in parentheses inside the rounded rectangle above the name of the activity
or action.

When you model a business process, it's necessary to show each part of the process and eac 12
responsible. With UML, you show business processes as an activity diagram with swim lanes.
shows the process of getting through an airport to board a plane. This business process involves four
participants: Passenger, Ticket Agent, Airport Security, and Boarding Agent.
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Figure 13-5: Activity diagram showing a business process.

We chose to place the swim lanes in vertical swim lanes because they fit the page better, but we could have
used horizontal swim lanes. Each lane has the name of one participant. Each participant is responsible for
performing the activities in his or her lane.

You notice the Ticket object changes state as it moves through this activity diagram. When the Ticket Agent
performs the Generate Pass activity, the Ticket object has the valid state. After the Boarding Agent performs the
Stamp Pass activity the Ticket changes to the used state.

Use a connector when you run out of space in an activity diagram. For example, we ran out of room at
the Receive Pass activity that the passenger performs. So, we placed a connector with the label A. Then we



drew a control-flow line from Receive Pass to the A connector. Using the same technique, you can pick up the
control-flow path at the connector with the same label A at the top of the Passenger’'s swim lane, and then
proceed to the Wait in line activity.

shows two examples of partition names placed inside the activity’s rounded rectangle. Instead of
using swim lanes, you can show that the Passenger is performing the Wait in line activity and Airport Security
performs the Observe Passenger activity.
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Figure 13-6: Showing who's responsible with names placed inside an activity.
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Chapter 14: Capturing How Objects Collaborate

Overview
In This Chapter
B Structuring a communication diagram
B Numbering your messages
B Conquering concurrency with communication diagrams
B Capturing the design of a collaboration

To get a job done, you design interactions among a set of participating objects so that they can work together
to achieve your goal. UML gives you several tools to work out the details of these interactions, such as
sequence diagrams, communication diagrams, activity diagrams, and timing diagrams. If you follow the
diagramming guidelines given in Chapter 11| (along with the techniques of this chapter), you'll be using
communication diagrams when it's necessary to design the details of an interaction.

Communication diagrams are not really new to UML 2, but their name is new. In the previous UML 1.x
versions, these diagrams are called collaboration diagrams, because they show how objects collaborate to
meet a goal. While this was a good name, UML also uses collaboration to mean something else. In UML 2, a
collaboration is a specification of how a set of objects and associations playing specific roles realize an
operation or use case. Therefore, with the old terminology, a collaboration diagram was just one way of
indicating the details of one scenario that a collaboration was realizing. Confusing? You bet. So, the UML
gurus finally decided to change the nhame to communication diagrams.

In UML 2, when you attempt to design a collaboration (the set of classes and associations that realize a use
case or an operation), you'll need to specify the participating objects and links. Then, for each possible
scenario that the use case or operation has, you must specify the interaction of messages among the
participating objects and links in the collaboration.

To do this, you'll need one or more interaction diagrams to capture these scenarios. Sequence diagrams will
probably suffice for many circumstances, but as you move into detailed design, you may find the capabilities of
communication diagrams more suitable to your needs.

While the new UML 2 communication diagrams look a lot like the old UML 1.x collaboration
diagrams, they seem to be significantly less complicated, and unfortunately, less expressive and powerful. In
this chapter, we offer advice on how to regain some of the lost expressiveness, while still keeping you from
drowning in details. We've asked the UML 2 team at OMG to re-insert some of the features they've taken out
for the sake of compatibility and power. You'll need to keep track of future revisions to UML 2 (perhaps UML
2.1) to see exactly how they’ve done the corrections.




Developing a Collaboration

In the following sections, we outline the design of a GenerateBill use case using some of the communication
diagram features. This process starts with the analysis class diagram for the classes that must participate in
this use case, which we change by adding some specific design features to help accomplish the use case’s
behaviors.

As the class diagram evolves to incorporate the design of the use case and appears to stabilize, you construct
a communication diagram that walks through the designed interaction, showing the step-by-step interchange
of message over the objects and links participating in our use case.

As you make decisions in the communication diagram, go back to the class diagram to ensure consistency.
You need individual communication diagrams to capture different scenarios of the use case. This suite of
communication diagrams and the class diagram evolve to capture the design details of the dynamic behavioral
view and static class view consistently.

Structuring a design class diagram

When you construct a communication diagram, you need to identify the participating objects and lay them out
in a static st i granEgm_a?a class diagram. You can find more about the typical features of these
diagrams in Chapter J and [Chapter §.

shows the initial class diagram drawn during analysis for the example use case GenerateBill. In the
example diagram, you can see that each Room has an ordered set of Stays (indicated on the diagram by the
property {ordered} and the multiplicity * ), and for each Stay and date, there is an associated RoomRate. A
RoomRate can be for multiple Rooms, but for each combination of a Stay, a date, and a RoomRate, there is an
association class Lodging that has some information about the specifics on that date, such as the number of
occupants for that day.

For each Stay and date there is also a set of RoomCharges that can be applied—which might include things
like room service or videos. We could have hooked the RoomCharges to the Lodging instead of directly to the
Stay, but we felt that the RoomCharges are probably generated by different subsystems than the Lodging
charges, so it's probably better to separate the responsibilities.
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Figure 14-1: Initial class diagram for the GenerateBill use case.




Focusing on a central class

A central class or focus class is the class that a use case appears to be most concerned with—usually
creating, finding, or manipulating instances of that class or using it to find other information needed by the use
case. You can see that the central class for this use case is Stay, as most items of information needed for the
use case—in particular, the items on the bill—are available close to the Stay class. Though the needed
information is accessible from the other classes, the distance from the Stay is the shorter. Of course, the
measure here isn't the physical distance on the diagram, it's how many hops it takes to get to the information.

When you can identify the central class for a use case or operation, you have a head start in designing the
collaboration. For example, as the interaction among the classes kick off, much of the behavior will need to be
focused on how to find the correct instance of the central class. After it is found, this instance will probably be
the correct place to assign most of the work. Knowing which class is the central class will allow you to focus
your attention on the right place.

Now that we know that the central class is Stay, we need to design our approach to finding the correct instance
of Stay as the use case runs. From the logic of the situation, it appears that the actor can be asked for the
room number. To help find the correct instance of the central class (Stay), we create a Hotellnventory class that
acts as a container holding all the available rooms of the hotel. Its main behavior will be to find a particular
Room object given a room number. (Refer to figure 14-3 later in this chapter to see how this design-time
container class is positioned.) The Hotelinventory container uses the qualifier roomNumber as an index to the
Rooms. If you know the roomNumber you can use the Hotellnventory to find the Room you want. (The use of
qualifiers as indices on associations is discussed in [Chapter 4.)

From the correct Room, the use case then needs to find the correct Stay. We assume that the GenerateBill use
case is normally started upon guest checkout, so we can use the latest Stay associated with the Room. It's
possible to find the latest Stay from the Room, because the Stays are ordered from the perspective of the Room
(back to the {ordered} property on the diagram).

Controlling a use case

Whenever you have a complex use case, you should consider which object controls and organizes the
required behavior. Typically, no existing object from the initial class diagram will do. Though each object has
its own natural responsibilities that are found by analyzing the use case and the problem domain, the control
and organization responsibilities tend to be part of the solution and need to be added. Following good design
practice of keeping our classes focused on doing one thing and doing it well, you shouldn’t add these new
responsibilities to any of the existing classes. Therefore, you need to design a new class—a use-case
controller class that will initiate and coordinate the activities of the classes to meet the needs of the use case.
Typically in these circumstances, you would name the use-case controller class with the name of the use
case, GenerateBill, as you can see in .

We recommend that you flag your controller classes with a special stereotype, such as «use-case
controller» or «controb»> to remind the designer of the special features that controllers usually have. (We use
«controller».) For example, a use-case controller typically requires its own active thread at run-time and is also
ultimately responsible for the interaction with the actor.

As you progress, you'll often find other common design changes being made to standard madeli
approaches. For example, when you see an association class, such as the Lodging class in Figure 14-1], you

may need to convert it to a class that lies as an intermediate class between the ends of the original association
Figure 14-1. This
diagram shows the trick of keeping the promoted multiplicities correct. The outer multiplicities become inner
multiplicities—they switch sides on the promoted class—and the outer multiplicities are replaced with 1.

(an inline class). You can see an example of how to do this in the sample diagram of
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Figure 14-2: Promoting an association class to an inline class

Though there are other possible design/implementation approaches to association classes, the transformation
shown in Eigure 14-4 is the most common because it's easy to implement and easy to make the objects live in
a database. We promote the association class Lodging in this manner in fEigure 14-3.
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Figure 14-3: A class diagram incorporating initial design for GenerateBill.

Adding an output class

There is at least one more design class you need to add to the initial diagram shown in . Because
our use-case GenerateBill produces a bill, you must make sure that the Bill class is on the diagram. (Granted,
that should be obvious, but the lack of jt | on error found in many diagrams.) For now, hang the Bill
class off the use-case controller (as in Fisure 14—§).

Preparing the participants

Using the class diagram as a guide to designing the collaboration, you need to select the appropriate

participants. We L object diagram (as described in ) or a UML composite structure diagram
nhater :

(as described in ). In order to make such a diagram, you identify the objects (instances) that need to




participate, or you convert the classes to parts. (You can treat the participating instances as internal parts of
the collaboration in the same manner as you treat internal parts of a class using the treatment found on

composite structure diagrams that we discuss in [Chapter §.) The parts use the same syntax as those of lifeline
references as described in .

The basic name of the part/lifeline references for these purposes is as follows:

referenceName([selectors] : className
The component pieces of this syntax are as follows:

B eferenceName is the handle you use to refer to the part. It may be the rolename of the
participating object’s class, the name passed in a parameter or local variable that contains
the participating object. The referenceName is optional, so you often see just the class hame
when there is only one object for that class in the collaboration.

B selectors is an optional field that selects a particular object or objects from a set. It may be a
qualifier, an indexing subscript, or some Boolean expression. You don’t need it if the
referenceName refers to an object with a multiplicity of one.

B className is the class or type of the participating object.

shows the participating parts of the communication diagrams for the GenerateBill collaboration. In
this diagram, the objects for the controller class GenerateBill (which controls the use case) and the container
class Hotellnventory (which contains and finds Rooms) don’t need any referenceNames or selectors because
they are unambiguous (there’s only one of each of them). However, because there are many possible bills,
you need to identify a specific Bill. In this model, the specific Bill being constructed is given the name of newaBill.
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Figure 14-4: The participants of the GenerateBill collaboration.
There are also many rooms in the Hotellnventory. To identify the specific Room, we've supplied a value rmNum

s the selector. This corresponds to the value of the qualifier rromNumber off of the Hotelinventory. (Refer to
Figure 14-3)

In the same manner, from the point of view of the [rmNum]:Room, there are still many possible Stays. When
you generate a Bill, it's always for the most recent Stay, so a selector of [latest] is used. Selectors like 1st, 2nd,
last, latest, and nth are only allowed when the underlying association between the respective classes is an
ordered or sorted association (as indicated by {ordered} or {sorted} on the diagram). If the association is not
ordered or sorted, there’s no way of asking for a positional element in effect, it's just a set of elements without
an order.



From the point of view of the [latest]:Stay, there are many Lodging objects and RoomCharge objects. The [date]
qualifier can address either type of object, so you can use a value for date or a dateRange as your selector. As
either type of object can have multiple instances, you can also put the * multiplicity in the upper-right corner as
a reminder.

Finally, the RoomRate class had a rolename of rate in the original class diagram (see ). Use this
rolename as the referenceName for the part for consistency among the diagrams.




Constructing the Communication Diagram

You place the messages used to perform the collaboration on the basic diagram of the participants. Each
message, which is a communication between a sender object and a receiver object, is indicated on a line
connecting the two of them.

The whole diagram is enclosed in a frame and you use the abbreviation sd to stand for your communication
diagram.

You may be wondering why the abbreviation for a communication diagram is sd and not cd. We've
wondered about that, too—and we’ve complained. Looks like this must have been one of those silly
compromises that got made when the UML gurus got too tired. They wanted all the interaction diagrams to
have the same abbreviation—to simplify things. And they didn’t want to use id or int because they thought
those would be confusing. That's why we have to live with sd as the abbreviation for sequence diagram,
communication diagram, timing diagram, and interaction-overview diagram. The gurus can always justify
using sd by saying that a communication diagram is a type of sequence diagram. With any luck, an early
revision to UML 2 may vet fix it In the meantime, if all that ambiguity bothers you, you may want to use cd as
your abbreviation for gommunication diagrany (provided your UML tool allows it).

The name of the communication diagram is the name of the use case or operation that you are diagramming.
Because you are typically doing design when you make a communication diagram, you should gzﬁfuf[ f,king
a more formal approach to documenting the arguments and return values of the interaction. In figure 14-§, we
name the interaction based on the use-case name GenerateBill(rmNum:RoomNumber, out newBill:Bill).

With this as a name, you indicate that the GenerateBill interaction takes a RoomNumber as input
argument—and that inside the interaction, this argument is called rmNum. There is also an output argument (of
type Bill) that will be called newBill inside the interaction. Normally, if you create an object inside an interaction
and it has to be visible outside, you also indicate it as an out argument or a return.

Numbering steps sequentially

Message syntax on a communication di ssentially the same as for the sequence diagram. (You can
find more information on this syntax in .ChaZter 12.) The first key difference you notice is that on your
communicatiop diagram, the messages are numbered—and each message is executed in sequential order.
By examining figure 14-§, you can see that the following steps are executed in this order:

1. thisRoom=getRoom(rmNum): First, the GenerateBill controller asks the Hotellnventory
container class to find the correct Room object with the given rmNum. The correct object
is returned and placed in an attribute within the GenerateBill controller named thisRoom.
The Hotellnventory object can find the correct Room because this relationship is
indexed/qualified by roomNumber (See the Eigure 14-3).

2. occFlag=isOccupied(today): Next, the GenerateBill controller queries the Room to see if it
isOccupied(today). The GenerateBill controller can send the message to the room
because the query is called on the Room object that is was returned from call #1.The
notation thisRoom at the end of the message line reminds you of the way the
GenerateBill controller knows about the object. The results from the query are returned
and stored in an occFlag (short for occupationFlag), which is a local attribute of the
GenerateBill controller.

This is a good example of how designing the messages can cause structural changes
to the class diagram. Because the GenerateBill now knows about a Room object, we may
deci ere is a link between the two objects. We cover this and other approaches
in[fable 14j]




3. [occFlag] newBill = Bill(thisRoom, controller=self): Next, the GenerateBill controller queries
the Bill and tells it how to find the room by passing it the thisRoom argument. The
controller has this value because call #1 returns it. But, before the call can be initiated,
the controller checks the guard condition [occFlag], which was returned from call #2. If
the call is performed, the Bill object is returned as newBill, which matches the return
argument of the interaction.

The controller also creates a reference to itself and passes that to the Bill. This
reference will be used in the next call (call #4) so the Bill can find the controller again.
Self is a reserved keyword, representing the calling or executing object.

4. billReady(self): Lastly, the Bill object calls the billReady() operation on the GenerateBill
controller and passes a reference to itself back to the controller. The Bill is able to find
the controller because the controller was passed in call # 3.
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Figure 14-5: Initial communication

Outlining procedural calls

Communication diagrams give you the numbering capabilities to display graphically the calls to
operations—and then the calls from those called operations, and (in turn) the calls from the operations they
call, and so on. If you can keep your head from spinning, you can identify as many levels of calls and
operations as you need (or at least as many as will fit on the diagram).

This miracle is done by using a tool you've seen if you've ever examined a table of contents: an
outline-numbering scheme. If an object gets a message to execute an operation that is numbered 3:, any
messages it then issues (numbered 3.1:, 3.2:, or 3.3:) are subordinate messages because they’re issued within
the context of 3:. Accordingly, any message starting 3.x: must complete its business before the top 3: message
can be considered complete. This follows the traditional outline numbering pattern shown below:
3:
3.1:
3.2
3.2.1:
3.2.2:
3.3:
3.4:
4:

In , we use some outline numbering of the messages. Examine (for example) message 2, where
the GenerateBill controller asks the Room object if it isOccupied. To accomplish this work, the Room object also
calls an operation on another object; in this case, it calls an operation on the latest Stay object ([latest]:Stay).
Because this operation is subordinate, it needs a lower-level outline number. You would use 2.1, because this
is the first (and only in this case) subordinate operation within operation 2. In the example, this operation on
the Stay returns an occFlag to the Room if the latest stay included today. The Room, in turn, returns the occFlag



back to the GenerateBill controller. When you use this outline-style technique of numbering, you can detail how
each operation works and calculate results for its caller.
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Figure 14-6: A communication diagram with outline numbering.

Message 3: also has some subordinate steps:

3[occFlag]: newBill = Bill(thisRoom, controller=self)
3.1: thisStay = getStay(today)
3.2: party = getParty
3.3: getDayRange(Bill.sd = sd : startDate, Bill.ed = ed : endDate)
3.4: getTotalCharges(sd, ed)
3.4.1*: getLodgingCharge()

This sequence of messages is governed by the guard condition on message 3. If the [occflag] is false, the
whole sequence beginning with 3 is skipped. If [occFlag] is true, then message 3 is sent to create the Bill. Then
(as the diagram says), the Bill sends message 3.1 to the Room and follows up with message 3.2, 3.3, and 3.4 to
the Stay. As any number of levels can be used, message 3.4.1* getLodgingCharge() is sent by the Stay to the
Lodging.

Looping

In , you may see that there is a message with an * in the sequence number, 3.4.1*:
getLodgingCharge(). This * indicates that many instances of that message are sent with that same number. We
recommend thinking of this * as a multiplicity indicator, similar to that used on UML associations. If there’s just
a *, it indicates that the message is to be repeated as often as needed. If you repeat a message, then you also
repeat all its subordinate messages.

If you want to have the message repeated a specific number of times, the syntax is as follows:

SequenceNumber*[iteration clause]:
The iteration clause has several common forms:

B Boolean expression: The expression repeats as long as the expression is True. A message

such as 3*[isMoreNeeded] would continue untilisMoreNeeded=False.
|

loopVariable=lowerLimit..upperLimit: This expression initializes the loopVariable to the
lowerLimit and sends the message. Then the loopVariable is incremented and tested against
the upperLimit. As long as the loopVariable is in range, the message is sent again. These



upper and lower limits may be integers or ordered enumerations of values. For example, the
messages 4*[thisMonth=Jan..Dec] and 4*[thisMonthNumber=1..12] would both execute 12
times.

B Codelike looping syntax: UML allows you to write the iteration clause using the target
programming language. Although there is some value to this practice, | wouldn’'t recommend
tying your model to your programming language; after all, the language could change in the
future. Also, your UML tool may not understand the syntax exactly—so it probably won'’t
generate high-quality code.

In , I've used the loopVariable approach in two locations. Look at message 3.3 from the Bill to the
Stay. This tells us how the returned out arguments (sd and ed) are set and where their results go. Upon return,
the two arguments, that of sd and ed, are set to the startDate attribute of the Stay and the endDate attribute for
the Stay. Then, these values are saved in the Bill as Bill.sd and Bill.ed. Later, in message 3.4%, the Bill uses the
sd and ed as (respectively) the lower and upper limit for a loop. The Bill sets up a loop with aloopVariable of
thisDay and asks the Stay to retrieve the total charges for this day, via the call 3.4*[thisDay=sd..ed]:
getTotalCharges(thisDay).
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Figure 14-7: A communication diagram with looping.

Message 3.4.1 is sent inside this loop to [thisDay]:Lodging, which illustrates that the loopindex value, thisDay,
(being passed in as a parameter in 3.4*) is being used by the Stay to find (or select) the correct Lodging.
Within 3.4.1, the Lodging asks the RoomRate object for information on the rate. Every time the 3.4 loop
iterates, you have message 3.4.1 sent, and then message 3.4.1.1 is sent.

Looping or selecting?

Often an ambiguity can crop up when you send multiple messages to a specific lifeline (a part
reference) on of a communication diagram. A lifeline refers to a participating instance, but the naming
structure allows the reference to point to different instances in each loop iteration. Such a sending
could mean that there are many messages, each sent to a separate instance, or it could mean that
there are many messages, all sent to the same instance. Fortunately, you have several ways of trying
to clear up this problem.

One common approach that was possible in UML 1.x was to indicate that the destination is a
multiobject. Unfortunately, the UML gurus have eliminated this feature from UML 2, but many tools will
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Conquering Concurrency

Normally when you construct communication diagrams, the messages are all sequential—you can use a
traditional, outline-style numbering scheme to indicate the order of the messages, and only one message is
ever active at a time. Of course,_i isticated multithreaded systems, you may have multiple threads
running at once. If you refer to Figure 14-3, for example, you can see that the Bill object, when it has to return
information to the GenerateBill object, does so with a call back to the GenerateBill rather than with a traditional
return. We designed it this way because the Bill has lots of work to do that doesn’t involve the GenerateBill. If
we can free up the GenerateBill controller, it may be able to work with other guests to generate other bills while
our Bill is busy. We treat Bill an active object that has its own thread of control distinct from that of the use case
so the two objects can run independently.

Whenever you have a class or object that owns its own thread of control that it is able to run independently of
its caller, you have an active object. You might want to use an optional notation on the Bill object to indicate
that it is an active object.

class or object box (as in
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Figure 14-8: A communication diagram showing concurrency.

We've been throwing the words concurrency and concurrently around a bit—and yes, you
could run to the nearest dictionary and come up with a definition for them. Here, however, concurrency has a
formal meaning in computer science and the world of UML—one that differs slightly from its everyday
meaning.

If two events, A and B, are concurrent, the following must be true:
B There is no causal relationship between A an B (neither causes the other).
B A can occur before B, or B can occur before A.
B A and B can occur simultaneously (it's not logically impossible).

A and B don't have to run simultaneously—in fact, that's pretty rare, and it often has more to do with how
precisely you record your time. And in single processors, A and B can't really run simultaneously, unless they



swap in and out in a time-sharing way.

Looping concurrently

Whenever you indicate a loop in UML, the normal interpretation is that each iteration of the loop runs
sequentially: The first iteration runs and finishes, and then next iteration runs and finishes, and so on until the
last iteration. Often, however, this interpretation is overly restrictive—and not strictly necessary. If the results of
the loop would be the same, no matter what the order of iteration (say, counting down instead of up), then you
may be able to make all the iterations run concurrently. On some hardware, the compiler automatically detects
whether the results of an iteration depend on the order—if they don’t, the compiler forwards each iteration to a
parallel processor.

If you want to have the loop iterations run independently and concurrently, use the following syntax:

3.4*||(loopIndex=lowValue..HighValue): msg()

Adding the two bars indicates that you want the iterations of the loop done concurrently (or in parallel—in
which case, the bars are parallel ). Adding the bars doesn’t guarantee that the implementation will be done
that way—after all, it's sometimes a platform consideration. For example, some platforms can’t do parallel
loops at all, and some can do no more than 255 at a time. But adding the bars does signal your intent that no

loop iteration depend on gny other—and that you prefer a parallel implementation. You can see an example of
this concurrent looping in if you look at the following message:
3.4b.2*||[thisCharge=1..numCharges]:

rc[thisCharge] = getRoomCharge()

The getRoomCharge() is a simple retrieval operation, so all the charges are retrieved at once (concurrently) and
stored into a local array called rc[]. We show the assignment to rc[thisCharge] because we are using the
lifeline/part notation and [thisCharge] is the selector (or qualifier) that indicates which object we are setting.
(Ignore the b in the message number; it indicates a thread, which we explain later in this chapter.)

Identifying independent threads

If you work with multi-threaded systems, you may want to be explicit about concurrent processes. In UML, if
you want to indicate that messages are to be sent concurrently, you have to give them the same sequence
number. But to distinguish them, you give them individual names. For example, the following three messages
would be sent concurrently, as they all share the same sequence number 4.1.

4.1cotton: msgl()
4.1nylon: msg2()
4.1polyester: msg3()

All three threads run concurrently. Each of the different threads has a character string tag that can be used to
identify it (cotton, nylon, or polyester). If you don’t sew, you can use thread names like a, b, or c.

The thread names are useful because you still want to be able to identify subordinate messages on a
communication diagram. For example, the following message executions have to obey the rules that govern
subordinate sequence numbers:

4.1cotton:
4.1cotton.1:
4.1cotton.2:
4.1cotton.2.1:
4.1nylon:
4.1nylon.1:
4.1nylon.1.1:
4.1nylon.1.2:
4.1polyester:

These rules require that 4.1cotton.1: finishes before 4.1cotton.2: can start. And before 4.1cotton.2: can finish,



4.1cotton.2.1: must finish. To have 4.1cotton:: finish, 4.1cotton.2: must finish also.

A similar ordering occurs with the nylon thread. However, because the two threads are concurrent, you can’t
say anything about the relative order of any cotton message or nylon message. You could have 4.1nylon.1.2:
running before 4.1cotton.1: finishes or vice versa.

In , there are two independent threads:

3.4a*[thisDay=sd..ed]: getLodgingCharges(thisDay)
3.4b*[thisDay=sd..ed]: getRoomCharges(thisDay)

In each thread, there is a loop over the number of days in the stay. Because each loop is a normal loop, each
iteration of each loop occurs in order. But because the two loops are concurrent, the two loops are not in
synch and could finish in any order.

In both threads, there are subordinate steps. In the 3.4athread, for each iteration of the loop there is a call to
the Lodging and the Lodging then calls the RoomRate. In the 3.4b thread, concurrent with the 3.4a thread, each
iteration of the loop has the Stay asking itself for the number of charges and then in a parallel loop, asking the
RoomCharges for their values.




Capturing the Collaboration’s Design

Each step you take to add detail and flesh out the steps in the communication diagram captures more
information on how the collaboration works. Some of this design detail requires the underlying classes or
associations to change their definitions. You have to go back to the class diagram and make sure that the

eatures from the communication diagram map to the features of your class diagrams, as detailed in
Your tool may automate some of this mapping—updating one diagram may automatically update the
others. You want to be sure that the communication diagrams and the class diagrams are consistent; they
should be different views of the same underlying model. So in the table below we list several of the possible
communication diagram design features, and we tell you what these features would be in the class diagram.
By looking at fFigures 14-8 and , you'll see how we did the mapping in practice.

Figure 14-9: Class model arising from communication diagram and design.
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Table 14-1: Mapping Communication Diagram Features to Class Design

Communication

Mapping to Class Design Diagram Feature

Message name

Target class must have an operation (or a
signal reception) by that name.

Argument list

Argument lists on the class’s operations/signals
must match the communication diagram, in
direction, type, number, name, and order. It's
not required that the argument list be
duplicated. Argument values may be used on
the communication diagram if they can be
matched directly and are compatible with the
arguments of the class.

Return assignments If you assign a named value, the results of a

message return value must match the type of
the return value from the operation.

The named value must be an attribute or local
variable of the calling class. If the named value
is only used by that object within its current
operation, you may use a local variable. If used
in subsequent operations, or required to be
persistent (live in a database), make it an
attribute.

Selectors / qualifiers Check to see if the relationship has a qualifier or

is {ordered}.

Call direction

If during an operation on A, A invokes another
operation on B, it must know about B. It can do
this because of a link, or a parameter being
passed to A that references B, a return value to
A referencing B, or because B is in a
well-known (global) location.

If the knowledge about B needs to be
remembered for other operations on A, or is
persistent, the best solution is a link. Otherwise,
it may be possible to store a reference to B
locally for the duration of A’s operation. When in
doubt, use a link.

Only a unidirectional link is needed from A to B.
The reverse direction is needed only if B calls
an operation on A.

earlier in

applied the guidelines of [Table 14-] to the details of the communication diagram shown
. Whenever there was a choice in identifying a feature as an attribute (as opposed to a

local variable), we chose an attribute, primarily because it made it visible on the diagram. When you do this
work of abstracting the design, you'll need to be more discriminating. You only need to use attributes if the
knowledge of the value or reference is persistent across calls.

If you have multiple interactions or scenarios to describe for this collaboration, incorporate the features from all
the communication (and sequence or timing) diagrams used to detail the interactions.
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Chapter 15: Capturing the Patterns of Behavior

Overview
In This Chapter
B Defining patterns and frameworks
B Developing your own patterns
B Using UML to document your patterns

Your object-oriented software succeeds because objects work together—they collaborate. Out of this
collaboration emerges the functionality of your application. While developing applications, you’ve probably
experienced déja vu—you know, the sense that you've seen this program before. Many of your fellow
practitioners capture these frequent programming solutions and call them patterns or frameworks—reusable
solutions to common problems. In this chapter, we show you how to develop and document patterns and
frameworks so you too can communicate your reusable models and designs.




Describing Patterns with Collaborations

You don’t want to reinvent the proverbial wheel. In the old days, craftsmen built a physical template for a
wagon wheel into the floor of a barn. They'd reuse the template or pattern to create a new wheel by bending
wood to fit the framework etched in the floor. Builders, craftsmen, and engineers use the same basic approach
to solving hard problems—they develop a pattern, using the following steps:

1. Build ad-hoc solutions to a development problem.

The answer to a complex problem requires you to make a choice among competing
alternatives. You build different solutions when you’re not sure what works best or
which solution offers the best results.

For example, suppose you must write software that constructs a complex assembly for
a CAD/CAM (Computer-Aided Design/Computer-Aided Manufacturing) application. You
must program two behaviors: the process of constructing the whole assembly (an
air-filter unit) and the creation of each part in the assembly. The first thing you do is
build several different software solutions to assemble air-filter units for the CAD/CAM
application. These two bits of behavior can be programmed in many ways, and you
need to try several solutions to see which one works best.

2. Find the solution that works best in different situations.

In our running CAD/CAM example, the most successful solution to putting together a
complex assembly is found by separating the two behaviors into different classes. You
need a class that represents the assembly of an air-filter unit and a class that knows the
process of constructing an air-filter unit.

3. Abstract commonality out of your best solutions.

Find and extract the important common features (classes, attributes, operations,
associations) of your solutions and make the solution as general as possible. Base your
decisions on practice, not on theory. Look at balancing such competing factors as cost
to build, time to build, and performance of the resulting solution.

In the CAD/CAM software example, the common features of successful solutions are
as follows:

B provide a class that directs the construction of the whole assembly.
A Director class knows how to direct the assembly of air-filter units.
The Director does not actually build each part, just knows which part
to build in what order to build the parts making up the assembly.

B Define a common interface for building eac e interface
must capture the operation signature (see [Chapter 3) for building an

assembly so we’'ll call the interface Builder.

u Supply a specific class that knows how to build individual parts for
the whole assembly. Since this class actually knows how to build
individual parts for the assembly it gets the name ConcreteBuilder.

4. Create a pattern that describes the abstractions you developed in Step 3.

Providing other developers with a pattern description helps you communicate clearly
what works.

Reuse the pattern in the appropriate situations to boost productivity and build



high-quality solutions.

Defining and classifying patterns

A pattern is basically a template solution to a problem. Patterns can be vital to the development process—but
they're only effective if they're presented clearly and consistently.

When you describe a pattern, provide your fellow developers with the following information:

Pattern name: Give your pattern a memorable name that matches its purpose.

Problem description: You tell others just what problem this pattern solves. Provide your
readers with information about the context of the problem, when to consider using your
pattern, and how to recognize whether the problem they have is one to which your pattern
provides an answer.

Solution description: Here you describe the classes, how they collaborate, their
associations, their constraints, and the job of each class.

Consequences of the solution: Every one of your patterns has positive and negative
aspects. Don't forget to tell other developers about any issues they must face as a result of
choosing to use your pattern.

Patterns occur at many different levels of complexity. The three most important levels for complexity are given
the following names:

Pattern: A pattern is a solution to a small software problem that developers face over and
over again in the construction of an application. A well-built application utilizes many
patterns to solve modeling problems during analysis and construction issues at design time.

Framework: A pattern for an entire application is known as a framework. Frameworks are
“almost complete” applications; decisions about the structure of the application, specific
classes, their behavior, and flow of control through the application are already made and in
place. Just plug in a few of your own classes to employ the framework for your application’s
requirements.

Architectural framework: A pattern for an entire system composed of many applications is
known as an architectural framework. On a grand scale, you use architectural frameworks to
bind many applications into a whole system of subsystems. An architectural framework
could be a group of application frameworks, but it does not have to be. The important thing
about architecture frameworks is that they describe how the individual subsystems work
together. At this level, the architectural framework provides guidelines that specify
responsibilities and interactions for each of your subsystems/applications.

For lots more information on patterns, check out the Hillside Group at http://hillside.net/

Using composite structure diagrams

You use a special composite structure diagram to describe a pattern. The composite structure diagram shows
a “collaboration” and the parts that play different roles in the pattern. A collaboration is a group of objects

)

ﬁﬂ together to accomplish some functionality. (For more on composite structure diagrams, see
Chapter §.

You show a pattern with a collaboration symbol and an internal structure:

B Collaboration symbol: A collaboration symbol is a large dashed oval shape. (Be prepared to

make it large.) At the top of and inside the dashed oval, you place the name of the
collaboration (that is, your pattern’s name). Use a dashed line to separate the pattern’s
name from its internal structure.


http://hillside.net/

B |nternal structure: Place each element of your pattern inside the dashed oval. Be prepared
to make the elements small if you didn’t make the oval large enough. When illustrating a
pattern, be sure to attend to the following issues:

O Draw acom posite structure diagram: When you show the elements of
your pattern, you use a composite structure diagram. These diagrams
consist of parts and connections. Parts are simply classes shown inside
another class. Connections are special kinds of associations shown
inside a class. See [Chapter § for more details.

O Sshow each major class of your pattern as a part: You draw each part as
a box with the name of the part inside. | name the parts after the role
each part plays in the pattern.

O show connections between the parts: If you have an association
between the classes in your pattern, show them as connections between
the parts. To show a connection, draw a line between the two parts that
must communicate. Add any multiplicity constraints on the connection;
put them between the parts. Don't forget to name the connection, just as
you hame associations. This helps others to understand what's going on.

B Decide whether to use an interface: If your pattern calls for inheritance and abstract
operations in a superclass, then use an interface. Instead of a superclass, you attach a
provider interface to the subclass; the provider-interface symbol is a lollipop or a small circle
attached to a line. The line joins up with whichever internal part provides the attributes and
operations defined by the interface. For the part that actually invokes those operations, you
show a required-interface symbol—half a circle attached to a line—and use the line to
connect the required-interface symbol to the part that does the invoking. When that's done,
you simply connect the required-interface symbol to the provider-interface symbol. When
you're done, it looks like a ball-and-socket joint. (See for an example.)
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Figure 15-1: Collaboration showing the Builder design pattern.

Composite structure diagrams don’t allow generalizations, so you can’t use them to show an
inheritance hierarch e an interface symbol instead. (See for more on composite structure
diagrams and ‘for more on generalization and inheritance.)

UML 2 has a notation for expressing patterns. It's called a composite structure diagram with
collaboration. If you're familiar with UML 1.x, don’t confuse this diagram type with the old collaboration
diagram. UML 2 doesn't actually hatg a collaboration d'ag:Tm. Instead, UML 2 renames the old UML 1.x
collaboration diagram and calls it a fommunication diagram. (See for more information on
communication diagrams.) Collaboration means the structure depicted in a static diagram that shows the

relationship among classes that serve as parts working together to accomplish some collective behavior, but
the diagram doesn’t specify how they collaborate.

Looking at a common design pattern



illustrates the design pattern known as Builder that developers frequently use. You see a large
dashed oval with the name of the pattern at the top. The Builder design pattern consists of three primary
classes and two interfaces—a provider interface and a required interface. The Director knows what to build and
when to build it. The ConcreteBuilder knows how to construct a particular Product. The pattern also includes the
Builder provider interface and the Builder required interface. An instance of the Director invokes operations on
instances of a ConcreteBuilder defined in the Builder interface. The provider interface is shown with the Builder
name above as a small closed circle attached to the ConcreteBuilder. The required interface is shown with the
same Builder name above an open circle (socket) attached to the Director. An instance of ConcreteBuilder then
invokes known operations on the Product class to construct instances of the parts that eventually make up the
Product.

If you document design patterns and you have to deal with inheritance (generalization), use an
interface to capture the abstract superclass.




Applying Patterns

The diagram in shows you who'’s involved in a collaboration, but it doesn’t provide much detail
about the attributes and operations of the individual classes you must construct before you can use the pattern
for yourself. To help you and others with using patterns, you need to show a specific example fitting your own
classes into the pattern or template. In UML 2, the example you build to show others how you are using a
pattern is known as a collaboration occurrence.

You use collaboration occurrences to show details of how you apply a pattern to your specific application. You
show a collaboration occurrence by placing the name of the occurrence and a colon in front of the name of the
collaboration. For example, if you use the builder pattern to build air-filter units, you would name the
collaboration occurrence as AirFilterUnit:Builder.

Instead of showing everything inside a large dashed oval, you can show a collaboration or collaboration
occurrence as a small dashed oval, connected to each class via dashed lines. The role that each class plays
in the collaboration appears on the dashed line, next to the name of the class playing the role. Use this form of
collaboration to show details of the participating classes’ attributes and operations.

Using the Builder pattern

shows you an example of the Builder pattern for building air-filter units. You notice the AirFilterUnit:
Builder name in the small dashed oval indicates this is an example—a collaboration occurrence. The example
uses the alternative form of a collaboration occurrence. The classes, important attributes, and operations for
this use of the Builder pattern look like this:

B The AirFilterConstructor class plays the role of Director in the Builder pattern. To follow the
Builder pattern, you must provide the class that plays the role of Director with a construct
operation.

B Only a class stereotyped as an interface can play the role of Builder in the pattern.
(Remember a class stereotyped as an interface is a special kind of class that specifies a
contract that other classes must perform if they are to realize the interface.) Any class that
supports the Builder interface must have an assembly attribute, along with a reference
datatype that references an instance of the Product being built.

B The Builder interface also requires the implementation of a buildPart operation.

B The AirFilterUnitBuilder class plays the role of the ConcreteBuilder, thus providing a getResult() :
AirFilterUnit operation. That operation returns an instance of the AirfilterUnit class, which plays
the role of the Product in this pattern.
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Figure 15-2: Alternative form for showing a colaboration occurence.

Showing object interaction

Whenever you document a pattern, you have to show how the objects playing various roles interact. You can
use a sequence diagram or communication diagram to document the nature of the interaction between parts
of a collaboration.

, for example, is a sequence diagram that shows the Builder pattern interaction. Play by play, it
looks like this:
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Figure 15-3: Sequence diagram for the Builder design pattern.

1. the: Client creates an instance of ConcreteBuilder called aConcreteBuilder.



the: Client creates an instance called a of type Director, and passes it a reference to the
aConcreteBuilder instance just made in Step 1.

The instance a: Director turns around and asks aConcreteBuilder to buildPart.

The sequence gets into a loop where the Director instance asks the ConcreteBuilder
instance to build all the parts that are necessary until the assembly is complete.

After the assembly is constructed, the: Client invokes the getResult operation on
aConcreteBuilder : ConcreteBuilder.

A constructed instance of the Product is returned to the: Client.




Framing Frameworks

Patterns help you solve small problems when you develop an application. Frameworks provide you with an
“almost complete” application. For example MacApp provides you with a framework for building applications
on an Apple Macintosh machine. You'll notice some frameworks provide a solution for some important part of
an application (frameworks that focus on the user interface design or a framework for accessing data in a
relational database).

Frameworks also include special classes known as hotspots, which are the places in the framework that must
change to bend the framework to your will. When you use a framework, you must develop classes and code
for each hotspot. (For example, a reservation framework would have a hotspot for the specific commodity that
a “reserver” can reserve.) You must provide the class definition that conforms to the commodity hotspot. For
example, if you build a hotel-reservation system, then the commodity you provide is the room that a potential
guest reserves.

Building your own application framework is hard to do. Many developers have tried and failed. Good
application frameworks involve many classes, multiple use cases, various hotspots, and intricate
interactions—all of which require lots of documentation. (For example, the MacApp documentation runs to
almost 20 megabytes.)

Should you choose to develop a framework as the basis for your application, you have to document the
following information:

B \Wwho's involved: You need a class diagram to help others understand the details of each
class involved in the framework.

B \Where you plug in to a hotspot: Each hotspot of the framework must be described so you
can build customized classes that conform to the framework.

B Collaborations: Instances of the most important classes collaborate to accomplish the job of
the framework. You should provide composite structure diagrams that show the roles each
major class plays in the framework.

B How the collaborating objects interact: At runtime, the objects of your framework must
interact to accomplish the functionality of your “mini-application.” Use sequence, activity, and
communication diagrams to show the most important interactions.

B Control mechanism: If your framework uses events, interrupts, and other such ways of
controlling the application, then your framework documentation must include these details.
For example, if the framework is event-driven, use a state machine diagram to describe the
timing and control of the major_application-oriented events. (See for more on the
state machine diagram. See for more on events and interrupts.)

Frameworks can be quite comple involve patterns of patterns. For example, illustrates
_i

a simple ownership collaboration. Figure 15-4 shows a reservation pattern that incorporates the ownership
pattern twice.
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Figure 15-4: The ownership collaboration.
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Figure 15-5: The reservation collaboration.

The ownership pattern itself is simple, incorporating only two parts—the part playing the role of owner and the
part playing the role of the property owned. What we haven’t shown in figure 15-4 is the morass of
details—any attributes, operations, and significant interactions between instances of the Owner class and
instances of the Property class. You would see those in the alternative form of the collaboration, or in a simple
class diagram.

For our reservation example, the important classes in any reservation play the following roles:

B Reserver: This entity in the collaboration reserves the commodity by placing a reservation
with the renter.

B Commodity: The item being rented such (as a videotape, a crash dummy, or a room in a
hotel) is known as the commaodity being reserved.

B Guarantee: The owner of the commodity must have some guarantee of payment. This
guarantee often takes the form of a credit card or cash.

B Renter: The renter offers a commodity for reservation by a reserver.

shows the Reservation collaboration with all these elements. We also show you that the Reserver
plays the role of Owner in the Ownership collaboration. Here the Guarantee is the Property of the Reserver in
the Ownership collaboration. You can also see that the Renter and the Commodity play roles in their own
Ownership collaboration.

Frameworks can be very complex. Even simple examples of frameworks involve collaborations
involving other collaborations. Strive to keep your diagrams as simple as possible, while still communicating to
other developers what they have to know when they use your pattern or framework.

applies the Reservation collaboration to the specific occurrence of reserving rooms in a hotel with a
credit card. The Potential Guest class plays the role of Reserver, the Room plays the role of Commodity in hotel
reservations, the Hotel plays the role of Owner, and the Credit Card plays the role of Guarantee.
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Figure 15-6: A hotel reservation collaboration occurrence.

If you want to make the Reservation collaboration
following:

A class diagram describing eac
the collaboration occurrence of

A component diagram showing

a usable framework, then you also have to show the

A use-case diagram with descriptions of each use of the reservations system for each actor.

le framework, especially the key classes shown in

Ei:ure 15-4.

the components of your framework and their interfaces.

A series of sequence and communication diagrams telling other developers how each major

use case is accomplished through the collaboration of the classes in the framework.
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In this part . ..

It's alive! You create objects, let them live out their days, and finally delete them. Your objects are not simply
data for some lifeless function to chew up. You need a way to describe the life cycle of objects contained in
your system.

We cover how to explore and document your objects’ lives by using state diagrams to show important
moments — and what your objects do after those events. We also describe how to give your objects a
memory of the past, use complex UML state notation, and avoid too much complexity in your depictions of
dynamics. Although dynamic modeling can be perplexing, we help you get a handle on the needed notation
with lots of tips and tricks.
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16: Defining the Object’s Lives with States

Building state diagrams

Giving objects a memory

Working with different kinds of states
Showing event transitions

Relating sequence diagrams to state diagrams

E ach object in your system has a life. You create it, it interacts with other objects for a specified time, and
then you remove the object from your system. This chapter shows you how to use UML to describe the life of
an object—from its birth to its death. This chapter introduces you to the basic state-diagram notation for
showing an object’s internal states, transitions between states, and the timing of an object’s behavior. To help
make state diagrams less of a hassle, we provide steps for building them—and show how state diagrams
relate to class diagrams and sequence diagrams (scenarios).




Showing the Life of an Object

Your objects are not just some data combined with a few functions that use the data. They are so much
more—an object has life. For example, an order entry system has accounts that customers use to pay for the
products they order. In this system you create an object such as CustomerAccount and then invoke operations
like open to open the account. Sometime later you may have to remove that object. (For example, when a
customer account is no longer active it gets deleted.)

The values for each attribute of an object are hidden inside the object. So, your objects have a memory. When
you invoke a function in a programming language that isn’t object-oriented, the function remembers nothing
about the last time you called it. You must feed it all the data it needs to do its job. On the other hand, an
object can remember what has gone before in its life. You cannot (for example) invoke the withdraw operation
on CustomerAccount before you invoke the open operation. The CustomerAccount object must remember
whether it's open or not before the withdrawal can be performed. Because a thorough modeling of your system
should take this memory capability into account, you need a way to show the life of an object.

Documenting object behavior and events

We recommend that you use UML's state-diagram notation to keep track of what your objects are doing over
time. A state is some major behavior that an object performs while time passes. A state diagram depicts the

proper sequence of an object’s behavior that result from some event over time. With UML, you use states to

show what an object is doing and when it is doing it.

There’s more to an object, however, than just the behavior it performs while in a state. You stimulate your
objects’ behavior with events. In general terms, of course, an event is a moment in time when something of
importance happens. In UML, you use event notation to describe that important moment. When you stimulate
an object by notifying it of an event, the object reacts to that notification according to its current state. For
example, a customer account responds to the open event by validating its associated credit card. But it only
does this when the object is first initialized—not at any other time. If you try to open an account after it's
already open, nothing happens.

An event describes a moment in time. From an object’s point of view, an event is a stimulus that
causes a change of behavior. A state (by contrast) describes some major behavior an object performs in
response to an event. Time passes when an object is in a state, but events take no time at all.

As your objects become more complex, you describe their states—and the events that affect them—by using
state diagrams. The notation is pretty simple:

B states: States are shown as rounded rectangles. Take a rectangle, round off its corners, and
you have depicted a state. Place the name of the state in the middle of the top part of the
rounded rectangle.

B Events: Any event that causes an object to make a transition from one state to the next is
shown as a line with an arrow connecting the two states. Place the name of the event close
to the line that represents the transition. The arrow on the line shows the direction of
transition, from the original state to the next state. The line that connects two states as a
result of an event is called an event transition.

You will almost always have to include a couple of other specialized states—the initial state (your object’s
starting point in life) and the final state (your object’s final resting point).

Constructing state diagrams

Building state diagrams is all about considering when behavior happens within an object. State




diagrams—including events that indicate the arrival of important moments and states that indicate what
happens as a result of those moments—show the flow of control within your objects.

Here are the steps we use when building a state diagram:

1. Choose one class and focus on the life cycle for all objects of that one class.
For example, choose CustomerAccount.
2. Start your state diagram with an initial state in the upper-left corner of the state diagram.

Show an initial state as a large solid dot with an event transition coming from it. After
you identify the first major state of your class you can connect the event transition from
the initial state to that first major state.

3. Identify events.

Think about what causes your object to change its behavior—to stop doing one thing
and start doing another. You're looking for important moments in the life of your object.

The CustomerAccount example has the following events: open (open an account),
validated (the account has been checked to make sure everything is okay), passed (the
trial period for the account is finished), renew (it's time to renew the account), and close
(the account needs to be closed).

4. Think of what the object spends its time doing in response to the events you identified in
Step 3.

Develop a list of these major chunks of behavior (that is, put a name to these states)
where time passes for your object.

The CustomerAccount spends its time doing the following:
B validating its credit card.

B Staying OnTrial while the customer maintains a positive balance and
pays their bills on time.

B Staying Established while the customer may have momentary
negative balances and stretch out the payment of bills.

B Renewing the customer’s account on a regular basis.
B Archiving all information associated with an account that is closed.
5. Order the list of states:

B |nitial state: Ask yourself if there is a state that must come first
before any others, such as Validating in the CustomerAccount
example.

B |ntermediate states: Look at the other states and see which ones
must come before or after other states. In the CustomerAccount
example, OnTrial comes after Validating and before Established.
Renewing comes after Established. Established comes after OnTrial
and before Archiving.

B rinal state: Check to see whether there is a state that must come
last, such as—Archiving in the CustomerAccount example.

6. Place your states in the diagram, ordering them from top (initial state) to bottom (final
state) as developed in Step 5.



10.

11.

12.

13.

Add the events identified in Step 3 as lines that connect the states.

Use arrowheads on the lines to indicate the directions of the transitions from one state
to another.

Determine when the object is removed from your system.

Ask yourself, What state your object must be in before you can delete it? What event
occurs to tell your object that it's time to go?

Our CustomerAccount must be Archiving before it can be deleted. When the account is
saved, then the account can be deleted from the system.

Place a final state on your diagram and show the transition that brings an object from
other states to this final state.

Show the final state as a large bull's eye symbol. Draw event transition arrows from all
the states where the object can be deleted (determined in Step 8) to the final state’s
bull’'s eye symbol.

A state diagram does not have to have a final state. So, you may not have to perform
Step 9 for your state diagram.

Abnormal events: After you have a basic state diagram for your object, think about the
times when things go wrong.

Ask yourself whether your object is notified, at some points in time, of any cancel, abort,
or error events. Add the states that result from these abnormal events and provide the
appropriate event transition. For example, while our CustomerAccount is OnTrial, the
account may fail and have to make the transition to the Canceling state. After it's
canceled, the account must move on to the Archiving state.

Step back from your diagram and check to make sure it makes sense.

This is the life cycle of your object. Verify that the object performs its behaviors in the
right order.

You use a state diagram for all the objects that belong to one class. So when you are building a
state diagram for a class, consider the behavior of all possible objects of that class.

illustrates a simple state diagram for the CustomerAccount object. The following steps will help
you trace through and understand the diagram:

1.

2.

We start off with a large dot known as the initial state.
When the open event happens, the CustomerAccount goes into the Validating state.
After the account is validated, then the object transitions to the OnTrial state.

At this point, if the passed event happens, the CustomerAccount becomes Established.
However, if instead the fail event happens the CustomerAccount goes into the Canceling
state.

If the CustomerAccount finds itself in the Established state, it can be renewed or archived.

Only when the renew event happens can the object then perform the Renewing
behavior.

The renewed event is the only event that makes the CustomerAccount transition out of
the Renewing state.

If the close event happens while the CustomerAccount is Renewing, then that event is



ignored. The CustomerAccount will not transition to another state; it will continue doing
the behavior of the Renewing state.

9. If the account is in the Established state and it receives the close event, the account
performs the behavior associated with the Archiving state.

10. If the object is in the Canceling state and it receives the canceled event then the account
will transition to the Archiving state and perform the archive behavior.

11. When the saved event occurs while the CustomerAccount is in the Archiving state, then
the_object moves to its final state. (The final state is shown as a bull's-eye at the bottom
of Eigure 16-1,.)
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Figure 16-1: Simple state diagram.

Exploring different types of states

The states you use for your objects come in several flavors—wait states, constraint-based states,
ongoing-process states, initial states, and final states. Earlier in this chapter, we told you about a couple of
especially important states—the initial state and final state, the starting and stopping points in an object’s life.

The other three important kinds of states are:

B \ait states: In these states, an object simply waits for an event to happen. The object

doesn’t do anything really important while it's waiting for something to happen. A credit-card
object (for example) waits until it's asked to either validate itself or handle a charge against
itself.

Constraint-based states: In these states, an object behaves in a certain way according to the
values of its own attributes—or according to the links it maintains with other objects. The
credit card is in the expired state when the value for its expired-date attribute is earlier than
today’s date.

Ongoing-process state: This type of state occurs when your object is performing some



behavior that is ongoing. The object leaves this state when some other significant event
occurs. Otherwise, the object will continue doing this ongoing process. The credit card
remains in the validating state until it's validated.

After your object has entered a particular state, it may perform some behavior that takes time. Such behaviors
are known as activities. In UML, you show an activity inside a state with the word do, followed by a slash (/),
which is in turn followed by the operation that denotes the behavior being done while in the state. For
example, when an instance of the CreditCard class goes into the Expired state, the card must notify the bank
that it has expired. The notation for this activity is do / notify(Bank).

Name your states by using either an adjective phrase or a verb phrase. If your state is constraint-based, give it
a name that describes the values for the required attribute and/or links. (Expired is just such a name—it
describes the value for the validDate attribute.) For states that represent ongoing processing, use a phrase that
has an “ing” verb in it. (Debiting and Validating describe ongoing processes for the credit card.)

Objects wait a lot. You will have objects that just wait around for some event to happen. After the event
occurs, the object makes a transition to a separate state, performs some important job, and then makes the
transition back to a state of waiting.

Transitioning from state to state

An event stimulates your object to make a transition from one state to another. When you show a transition,
you can also specify some details as part of the event:

B |hformation: Sometimes, when your object is notified of an event, you also have to pass
some information to the object as part of the event. You show this in UML by following the
name of the event with the information being passed (and enclosing the information in
parentheses).

For example, suppose a credit card is told it's time to make a charge to the card. At the
same time the card must be told the amount to charge. The notation would look like
charge(amount), as shown in Eigure 16-4.
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Figure 16-2: Object with three types of states.

B Actions: If you want your object to perform some very small operation when it receives an
event, you can show that procedure on the event’s transition line. Such a simple procedure
is called an action. We use actions for simple counting, resetting variables, initializing some
value, sending a message to another object, or performing a quick calculation. Use a slash
(/) after the event’s name and just before the action to indicate your procedure.

For example, suppose that when a credit card is checked to see whether it's valid, the card
must keep track of how many times it has been checked. The notation for this example of an
event/action pair looks like this:

valid / checkcount = checkcount + 1

B Guards: Aguard is used to check some condition when an event happens. If the event
happens and the condition is true, then the object transitions to the next state. However, if
the event happens and the condition isn’t true, then the object doesn’t make the transition.
Show guard conditions in square brackets on the respective event transition line right after
the event name.

When the credit card notifies the bank that it has expired, the bank notifies the card of its
status. If the status is renewed, the card goes back to a wait state. If the card status is
canceled, then the card makes the transition to its final state. The UML notation that
describes these two guard conditions looks like notified[renewed] and notified[canceled)].



Often your object sends an event to another object to notify it that some important moment
has arrived. The sending of events is treated just like any action that takes place during a
transition: You show the event’'s name followed by a slash (/), and then follow that with the
name of the class and the operation taking place in that class. For example, after the an
instance of the CreditCard class receives the event that tells it an amount is successfully
debited, the card must tell the Customer how much was debited. The UML notation for
sending this event looks like this: debited / Customer.debitNotify(amount).

Events take no time. Therefore actions trigged by events take no time.

You might be thinking, How can an event take no time when everything on a computer takes
at least a little time? Well, in practical terms, events do take a negligible amount of time. However, even if
events (and their corresponding actions) take measurable time on some clock somewhere, they are not
interruptible. No ongoing process or incoming event can occur that prevents these events/actions from
completing. If, at some lower scale of the system, interruptions (such as clock ticks or screen refreshes) are
going on, they are not noticeable, nor do they prevent the events/actions from completing.




Programming an Object’s Memory with State Attributes

Some of your objects have complex lifecycles. We use state diagrams like the one in to help us
understand an object’s life and what an object has to remember from one moment in its life to the next. The
customer-account objects that make up our running example in this chapter are not simple data structures
holding information about current customer balances. There are also rules they must obey to live life to the
fullest:

B When a customer first opens an account, the customer’s credit must be validated.

B After the account is validated, it is put on trial to see whether the customer always maintains
a positive balance and always pays their invoices within thirty days.

B After the trial period is over, the account is established and can be renewed every three
years.

B At some point, the customer account is archived—for example, when there is no activity in
the account for a period of five years.

B Money can't be withdrawn from the customer account while it's being validated. Money can
only be withdrawn when the account is in the trial period or when it's fully established.

Since the customer account is an object it can remember its current state and that is enough to help you
program for all these rules. For example, you can program the withdraw method of the object to work only if the
object has already been opened. This is easily done if you use an attribute to capture the current state of the
object and then your withdraw method check that state attribute to see whether it's set properly. We use the
following steps to give the CustomerAccount class memory of what it has done (using the Java programming
language):

1. Create several fixed attributes that represent each state of the class.

In this example, we need attributes representing the Validating, OnTrial, Established,
Renewing, and Archived states. Each attribute representing a state gets initialized with a
separate integer value.

2. Next we provide an attribute to capture the current state and another attribute to capture
the current balance of the account.

We use the following code to make this happen:

Public class CustomerAccount {
private int acclnitialized = 0;
private int accValidating = 1;
private int accOnTrial = 2;
private int accEstablished = 3;
private int accRenewing = 4;
private int accArchived = 5;
private int currentState = 0;
private int beginningBalance = 0;
private float currentBalance = acclnitialized;

3. Set the current state.

Some of the operations change the currentState. For instance, the open operation that
opens a customer account checks beforehand to make sure the currentState is set to its
initial value. (It makes sense to not let you open an account that is already open.) Then
the operation sets the currentState to the value of the attribute representing the




validating state. Now the operation can ask the customer’s credit card whether it's valid.
If everything checks out, we set the currentState by setting the current state to the value
of the accOnTrial attribute and the currentBalance of the account is set to the
beginningBalance.

Each operation that causes a change in state must set the currentState attribute to the
correct value. Why? So the object can remember what it's been doing. For example,
the following code for the open operation first checks the currentState.

public Boolean open(Currency beginningBalance) {
if (currentState == acclnitialized) then {
currentState = accValidating;  // validating
if (myCreditCard.valid = True) then {
currentState = accOnTrial;  // now on trial
currentBalance = beginningBalance;

231

If currentState is set to the value of accinitialized then the code changes the currentState to
the value of accVvalidating. Next the valid operation is invoked on an instance of the
CreditCard class—myCreditCard. If the valid operation returns True, then the currentState is
changed to the value of the attribute representing the OnTrial state and the
currentBalance is set to the value of the beginningBalance attribute.

Check current state.

Some of the operations can only execute if the object is in the correct state. You can
also check to be sure state-based business rules are followed. When (for example) the
withdraw operation is invoked on an instance of the CustomerAccount class, the operation
must check to see whether the object is in the OnTrial or the Established state. If so, then
the operation can reduce the currentBalance by the withdrawal amount. Given the rules
for CustomerAccount, this operation needs to check to see if the withdrawal amount
exceeds the current balance, which would yield a negative balance. If a negative
balance is achieved while the CustomerAccount is in the OnTrial state, the operation fails
and another object is notified of the failure.

The withdraw operation for CustomerAccount looks like the following code in the Java
programming language:
public Currency withdraw (Currency amount) {
if ((currentState == accOnTrial) or
(currentState == accEstablished)) then
currentBalance = currentBalance - amount;
if ((currentState == accOnTrial) and
(currentBalance < 0)) then {
onTrialManager.failure(this);
currentBalance = amount + currentBalance;
return currentBalance;}
else
return currentBalance;

B

This code first checks to see if the currentState is set to the attribute value representing
either the OnTrial or the Established state. If so, the code then deducts the withdrawal
amount from the currentBalance to come up with a new currentBalance. Next the code
checks to see if the state of the account is equal to the attribute value representing the
OnTrial state. If the currentBalance is less than zero, the failure operation of another
object—an instance of the TrialManager class called onTrialManager—is invoked. Next
the currentBalance is reset to the original amount. In other words, the customer account
balance remains unchanged and no currency is withdrawn from the account. The old
value for the balance of the account is returned. On the other hand if everything worked



out correctly, the account balance is changed and the new current balance is returned.

Now you know that your objects not only have a life, they also remember what they’ve done during their lives.
Your objects can get very complex.

T
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Creating State Diagrams from Scenarios

One other way to build your state diagrams is to check your sequence diagrams to see which events are
important to the more dynamic objects in your system. You see whether a sequence diagram shows one
object sending an event to another—and whether a second object, stimulated by that incoming event, must
make a transition from its present state to another state.

To illustrate the process of creating a state diagram from a sequence diagram, consider an example from the
retail air-filter order system. Order clerks interact with the order-entry system to review customer accounts.

illustrates a scenario interaction between Jim (an instance of Order Clerk), the account reviewer,
and myDB (an instance of the DatabaseAccessor class). You notice that we have inserted thin vertical oval
shapes into the diagram. These ovals are not part of UML. We placed them on the diagram to show you
where the AccountReviewer object is in some st incoming event causes the object to transition to a
new state. Each oval corresponds to a state in EiZure 16-4
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Figure 16-3: Sequence diagram for reviewing an account.
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Figure 16-4: A state diagram for the Account Reviewer clas.

You can use the following process to create a state diagram from a sequence diagram:

1. Look at your sequence diagram and choose objects for which you want to build a state
diagram.

Look for those objects that have a lot of events going into them. They have the most
state transitions. So, we have to diagram them in order to understand their life cycle.
For example instances of the AccountReviewer class receives a lot of events.

2. As always, start with placing an initial state in the upper left-hand corner of your new
state diagram.

3. Get things started by adding a wait state.

This state will wait for the first event of your sequence diagram to arrive. Draw a simple
transition line from the initial state to the wait state. You don’t have to name this
transition because it represents a completion transition. (A completi ition
happens automatically after a state completes its behavior. See Cha:ter 13 for more
information.)

4. Find incoming events.

Look at the object lifeline (the dashed line) on the sequence diagram of your chosen
object. Each event that comes into that object becomes an event transition in your state
diagram.

5. Locate an event pair, which consists of an incoming event and the next incoming event.

You look at the first and second events that come into your object. It doesn’t matter
where these events come from, whether from one or two other objects. In our example,
Jim the order clerk sends the review event to the account reviewer. The second
incoming event is customer(name).

6. Determine what your object is doing in response to the first incoming event.

Ask yourself, What is this object doing between the time it received the first event and
the time it receives the next incoming event? Think of a name that captures this
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behavior of the object at this time.

In our example using , the : AccountReviewer sends the customer event to Jim

: Order Clerk. Then the : AccountReviewer waits for Jim : Order Clerk to return the name of
the customer they are interested in reviewing. At about the same time, the :
AccountReviewer object is creating and instance of the DatabaseAccessor class called
myDB. We choose the name Wait for Customer Request because the : AccountReviewer is
waiting for a request to review a specific customer.

Place a new state on the diagram

Give it the name you came up with in Step 6. In our example, you would add the Wait for
Customer Request state to your diagram.

Draw a transition with the name of the first incoming event between your wait state and
the new state you just placed on the diagram.

In our example, you add a transition line between the Waiting state and the Wait for
Customer Request state. Then you give this transition the same name as the incoming
event: review.

Add transitions and states:

In this step, you perform Steps 5, 6, 7, and 8 for each pair of incoming events. You take
the second incoming event and pair it up with the third incoming event, assess the
state, draw the next state, and show the second incoming event name as the transition
between the previous state and the next state. The next pair of incoming events you
look at is customer(name) and found(Customer).

The account reviewer is looking up the customer matching the name that comes from
the database. It looks like the state is Finding Customer. The transition from Wait for
Customer Request to Finding Customer is named customer(name).

Consider the last transition.

Your object ends up in some state after the last incoming transition. That state is often
the final state (or the first wait state you placed in the diagram). Ask yourself, What
happens to my object’s life after the last incoming transition? If it's finished, then place a
transition that leads to a final state. If your object starts all over again, then draw a
transition that leads back to the first wait state. The account reviewer returns to its
original wait state to wait for a clerk to ask it to review another customer account.

BL&I.I&MLDjJ this procedure for converting a sequence diagram to a state diagram, we obtained the diagram in
Figure 16-

at each transition has the same name as an incoming event on the sequence diagram

(shown in Eigure 16-3). The state names indicate what the account reviewer is doing as a result of the

incoming event.

Sequence diagrams help you develop state diagrams for objects that have a lot of incoming

events.

You can start a state diagram based on one sequence diagram that contains our object of interest. Then you

should look at the oth

er scenarios that the object participates in, examine their sequence diagrams and

determine how our object behaves differently in each alternative sequence. Ask yourself the following
questions: Does the object receive different incoming events? Does it do different things? You can apply the
same process of creating new states when you see an incoming event pair, but be careful you don’t come up
with new names for existing states. You should do this until you've exhausted all the interesting scenarios that

include your object of

[Team 1 iR |

interest.
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Chapter 17: Interrupting the States by Hosting Events

Overview

In This Chapter
B Relating event transitions to class diagrams
B Structuring many events using generalization
B Using different types of events
B Ordering behavior with events
B Using transition icons instead of text

Your objects are constantly interrupted by other objects. Each interruption causes an object to stop what it's
doing, consider the interruption, and then do something as a result of the interruption. In UML, these
interruptions are called events. In this chapter we show you the ins and outs of using the different types of
events that your objects deal with. You will also see how events on your state diagrams relate to operations on
your class diagram. We explain a modeling technique to use when you have too many events. Since state
diagrams illustrate flow of control inside your objects, we show you the correct order of execution of event
actions and state activities.

V%4 UML 2 provides you with a new “transition” notation. Because this chapter focuses on the events that
interrupt your objects, we show you the new icons UML 2 has for diagramming all the parts of a
transition—events, guard conditions, and actions.




Making Use of Events

You draw state diagrams to understand the life cycle of an object. Each event received by one of your objects
causes the object to change state—to change its behavior in a major way. So you work with events to
accomplish the following:

B Develop operations for your classes: Events in your state diagram tell you when an object
represented by that state diagram must perform some state-based behavior. When an
object’s behavior (specified as an operation on the object’s class shown in a class diagram)
is called, then the object performs the operation-based behavior. Because events cause an
object to perform some behavior (state-based behavior) they make good names for
operations for the object’s class. For more on this see the section on “Operating your
events” later in this chapter.

B understand parameters for operations on a class: We make use of complex groupings of
events in a technique that parameterizes and simplifies the number of events and operations
you must contend with. Sometimes you can reduce the number of different operations in
your classes by adding parameters to an operation on a class. We use events on state
diagrams to help. For more on this see the section on “Objectifying your events” and
“Parameterizing event hierarchies” later in this chapter.

B Consider the sequence of behavior within an operation: You can use events of different
types to better control the behavior of your objects. For more on this see the section on
“Holding special events” later in this chapter.

Operating your events

The only way anything happens in an object-oriented system is to have groups of objects work together. To
get your system to perform a task, one object calls another object—which calls yet another and returns a
result. Then still another object sends a message to an object, and so on. Each of your objects does a small
piece of the overall task.

shows the state machine diagram for the objects of a simple CreditCard class. The life cycle of a
credit card starts at the large dot (initial state) and immediately moves to the Wait state. If the event
charge(amount) arrives, then the instance goes into the Debiting state. However, if the eventvalid arrives, then
the instance moves on to the Validating state. If the event expi its way to the object (instead of charge
or valid), then the object moves on to the Expired state. (See Eha:ter 14 for more details on state machine
diagrams and using events to transition from state to state within an object.)
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Figure 17-1: A state diagram for a credit card.

The event transitions (interruptions) that you place on a state diagram become operations performed on a
class when you represent them in a class diagram. For example, when you send the charge(amount) event to
an instance of the CreditCard class, that's the same thing as sending a message asking that some amount be
charged to a credit card.

RENENEId An event transition is the line that connects two states as a result of an event.

After you're satisfied with the state diagram for the objects of a class, then you can create operations in the
class corresponding to each event transition on the state diagram that defines those objects. We took I
of the event transitions in Eigure 17-1] and placed them as operations in the CreditCard class shown in ﬁ
. The following describes what we did:
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Figure 17-2: Class diagram showing events as operations of the CreditCard class.
|

Event valid: The valid event becomes valid(): Boolean. From the state diagram in

you see that along with the valid event is an action to add one to the checkout value and then



to invoke the verify operation on an instance of the Bank class. If the bank verifies that the
credit card number is okay, the operation is done. The method code for the valid operation
looks like this:

public Boolean valid () {
checkout = checkout + 1;
if (bank.verify(cardNumber)) then
return (true);
else
return(false);

}

B Event charge: The charge(amount) event becomes charge(amount : Currency): Boolean.
However, after the charge event happens, the credit card must debit some amount from the
bank and once debited, the owner of the card or customer must be notified. The method
code for the charge operation looks like the following:

public Boolean charge(Currency amount) {
if not canceled then
if(bank.debit(amount)) then {
Customer.debitNotify(amount);
return(true);

}

else
return(false);

}

B Event expire: The expire event becomes simply expire(). When the credit card is told to expire,
the Bank is notified. The Bank, in turn, notifies the card whether it's renewed or canceled as a
result of the expiration event. If the card is renewed, then the credit card goes back to its Wait
state to wait for more valid and charge events. If the card is canceled, then it goes to its final
state and is removed from the system. The method code for the expire operation looks like
the following:

public Boolean expire() {
String cardStatus;
cardStatus = bank.notify(expired, cardNumber);
If cardStatus == "renewed" then {
renewed = true;
canceled = false;}
else if cardStatus == "canceled" then
this.finalize // clean up for the java garbage /lcollector.

}

The code examples for the valid, charge, and expire operations represent just one way of designing
the CreditCard class. If we're dealing with asynchronous calls in a multithreaded environment, we could choose
to implement the code in any of several different ways.

Objectifying your events

Modelers often run into the situation of having an object that receives so many events, that it becomes hard for
you to get a handle on what is going on. For instance, consider the events that some relatively high-tech
air-filter machines must deal with. The machine is set to on, off, or standby. Meanwhile the fan has a service
limit. The air filter is notified when the fan has reached that time limit and needs replacement. A sensor tells
the air filter whether the airflow from the fan is normal or too slow. The owner of the air filter can select one of
several room sizes and fan speeds. The machine also has an ultraviolet light to kill germs—and that has a
service life too. The really fancy air filters have motion sensors that send events to indicate whether dust is in
motion in the room. Finally, the air filter has an air-quality sensor that sends events to the machine to help it
control how long it should be running. (Confused by all this sending? We are.)



UML provides you with a way to make sense of this confusion of events: You can treat your events like
classes and build a generalization (inheritance) hierarchy to organize your events. You see, events are really a
lot like classes. Events have attributes called parameters. Events also have associations, which relate the
event to the class that sends it—and to the class that receives it. When you treat an event like a class, you

use the «signal» stereotype.

and 17-4 show what is called an event hierarchy. To create an event hierarchy, treat each event
like a class—and give them the «signal» stereotype. (Be sure to consider all the different kinds of events being
sent to the AirFilter class.) To complete the process, follow these steps:

1. Group your related events and form a generalized event.

2. In the air-filter example, the on, off, and standby events become PowerOn, PowerOff and
PowerStandby classes, each of which is a specialization of the PowerEvent class. We
looked for other groupings and modeled them as FanSpeed, Airflow, MotionSensorEvent,
RoomSizeSettingEvent, AirQualitySensorEvent, and ServiceEvent classes.

3. Continue grouping the groups if necessary.

The MotionSensorEvent and the AirQualitySensorEvent are both kinds of SensorEvent
class. The FanSpeed and Airflow are both kinds of the more generic FanEvent class.

4. Group the most generic events under one class.
Finally, we grouped the most generic events under one class called AirfilterEvent.

Now you can use the diagrams in and 17-4 to see the structure of all those events. Seeing the
structure of all these events allows you to check whether any events are missing or out of place.
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Figure 17-3: The first half of the air-filter-event generalization.
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Converting events into classes is a form of reification, which is the technique of taking
something that isn’'t an object of some class (in this case, an event) and making it into one. Now that we've
reified some events, we can give them attributes, invoke their behavior, and even store them away in a
database for later use.

Parameterizing event hierarchies

Parameterization is another payoff you can get from generalizing events. You can reduce the number of
events by changing the lowest event classes in your generalization hierarchy into parameters that exist in the
more generic superclass. Use this technique when you want fewer events to deal with. Transforming events
into parameters in a superclass reduces their complexity, making them simpler and easier to program.

illustrates the results of using the following steps to parameterize your event hierarchies:

1. Identify the classes you want to turn into parameters.

First locate the leaf classes in your hierarchical tree of events. Leaf classes are the
classes at the very bottom of the hierarchy that have no subclasses below them. Select
all the leaf classes that can make up one superclass in your event hierarchy.

For example, Power owerStandby, and PowerOffEvent are leaves in the event
hierarchy shown in figure 17-3. Each of these classes is a subclass to the PowerEvent
superclass.




Identify the superclass.

Select the generalized superclass of the leaf classes selected in Step 1. (See
for more on superclasses.)

The superclass chosen is the PowerEvent class.
Create an enumeration class.

This is a class with the «enumeration» stereotype. Its attributes hold values of a
particular datatype used in some other class. In this case, your enumeration class holds
each leaf event as an attribute.

In the air-filter example, you would create a new class called PowerKind, give it the
«enumeration» stereotype, and give the class three attributes—on, standby,
off—corresponding to the three leaf classes chosen in Step 1 (which they now replace).

Add an attribute to the superclass.

Add an attribute to the superclass you chose in Step 2. This attribute’s datatype is that
of the enumeration class you created in Step 3.

In the air-filter example, you would add the power attribute to the PowerEvent class. The
attribute has an initial value of off, and the UML notation for the attribute looks like this:

- power : PowerKind = off
Add a set operation to the superclass.

Add an operation to set the value of the attribute you added in Step 4, placing it in the
same superclass.

In our example, add the setPower operation. The UML notation looks like this:
+ setPower(p : PowerKind)

Add multiple parameters.

You can have a superclass whose attributes include more than one parameter. Just
follow Steps 1 through 5, but place the attributes and operations in the superclass of
the superclass.

The FanEvent class has two subclasses FanSpeed and Airflow. These classes, in turn,
have subclasses that can be parameterized. The FanEvent class ends up with two
attributes fanSpeed and airFlow.

The event-generalization structures shown in and 17-4 can help convey an understanding of all
the events that effect one complex class such as an AirFilterUnit class. This generalization process helps you

events, Finally, to simplify the diagram, you change those event classes into parameters in a
shows the result of this process: an AirfilterEvent superclass with only four subclasses.
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Figure 17-5: Parameterizing some air-filter events.

If your classes must handle a lot of events, another common technique for implementing th
_iure 17-2),

specify an operation such as handle(event). Instead of having one operation for each event (as in
you can have one operation that handles all the different events. For the Airfilter class, for example, you can
provide the operation handle(event:AirfilterEvent).

Holding special events

An event is a moment in time when something of importance happens. Events stimulate an
object to make a transition from one state (of performing some behavior) to another state (with different
behavior). When the new state is attained, the transition caused by the event is complete; event transitions are
what happens between states.

Sometimes you want your events to occur during an object’s state. These special events are shown inside the
rounded rectangle that represents a state:

B Entry events: Every time your object changes state and starts a state, an entry event is
generated. This is the moment in time when your object “enters” the state before it starts

performing the behavior of that state.
o

Entry actions: The action associated with each entry event—the entry
action—is performed as soon as your object enters the state that

includes this action. Entry actions are small chunks of behavior (li
normal actions); what's different is when they occur. (See [Chapter 1§ for




more information on actions.)

O Notation: Inside the rounded rectangle that represents a state, place the
word entry followed by a slash (/) followed by the entry action.

B Exit events: Every time your object receives an external event and must change state, an
exit event is generated. This is the moment when your object exits its current state, before it
performs any actions associated with the external event that made it exit.

O  Exit actions: The action associated with each exit event—the exit
action—is performed just before your object exits the state that
generated the action in response to the external event.

O Notation: Inside the rounded rectangle that represents a state, place the
word exit, followed by a slash (/), followed by the exit action.

B |nternal events: If you have an event-and-action pair that occurs inside a state, you may
have an internal event.

O nNo entry or exit actions: This type of event does not cause the object to
exit the existing state. Nor does it cause a reentry into the existing state
(which would trigger an entry action).

O Notation: Inside the rounded rectangle that represents a state, place the
name of the internal event, followed by a slash (/) followed by the action
that your object should perform if the internal event occurs.

You can model queries as operations (requests for information from your object) that
generate internal events.

B Deferred events: Sometimes you want to defer event actions—keep them from occurring
until later. Such deferred events are recognizable as events that can occur while an object is
in a particular state, but the execution of any associated action is specifically blocked for
now. The notation for this type of event is to place the name of the deferred event followed
by a slash (/) followed by the word defer inside the rounded rectangle that represents a state.

is a partial state diagram from the customer-account example that we used at the beginning of this
chapter. The figure illustrates entry, exit, internal, and deferred events. On entry to the Validating state, an
instance of CustomerAccount performs the entry action by sending the valid event to a linked instance
(theCreditCard) of the CreditCard class. Upon exit from the Validating state, an instance of CustomerAccount
performs the exit action by setting its own internal attribute, dateOpened, to today’s date. If the deferred event
statement should be received while an instance of the CustomerAccount class is performing the do activity (in
this case, wait for validation), then the statement event is deferred to another state (OnTrial) that does not defer
the statement event. The OnTrial state handles three internal events: statement, withdraw and deposit.
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Figure 17-6: Events inside states.

Other events you can use in special situations to model events between states include these:

B Completion transition: A completion event is generated when all entry, internal, and do
behaviors within the state are complete. If the state is connected to another state by a
transition that has no label, then the object automatically makes a transition to the state that
comes after executing any exit action. Completion transitions used to be known as automatic
transitions in earlier versions of UML.

B The when event: Use this kind of time event when your object must be notified of a precise
moment in time. The notation for a when event is the word when, followed by the required
absolute time condition (placed in parentheses).

B The after event: Use this kind of time event when your object must be notified of a relative
moment in time. The after event begins after your object enters a specified state. The
notation for an after event is the word after, followed by the required relative time condition
(placed in parentheses).

shows you examples of a when event, a completion transition, and an after event. Here’s how they
play out:
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Figure 17-7: Other special events outside states.

B The after event: Six months after an instance of the CustomerAccount class enters the OnTrial
state, the instance stops any do activities and makes a transition to the Established state.

B The when event: When the renewDate attribute of an instance of the CustomerAccount class is
equal to today’s date, and the instance is in the Established state, then the instance stops
any do activities and makes a transition to the Renewing state.

B The completion transition: After the renewing behavior (not shown) is finished, an instance
of CustomerAccount follows the completion transition and automatically goes back to the
Established state.

[« erevious s o



Indicating Order of Execution on a Diagram

You use state diagrams to indicate flow of control. As you develop state diagrams, you indicate what
sequence of behavior is allowed for an object. When an event arrives at your object, the state diagram shows
just what happens next.

Be careful how you put your state diagrams together. You want to make sure that operations
happen in the right order. To help you determine the sequence of behavior, pay attention to the flow of control
specified by the meaning of UML'’s state-diagram notation.

shows a small piece of the CustomerAccount state diagram. If an instance of the CustomerAccount is
in the Idle state, and the open event is received by the instance, then the following sequence of actions occurs:
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Figure 17-8: Flow of control in a state diagram.

1. An action on the incoming event: display(“validating”).
2. An entry action: entry/theCreditCard.valid.
3. The actions of all deferred events: none for the Validating state.

Note, however, that when the object makes the transition to the Cancel state, the
statement event may be handled then—provided it arrived during the Validating state.

4. A do activity(the main behavior of the state): do/wait for validation.
5. Internal actions: customer / return(customer).

The internal event interrupts the do activity and performs its action. Then control returns
to allow the do activity to pick up right where it left off.

6. An exitaction: exit/dateOpened := Today.

The exit action is performed only after the object receives the notVvalid event, causing the
object to make the transition out of the Validating state.



7. Action on the outgoing event: display(“Invalid Credit Card”).
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Showing Transitions as Icons

Sometimes you want to emphasize the transitions of your state diagrams instead of the states. UML

provides you with a notation that gives you a transition-oriented view of state diagrams. Instead of showing an
event in text, you can use special icons. Each part of the event text has its own icon:

B Signal receipt: The name of the incoming event and its attributes is known as the signal
received by your object. A signal-receipt icon looks like a small flag with the name of the

event and its attributes inside. Some people describe the signal-receipt icon as a rectangle
with a triangular notch in its side (either side will do).
B signal sending: If your object must send an event off to another instance as a result of

(again, either side will do).

receiving the incoming event, then show the sending of the event with a signal-sending icon.
box. Others might describe it as a rectangle with a triangular point coming out of one side

This icon looks like a boxy arrow with the signal-sending event information shown inside the
B Action sequence: The action part of the incoming event is shown with an action-sequence
icon (a box with the action text shown inside).

i:gl*-nl:u.-q:r.—pl

An example of this transition-oriented notation is shown in . Instances of the CustomerAccount class
have the following event that causes a transition from the OnTrial to the Cancel state:
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Figure 17-9: An example of UML's transition-oriented notation.

nonpayment(Invoice) [Invoice.date < Today - 30 days] /

customer.overDue(Invoice); display('Late Payment")



Use a choice-pseudostate icon to handle the guard condition [Invoice.date < Today - 30 days]. The
choice-pseudostate icon is shown as a large diamond with the decisions shown in square brackets. The

decisions are tested and the object makes the transition to the next ico

(You can find more about this and other pseudostates in the Chapter 1§.)

depending on which decision is true.
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18: Avoiding States of Confusion

Avoiding overly complex state diagrams

Handling concurrent states

Using a shorthand notation to reduce diagram complexity
Working with protocol state machines

Steering clear of data-flow diagrams

S ome objects are really dynamic. They are expected to perform many different behaviors at many different
times. The rules for what behavior your objects must execute—and just when to execute that behavior—can
get really complex. To help you avoid your own state of confusion, this chapter shows you how to build
complex state diagrams that really do the job—and can help maintain your sanity.




Simplifying Large State Diagrams

Creating a state diagram for an object with simple dynamics is easy. You usually have an initial state, a wait
state, a few important event transitions to states with important behavior, and a final state. But, with more
dynamic objects you may notice the following characteristics:

B The same entry, exit, and internal events are repeated in several different states.

B The same event transition is coming from several different states—but all going to the same
state.

B A couple of different do activities can happen at the same time but completely independent
of each other.

B There are very complex activities within a state that also depend on important events.

B |nterruptions cause your object to stop what it's doing. Then the interruption must cause a
complex method to execute without further interruption. And after the interruption is handled,
allow the object to pick up with what it was doing before the interruption.

Don’t be surprised if your state diagram tends to sprout an awful lot of lines, repeated event transitions, and
many states that all do the same thing. Fortunately, you don’t have to have all this repetition. You can solve
these problems by employing the following techniques:

B Generalize your states: Arranging states to emphasize their commonality of events and
behaviors helps simplify the diagram.

B Build submachines: Creating separate mini-state diagrams, which you can reuse in your
state diagrams, makes your diagrams easier to understand and easier to maintain.

B ytilize pseudostates: Using a special shorthand notation reduces the number of states and
transitions you have to depict for certain situations.

B show concurrency: lllustrating concurrency—independent behavior—within an object by
establishing separate regions inside the same state makes for a more compact diagram.
(Some of your objects can walk and chew gum at the same time.)

Generalizing states

Each of your states has at least one activity that the object does when the object is in that state. An activity is
some major behavior performed by an object that takes time. If this activity involves a complex sequence of
behavior you can show that activity with a state diagram inside the larger state. The states shown within a
state are known as substates. The “superstate” containing the substate is also known as the generalized state.
When you have to describe an activity within a state as a state diagram, simply expand the surrounding state
and place your substates inside. This type of UML diagram looks like someone’s put a state diagram inside
another state diagram.

shows an example of a simple state (Archiving) and its primary behavior (do / saveAccountData). If
an instance of CustomerAccount is in the Established state and the close event occurs, then the object makes a
transition to the Archiving state. Another way into the Archiving state is from the Canceling state when the
canceled event occurs. (Note that these two distinct transitions have one destination.) Once in the Archiving
state, the account data must be saved. When the saved event occurs, the object makes a transition out of
Archiving and into the final state.
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Figure 18-1: Simple archiving state.

The process for saving account data is complex and involves some important events. To archive an account
requires that all transaction processing come to a halt, then the account gets locked, then officially closed, and
finally all the data associated with the account gets backed up. You can show the detailed sequences for the
Archiving behavior as substates within the Archiving superstate.

demonstrates what this process looks like:
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Figure 18-2: States within states.

1. Aninstance of CustomerAccount, upon entering the Archiving state, makes an automatic
transition from the initial state (the large black dot) to the Locking state.

2. As the object enters the Locking state, the entry action requestLock takes place.
Transactions are halted and the object waits for the locked event to occur.

3. Upon receiving the locked event, the object makes a transition to the Closing state
where it formally closes the account so no more transactions can take place on this
account.



4. When the account is shut down and the object receives the closed event, the object
enters the Backup state.

In the Backup state, the object must log in to the database, and then insert account data
into the database. When there is no more account data to insert, the object receives the
lastTransaction event.

5. The lastTransaction event stimulates the object to exit the Backup state; the object
performs the exit action and logs out of the database.

6. While the object makes its transition from the Backup state within the Archiving state, the
saved event is sent to the object playing the role of self. (In effect, the object sends itself
the saved event.)

7. n the saved event is received at the higher-level state (as diagrammed in

{ , the whole object to makes the transition to the final state.

Look out for repeating substates. Sometimes an object must do the same thing at several different
points in its life. You could end up creating the same substate diagram for several different superstates. If this
starts to happen to you, use submachines.

Using submachines

Submachines are really mini state diagrams you can include in other state diagrams. This ensures that you
don't have to repeat yourself. For example, each instance of the CustomerAccount class has several
states—OnTrial, Established, Canceling, and Renewing—that must handle the statement event. When the
statement event occurs, the CustomerAccount object must perform generateStatement.

However, generateStatement isn’t a simple action. Generating a statement is dependent on customer
information, transaction data, the day of the year, and whether there are any overdue invoices. To address this
issue, you could create a substate diagram for generateStatement and place it inside the OnTrial, Established,
Canceling, and Renewing states. However it's more efficient to create a submachine for generating a statement,
and then include it in those four states.

Follow this process to make use of submachines:

1. Recognize the need for a submachine.
You may want to create a submachine if either of the following is true:

B You are repeatedly using the same group of substates inside
several different superstates within the same object’s state diagram.

B You see a mini state diagram within the different state diagrams
belonging to objects of separate classes.

In our example, we recognize that a submachine is warranted because the states for
generating a statement are reused in the OnTrial, Established, Canceling and Renewing
states of CustomerAccount objects.

2. Build a submachine.

Pull out the common mini state diagram and create a separate state diagram. This state
diagram has one superstate with the common substates inside it. You have to give the
superstate a name.

We name chine’s superstate GenerateStatementSM for the CustomerAccount
example. Eigure 18-3 shows the UML notation for the submachine

GenerateStatementSM. The submachine contains the WaitForCustomer,

ObtainingTransactions, Summarizing, TransactionFormating, and GenerateOverDueNotice



3.

substates. Every time you include the GenerateStatementSM in other states, the exact
sequence for generating statements based on customer information, the day of the year

and checking for overdue invoices is performed.
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Figure 18-3: The Generate Statement submachine.

Include the submachine.

Now that you have a submachine you can use it wherever you need it. This is done with
a special include statement. In the state that has the submachine, place the word include
followed by a slash (/) followed by the name of the included submachine.

shows how we used the GenerateStatmentSM within the Canceling state of a
CustomerAccount instance. We created a substate, Wait for Cancel, so the object can
wait for the account to be canceled. If while it's waiting, a statement event should occur
then the object transitions to the HandleStatement state. Because it “includes” a

submachine, the GenerateStatementSM submachine is executed.
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Figure 18-4: Including a submachine.

When the GenerateStatementSM completes at its final state, the object will automatically
transition back to the Wait for Cancel state.

jifs] You use submachines to describe common “event/action” sequences such as handling errors, providing
help, reading data and writing data.

Inheriting events in substates

When you create substates within a superstate, your substates inherit flow of control from the superstate. An
event that stimulates your object to exit a superstate also causes your object to exit any substate it may be in.
If you have a transition that goes directly to a substate from outside the superstate, then the entry actions are
executed in sequence from the outer most superstate to the inner most substate. The opposite is true for
exiting a substate to another state outside an enclosing superstate. The object executes any exit actions in
sequence from the inner most substate to the outer most superstate. Any internal events on superstates are
inherited by the substates. They will interrupt the current substate.

If you're an object-oriented programmer, this may sound familiar. This is parallel to how “new” operations are
done when you create an instance of a subclass. First the new operation of the superclass is performed,
followed by the new operation of the subclass. Your object performs the destructor operation of the subclass
and then the destructor operation of the superclass.

shows a piece of the state diagram that describes instances of the CustomerAccount class. In this
diagram, we have included the OnTrial, Established, and Renewing states as substates within the
ManageTransactions superstate. When the object receives the validated event, it transitions directly to the
OnTrial state. First the entry action TransactionManager.notify(this) is executed and then the entry action
accountStatus := OK is executed because the entry actions are inherited from outermost to innermost actions.

also uses flow-of-control inheritance to reduce the complexity of the diagram. Instead of having
individual transitions from OnTrial to Canceling, from Established to Canceling, and from Renewing to Canceling,
you need only one transition. The ManageTransactions superstate has such a single transition—cancel—and it
goes straight to the Canceling state. All substates inherit this same transition. Thus, when the object receives
the cancel event—no matter what substate it occupies within ManageTransactions—it makes the transition to
the Canceling state.
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Figure 18-5: Inheriting events.

If you refer to , you can see the OnTrial state and the Established state, both with the deposit and
withdrawal internal events. If you use flow-of-control inheritance, you only have to show them once—as internal

events in the superclass. (Because you cannot make a deposit or withdrawal when the account is being
renewed, we had to “defer” those operations in the Renewal state.)

Utilizing pseudostates and saving history

As you build more complex state diagrams, you can make use of some shorthand notation we call
pseudostates that provide you with common ways to hook transitions together. [Chapter 1§ introduces a couple
of pseudostates —the initial state and the final state. The initial state is indicated on a diagram; its large dot and
transition to some other state serve as shorthand for Start here when you enter this state diagram. It's simpler
than having a regular rounded rectangle represent a state with a name like Please start here (you'd have to get
everyone who reads your state diagrams to know that the Please start here state where you always start your
state diagrams). With more complex state diagrams you have to connect up many transitions to form complex
paths through the different states in your objects. To help you, UML provides pseudostates for connecting

these transitions.

Most of the time your objects are happy to be interrupted by some important event. The event stimulates your
object to move on to some other state to do some other activity, happy never to return to its previous state.
While a CustomerAccount object is in the ManageTransations state, it's either in the OnTrial, Established, or



Renewal substates. But, you have to interrupt the object so it can produce a statement. When the statement is
produced, you have to get your object back to the substate it was in before the interruption. That means
saving the history of what the object was doing so you can get back to it.

You save the history of a state so you can get back to it later with the history pseudostate. Actually there are
two kinds of history pseudostates:

B Shallow history: UML shows this pseudostate with a capital H inside a small circle. The
shallow history pseudostate captures information about the current state but not any of its
substates.

B Deep history: When you want to capture information about the current state and all its
substates, then you use the deep history pseudostate. This is shown as a capital H followed
by an asterisk (*) inside a small circle.

B Your history pseudostate has a transition from the state that handles the important
interruption to the history pseudostate. You can also include a transition from the history
pseudostate to the default state within the superstate: Any incoming object that has never
been in the superstate before makes an automatic transition to the default state. As an
example, shows you how to handle the statement event when it happens during
the ManageTransactions state.

Here's the play-by-play sequence shown in :
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Figure 18-6: Using the history pseudo-state.

1.
A statement event stimulates the object into a transition from the ManageTransactions



state to the Handle Statement state.
2. When the Handle Statement state is finished, control passes to the history pseudostate.

3. From there, the object continues in whatever state it occupied before the statement
event interrupted.

4. If no substate of ManageTransactions was active at the time of the interrupt, then the
default state pointed to by the history pseudostate (OnTrial) is activated.

Use internal events to handle simple interruptions to your object’'s behavior. These events occur
hile an object is doing some activity within a state—and they don’t cause the object to exit that state. (See
Chapter 17 for more information on internal events.)




Handling Concurrency with States

Some of your objects can (in effect) walk and chew gum at the same time. Think of the objects you have that
are aggregations: They include the whole object (the aggregate), and all the individual part objects contained
within the whole. The parts of your aggregate work independently of each other, a situation called
concurrency. So you need a way to show that some states in your objects are concurrent—they don’t depend
on each other, and can (but don’t have to) happen at the same time.

Concurrent objects have causally independent behavior; in object-oriented systems, concurrent
doesn’t mean “simultaneous.” Concurrent independent behavior among concurrent objects can be
simultaneous—but it doesn’t have to be.

Diagramming concurrent states

As an illustrative example, consider an air-filter machine. It's composed of several parts, among them are the
controller ir-filter machine, the ultraviolet lamp, the filter to clean air, and the fan to move air through
the filter. Eigure 18-1 illustrates this aggregation relationship between the AirFilterMachine class and its parts.
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Figure 18-7: Air-filter machine aggregation.

The diamond shape in represents aggregation. If the diamond isat
nhater 3

represents the stronger form of aggregation known as composition. For more details see

When you want to show the concurrent states for the class playi le of the whole in an
aggregation, just show a state diagram for every part of the whole. figure 18-§, for example, combines the

state diagrams for the AirFilterController, the Fan, the Filter, and the UVLamp. The state of one instance of
AirFilterMachine is a combination of current states—one for each of its parts.

You can also think of an object as having the state of being itself (as an instance of its class).
shows the states of the object inside a superstate. Thus you see the superstate AirFilterController containing
Off, On, and Standby substates.
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Figure 18-8: Composite states for the air-filter machine.

Notice that the superstates in have little tabs attached to them—that’s just another minor variation
on UML state-diagram notation: the name of a state in a small box attached to the top of the state.

You can also show concurrent states within an object. In the example of the air-filter machine, concurrent
states across objects are all part of one aggregation. But some states have concurrency—independent
behavior—within themselves. The On state for the AirFilterController (for example) is more complex that you
might first realize. When you turn on the air-filter machine, you're telling an instance of AirFilterController to
perform the following tasks, all at the same time:

B Check sensors: Keep an eye on all the sensors to make sure they’re working properly. If a
sensor isn’t working, go into a service mode.

B vonitor air quality: Check the air quality through the air quality sensor. When the air quality
is less than the desired level, increase the fan speed. When the air filter achieves the right
level of air quality, decrease the fan speed and return to simply monitoring air quality.

Monitor motion: Using a sensor, check for motion. If there is motion (such as a person



walking by), go into cleaning mode: increase the fan speed and turn on the ultraviolet lamp.
When there is no motion (or a certain amount of time has passed), return to simply sensing
motion.

The AirFilterController must perform each of these tasks when it's in the on state and it must perform them
independent of each other. To show concurrency within a state, divide the state into regions. Each region is
separated from the others by a dashed line. a mini state diagram is placed into each region showing the
concurrent behavior. figure 18-9 contains the concurrent states for the AirFilterController's On state. To keep
this state diagram simple, we have not shown you the substates of the CleaningAir, Servicing and Cleaning
states. (Details for the CleaningAir substate are discussed in the section “Using pseudostates with concurrent
substates” later in this chapter.)
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Figure 18-9: Concurrent states.

Using pseudostates with concurrent substates

A couple of handy pseudostates can help you construct states that have concurrent substates:

B Fork: The fork pseudostate enables you to take a single event transition and split it into
several parallel control paths.

B j0in: Thejoin pseudostate merges multiple transition paths into one transition.



The UML notation for a
coming in or going out.

pseudostate (whether a fork or a join) is a short, thick line that shows transitions
shows an example of how to use the fork and join pseudostates.
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Figure 18-10: Using fork and join pseudostates to manage complex control paths.

1.

If the AirFilterController is in the CheckingAir state and the when(quality < selected) time
comes, then the object makes a transition to the CleaningAir state.

In the CleaningAir state, the fork pseudostate (the thick line at the left of the diagram)
splits the just-completed when transition into two parallel control paths.

Both control paths lead to the HandleEquipment substate.

HandleEquipment has two concurrent regions, to which control flows as needed:
B |n one region, the HandleFan state is executed.
B |n the other region, the HandleLamp state is executed.
B HandleFan and HandleLamp are independent of each other.

At this point, while control is in the HandleEquipment region, the object receives the next
event:

B |f the increased event is received, then the object leaves the
HandleFan state and makes a transition to the join pseudostate (the
thick line at the right of the diagram).

B |f the on event is received, then the object leaves the HandleLamp
state and makes a transition to the join pseudostate.



5. The join pseudostate makes no transition to the Wait for better Air Quality state until the
object receives both the increased and on events.

These two events may arrive in any order. The object simply waits until both arrive
before moving on.

Team LiB m HEXT F



Building Protocol State Machines

When you want to show the sequence of events an object reacts to—and the resulting behavior—you
use the UML notation that creates behavioral state diagrams (also known as machines): Such state diagrams
have event/action pairs, entry actions, exit actions, and do activities. Most of your state diagrams use these
features; in effect, they are behavioral state machines.

Sometimes, however, you just want to show a specified sequence of events that your object responds to—and
when it can respond—without having to show its behavior. Such a specified sequence is called an event
protocol. In UML 2, you can show event protocols by diagramming protocol state machines. These differ from
behavioral state machines and have special uses.

Normally we recommend using regular state diagrams to show internal sequences of behavior for all objects of
a class. Sometimes, however, you want to show a complex protocol (set of rules governing communication)
when using an interface for a class. For example, when you are designing classes that access a database for
your application you need to use common operations like open, close and query a database. But, these
operations must be called in the right order. You cannot query the database before you open it.

One solution to designing a simple database access class is to develop a DatabaseAccessor class with a
DBaccess interface as shown in ffigure 18-11]. But, the DBaccess interface has a complex protocol that governs
its use because of the rules governing communication between any other object and the DatabaseAccessor
class implementing the DBaccess interface. To use the interface properly, you have to open the database and
then set up a query. You can put these rules in a state diagram to indicate the protocol that must be followed
when using the interface.
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Figure 18-11: Class diagram with DBaccess interface.

Regular state diagrams don't help you with interfaces because interfaces don’t describe behavior
implementation they just declare what operations the class must perform. It's up to the class to specify the
implementation of an interface. On the other hand a protocol state machine enables you to declare what
operations can happen and the order they can happen without having to say anything about behavior
implementation.

shows the DBaccess interface attached to the DatabaseAccessor class; the DatabaseAccessor class
must conform to the operatlon sequence (that is, the protocol) of the DBaccess interface: The open, close, query,
fetch, cancel, create, and operations must be implemented in the order specified by the DBaccess interface’s

protocol (shown in
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Figure 18-12: DBaccessor protocol state machine.

You draw a protocol state machine in much the same way you draw any other state machine. Remember,
however, to follow a few special rules:

B States can have names but can't show entry actions, exit actions, internal actions, or do
activities.

B Transitions show operations but not actions or send events (as regular state diagrams can).

B Transitions can have preconditions and postconditions shown in square brackets [, as in the
following example:

[queryStatement <> null] query / [comArea set]

O A precondition states what must be true before the object can transition
from one state to another. In this example, when an object that conforms
to the DBaccessor interface receives the query operation, the
queryStatement attribute is checked to see whether it's null. If the object is
in the Opened state, and the queryStatement isn’t null then the object
transitions to the Queried state.

A postcondition states what must be true once the object completes its
transition and is now in a new state. In this example, when an object that



conforms to the DBaccessor interface makes a successful transition to
the Queried state, that means the postcondition must now be true—the
comArea is set.

Avoiding data-flow diagrams

Many developers are used to thinking of the flow of data moving from function to function—so when
they try to draw a state diagram, what they get is actually a good old-fashioned data-flow diagram:
They draw lines between states that show data flowing from one to another. But a state is hot some
function that executes—and a data-flow diagram is not a state diagram. A data-flow diagram in
disguise doesn't help you think of the life cycle of your objects.

To avoid this misuse of state diagrams, you have to be aware of two kinds of states:

B Do-forever state: Left to itself, this type of state performs its activity forever. It only
stops doing its behavior when an event interrupts it, causing a transition to another
state. The WaitForCustomer state, for example, is willing to wait forever. Only when it
receives the customer event will the object make a transition to the
ObtainingTransactions state.

B Dpo.until states: This type of state performs its activity until the activity is complete;
then it makes an automatic transition to another state. You can easily find do-until
states by finding transitions that have no event on the line-with-an-arrow that links
pairs of states. The GenerateOverDueNotice state, for example, simply generates a
notice and then automatically makes the transition to a final state. The
GenerateOverDue-Notice does not have to wait for an event to cause a transition.

You can check your state diagram to see what you're building. The key is the proper
checking of how many do-forever and do-until states exist in your diagram:

1. Count the number of do-forever states.
These are the real stuff of state diagrams.
2. Count the number of do-until states.

Look for those automatic transitions without event names; they’re a dead
giveaway.

3. Evaluate whether the diagram you're building is really a state diagram.

If the majority of states in your state diagram (around 70% or more) are do-until
states, you probably have a data-flow diagram. On the other hand, if the
majority of states in your diagram are do-forever states, then you have a solid,
flow-of- control state diagram.

When you find your state diagram is really a data-flow-type diagram, then
consider using an activity diagram instead.

B yvou draw your protocol state machine as a group of substates within one large frame, like
the frames for sequence diagrams we show you in .

B You must name the protocol state machine as such; place the keyword protocol in curly
brackets {} next to the name.

The diagram in shows a protocol state machine for the DBaccessor interface. Any class
conforming to the DBaccess interface must implement the protocol state machine. You can show the



implementation of the protocol state machine as a regular state machine with all the actions and activity
behaviors thrown in. That way it's clear to other developers how you will implement the protocol for a specific
class in your design.

State diagrams aren’t meant to show the flow of data from one process step to another. Instead,
they’re supposed to show where the flow of control goes when some behavior happens. Don't let your state
diagram mutate into a data-flow diagram. We've included a handy sidebar to help you hold the line.




Part VI. Modeling the System’s Architecture
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In this part . ..

In the old days, when life was simple, you worried about software applications that ran on one computer.
Today, your systems and software are far more complex. Your software is loaded on a server machine but run
on a client machine. You may have multiple servers — each performing an important task in support of the
whole system. Your data resides everywhere. Your software must account for network outages and system
crashes. The life of a developer — your life — is not simple anymore.
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This part helps you rein in your complex systems by providing you with proven system-design steps. We show
you how to use UML to explore different architectures and document your design decisions. You want
maintainable, flexible, and modular systems and software. We show you the technigues that we use to reach
those goals — assembling components, decomposing systems, applying architecture patterns, and realizing
subsystems — when we're faced with designing today’s complex applications.




Chapter

Overview

In This Chapter

19: Deploying the System’s Components

Stepping through a system’s design
Considering design priorities

Breaking your system into subsystems
Sorting logical and physical system diagrams
Getting componentized

Deploying hardware configurations

Showing off artifacts

So you know what you want to build, and you've got some requirements for your system, but there is just one
little problem: Your system is spread out across several different computers and you must build pieces of
software to run on each platform. You have to figure out a design for this complex system by thinking about
what software goes on which piece of hardware. But there are so many choices. Ah, for the good old days
when life was simple and our systems were applications that ran on a single user’'s computer.

When you build today’s complex (dare we say enterprise-wide?) systems, you need a way to step back from
the details and develop an overall strategy for how your system and its software application(s) are put
together. There comes a time when you have to look at the big picture and describe how your system works.
This chapter describes the steps for designing large systems and describe the UML diagrams you use to
define your system. We help you get a handle on describing the relationships between the hardware and the
software components that make up your system.




Defining Your System

Once you have some requirements, it's a good idea to start describing how your system is going to work.
Gone are the days of simple applications that work on one computer. These days you're likelier to build
applications that are split across many different computers. Take, for example, a hotel reservation system that
works over the World Wide Web. In our travels, we often use a Web browser to access a hotel reservation
system. We look for room availability, make the reservation and specify how we’ll pay for the room. These
reservation systems include our computer, its Web browser, an http Web server, server-side programs, the
hotel’s own reservation system, a database management system, and access to a credit card authorization
system. In the face of this system complexity, you need a way to come up with the right design—and a way to
describe that design using UML.

During design, we recommend you think about designing the total system first before diving into the
details. When you build complex applications, make some high-level decisions before you focus on designing
individual classes. By making decisions about architecture, hardware, networking, software interfaces,
components, and databases, you limit the number of possible designs. By looking at the big picture first, you
make sure your requirements are handled—and you end up adding classes that your users need, but could
never tell you they need. Once you have your system organized and you know you have all the big pieces,
then you can focus on the details of designing your classes.

The number of potential designs for the hotel reservation system is almost limitless. Just think of the many
possible technologies, network configurations, hardware platforms, class definitions, programming languages,
vendor software, middleware techniques, remote communications protocols, and database techniques you
could use. (Stop! The room is spinning.) Let’s consider the big picture first to “get our arms around” this
system.

The process for designing the big picture involves the following steps and considerations:

1. Consider the design priorities.

Of course you want to build a system that meets the needs of your users. But, there are
other competing factors you must consider in your design, such as the following:

B runctional requirements: Each use case represents requi
nctionality of your system. (For more on use cases see [Chapter

.) Some use cases may be more important than others, and given
your budget and schedule you may have to choose which use
cases to implement and which to leave for another day. Perhaps the
first version of the hotel reservation system implements the basics:
making and canceling reservations. The next version will handle
marketing features such as surveys and upgrading reservations with
earned points.

B rexibility: You can design your system to be modular. That way
when users change their mind (never happens), your design is easy
to change. However, the more flexible you make your design, the
longer it takes to design—and the more it will cost to build. You
could design the system to handle reservations for
anything—trucks, videotapes, crash dummies, or theater
tickets—not just rooms. But if you do so, don't be surprised if it
takes longer to develop the complete reservation system.

The “ilities”: Really great designs consider scalability, reliability, and
availability to name a few. A design for the hotel reservation system




that handles one hotel in version one and can be expanded to
handle a whole chain of hotels—without major design changes—is a
scalable design. If your design consistently makes and cancels
reservations—no matter how may users are connected—then it's
considered a reliable design. If you decide to make the reservation
system available 24-7, you must design in enough redundancy to
make sure the system stays up even in the event of a failure.

B performance: Your chosen design has an impact on system speed.
If it's not fast enough, users waste time waiting. If the system is way
too fast, you probably spent more money than necessary to develop
it. To design the hotel reservation system, we have to ask, How fast
is fast enough?

B Cost: Most, but not all, systems that we design have a budget. The
design must not cost more than what the stakeholder is willing to
pay for the system. For $100 million, we could build a fancy, fast,
flexible, modular, scalable reservation system. But, the return on
investment for that system would be a long time coming.

B schedule: Like cost, schedule is a factor in our designs. Usually,
market forces such as competition require that a system be
designed and built by some date. Otherwise the competition wins
with a product that gets market share. Building a hotel reservation
system should not take so long that the company looses potential
guests to other hotels.

Each of these priorities affects your design. First, we speak with project stakeholders
about these design issues to get a sense of priority. If performance is the overriding
design priority, then we design our system to achieve high levels of speed through
hardware choices and parallel processing. If cost and schedule are the top priorities, we
look for ways to minimize the required hardware (because that takes money) and the
required functionality (because that takes time and money).

Unfortunately, these design issues are not compatible with each other.
Designing to one will impede your design in another. For instance designing for
performance usually increases your costs. Designing your system to meet the all the
needs of users impedes your ability to meet your schedule. Because of these design
trade-offs, we recommend you get these priorities straight first before launching into the
hard work of designing a complex system.

Review current system.

If your new system is a replacement or an addition to some existing system, take a look
at how the old system is designed. Choices that made sense for an older system (such
as that of the database vendor) or for a specific hardware platform may limit your “new”
design. In our reservation system example, the older hotel reservation system is built
on a simple client-server model. We can reuse the hotel's current room reservation
management server as part of the new reservation system.

Decompose the system.

Take your system and break it up into smaller subsystems. This is what engineers have
always done—take a big problem and break it into lots of smaller problems. If we can
solve each of the smaller problems, then combining the solutions should solve the
bigger problem. We would break up the hotel reservation system into conceptual pieces
such as user presentation, the business logic behind making reservations, persistent
storage, and credit-card processing. Now, if we can define these simpler pieces known



9.

as subsystems, the new hotel reservation system is as good as designed.
Define an architecture.

Once you define your subsystems, you have to describe how those subsystems relate
to each other—and the hardware that supports those subsystems. Our presentation
subsystem runs on the machines belonging to potential guests who visit the Web site.
The business-logic subsystem runs on a combination of hardware, including a machine
running Linux as well as our existing reservation-management server. Credit-card
processing starts on the same machine as the reservation management server and
utilizes a B2B (business-to-business) server across the Internet.

Choose object persistence.

Some of your objects must persist. If your system is turned off, you have to preserve
your objects so they don't get lost. During this step, you have to decide how you will
preserve those objects. Some of your options include relational database management,
object-oriented database management, and plain old files. Your choice has a significant
impact on the design of a persistence subsystem, and on how other subsystems can
use it. If a guest makes a reservation using the hotel reservation system today—and
the system goes down tomorrow—that reservation had better be there when the
system comes back up. Often designers use an existing relational database to hold
hotel-reservation information.

Define subsystem interfaces.

Treat subsystems just like classes. Each subsystem is responsible for some major
operations. During this step, you decide what those operations are and describe them
as interfaces. The credit-card processing subsystem is responsible for checking the
validity of a guest’s card. And the subsystem must authorize any charges against a
guest’s credit card.

Select Components.

Building today’s systems for maximum flexibility means designing with components. A
component is a modular, self-sufficient, replaceable unit that works like a black box in
your system. In this step, you select which parts of your system you want to act as
replaceable or reusable units (that is, as components). The CreditCardAuthorization
subsystem, the Reservation class, and the Room class are good candidates for modular
components.

Pick system strategies.

You have to consider how your system starts up and how it shuts down. You must have
a design strategy for handling errors and system failures. Regrettably (in this day and
age), your system also must consider information security, data integrity, and customer
privacy. These concerns may add use cases, classes, and subsystems to the overall
systems design. The hotel reservation system must protect guest credit-card numbers
and people’s addresses from prying eyes. The system must not allow hackers to modify
any reservations.

The first time you perform Steps 1 through 8 on a project, don’t make any
hard and fast design decisions. Just review the issues because each decision you
make at each step has an impact on decisions you could make during the other system
design steps. For instance, when you decide to use a certain vendor’s relational
database-management system, doing so imposes limits on how you define your
interfaces—and on exactly how you could decompose your system into subsystems.

Iterate Steps 2 to 8.



10.

that help you.

Now, having visited the design issues presented in Steps 1 through 8, revisit each step
and make some tentative decisions based on the design priorities you chose in Step 1.
Use UML diagrams such as a package diagram and a deployment diagram to capture

your design choices.

Iterate again.

We find that a good system design emerges after going through Steps 2 through 8 two

or three times.

Table 19-1: Systems Design Diagrams

Designing your system involves a lot of steps. Luckily, UML provides you with notation and diagrams to help.
Table 19-1 lists the major design elements that need defining during systems design and the UML diagrams

Design Element UML Diagram Description
System Package Diagram Take your system and break it up into more
Decomposition and Component manageable pieces known as subsystems. Show
Diagram the subsystems and show their dependencies.
Interfaces Class Diagram Explore and then describe the contractual
obligations of each subsystem. Treat each
subsystem as if it were a class and describe the
operations for that subsystem.
Hardware Deployment Describe the hardware you will use to run your
Diagram software. And show how the hardware is connected
together. Show the physical hardware architecture
for your system as nodes with communication paths
between them.
Components Component Show which parts of your system are really
Diagram replaceable units also known as components. Show
the structure of your system as black boxes with
their interfaces, ready for replacement or reuse.
Deployment Deployment Indicate how your components and subsystems are
Diagram realized as physical artifacts. In addition, show the
hardware on which those artifacts are deployed.




Constructing Logical Pieces

Your first major step in designing a system is called “system decomposition.” In this step you take the
big-picture point of view and break your system up in]ﬁ “logical” pieces. You use a package diagram to group
classes that must work together. (See [Chapter 7 and [Chapter 2Q for more details on the package diagram.)
You build component diagrams showing subsystems to present a consistent concept of how your system is
put together. Later on you create real physical artifacts such as program code, Java scripts, or Web pages for
each of these logical parts of your system.

Packing up your classes

You create subsystems to group classes together in a conceptual (logical) way for your design. The basic
notation for a subsystem is a rectangle with the name of the subsystem at the top of the rectangle with a
stereo type of «subsystem» and optionally a small fork icon in the upper-right corner of the rectangle. We use
the fork icon to help the developer quickly pick out the subsystems from a complex diagram. Subsystems are
a kind of package. The idea here is that just like packages that hold classes, subsystems can hold classes for
your design. Take a look a for more information on how and when you can put packages to work.
Each subsystem in your system owns the classes within it. You cannot have the same class owned by two

different subsystems. However you can import classes into a subsystem from another subsystem or package.
(You can find more details on importing in .)

shows a simple subsystem labeled Reservations Business Logic. The subsystem contains the
Person, Room, and CreditCard classes. The reservations business logic subsystem also contains the reserves
association and the pays-with association. You can think of the Reservations Business Logic subsystem as a
logical grouping with some of the classes required by the hotel reservation system.
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Figure 19-1: A subsystem and its components.

Your design classes should be owned by one—and only one—subsystem. The idea is to treat
subsystems just as you would UML packages: Make sure you don’t put the same class into more than one
subsystem. If you do, you find their definition mutates into something different in the different subsystems, and
confusion will follow. A frazzled developer may grab the wrong definition of the class, use it in an application,
and break the system.

You don’t have to put the same class in more than one subsystem, _because a subsystem can import and
reuse classes from other subsystems. (We explain importing classes in .)
Decomposing your system

You can think of your system as being one large package with all the classes contained inside—but that gets
confusing. It's easier (and saner) to organize your system so that it's composed of groups of classes. You
group your system’s classes so that each group of classes must handle the behavior of only a part of your
system—for example, realizing a use case or accessing a database. These groupings are what we've been




calling subsystems. Each subsystem is capable of dealing with one important part of the overall problem your
system is designed to solve.

We see projects get out of hand when they have just one package holding all the classes. The
developers get confused and the system implementation is disorganized. You can get away with just one
package if the software applications are small. If you build a large system, however (like a hotel-reservation
management system), then sooner or later you'll have to break it up into smaller, more manageable pieces.

Use the following major techniques to identify subsystems and get started with system decomposition:
B Establish subsystems: Split your system into three major subsystems:

O Ppresentation: The presentation subsystem is responsible for all
interaction with the users.

o Application: The application subsystem is responsible for handling all the
business logic.

O Dpata: The data subsystem is responsible for storing data making sure
your objects persist.

B yse aggregation: If you have a large aggregation in your domain model, think about making
a subsystem that contains the aggregate and all its parts.

B yse case: Create a subsystem that contains all the classes for your application that are
necessary for making the use case work properly. You may want to combine several similar
use cases into ane subsystem. (You can find more details on grouping use cases into

1b ems in For more on classes that help your use case come alive see
Chapter 7)

B Group domain classes: Consider making a subsystem that holds all your domain classes.
Domain classes reflect the domain or language of the user. These domain classes appear in
various use cases in your application—and they must persist. Having all the domain classes
in one place makes it easier to enforce a common definition and provide a common way to
store these classes in a database.

Not all of these techniques mentioned above are compatible with each other. For example the three
tier approach (group by presentation, application, and data) is not really compatible with use case approaches
(group by functionality), although a very large system may use a combination of approaches.

If your system is really complex, you can break up any subsystem into lower-level subsystems. There are two
ways you can show the subsystems inside your system:

B showing subsystems within a package: illustrates the subsystem within a

package technique for showing system decomposition. The Hotel Reservation System as a
package contains three subsystems, Web Presentation, Reservations Business Logic, and
Persistent Store(DB). Notice that each subsystem has the small fork icon. The Hotel
Reservation System package could have also been shown as a subsystem with a «system»
stereotype.
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Figure 19-2: A package diagram showing internal subsystems.

B Membership notation: You can also use membership notation to show system
decomposition. You show the containing package at the top of the diagram. Attach a circle
(with a plus sign inside) to the bottom of the package. Then draw a line from the
circle-with-a-plus to each of the subsystems. Figure 19-3 shows this alternative potation
using the package membership notation. The package diagrams in figures 19-2 and 19-3
mean the same thing. Normally we prefer showing subsystems inside the main system
package—that way it's easier to understand the containment visually.
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Figure 19-3: Packages diagram using membership notation.

Developing subsystem responsibilities

As you get these logical subsystems in place, you should ask yourself, Just what is each subsystem
responsible for? Your subsystem is an aggregate or whole and the classes inside are the parts. Just as your
system has major operations it must perform (use cases), each subsystem has a group of major operations for
which it's responsible.

To help you understand what each subsystem must do, we recommend you create a simple class diagram
that shows each of your subsystems as classes—and each subsystem’s major responsibilities as operations.

As an example, the hotel reservation system has a Reservations Business Logic subsystem. This subsystem is

responsible for making room reservations, canceling reservations, guaranteeing a reservation, finding a room,
checking its availability, and getting a price for the room. Eigure 19-4 shows the major operations for the Web

Presentation, Reservations Business Logic and Persistent Store(DB) subsystems.
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Figure 19-4: Subsystems with major operations as possible responsibilities.

You can focus on each subsystem, one at a time, and show its
other subsystems as actors. An example of this approach is given in
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Working with Components

You organize a system into subsystems. A standalone subsystem, autonomous and modular (relative to the
bigger system), is known as a component. UML components are like replaceable parts—you take one out and
fit another in its place. We like components because we can replace it without having to change anything else
in my system. Components make your systems more flexible, maintainable, scalable, and reusable.
Components come in many shapes and sizes. Subsystems are one example of a large component. A complex
class with many internal parts and external interfaces could also be a component. (Remember a component is
a replaceable part.)

When you construct replaceable components (parts), be sure to carefully define the boundary of the
component. You define the boundary by clearly describing the responsibilities and interfaces of the
component. Such parts are easy to make because everyone knows exactly what the component should do.
This improves productivity and makes the component easier to test (the testing teams know exactly how the
part is supposed to work), which improves quality. Also, the more a component is reused, the more trustworthy
and reliable it becomes.

For your components to be replaceable parts they must have the following criteria:

B Hide the inner workings: The insides of a component are hidden from (and inaccessible by)
objects outside the component. If you want to make a truly replaceable part, you can allow
no dependencies to exist between the insides of the component and any other objects.

B provide interfaces: An interface describes what operations you can invoke on a
component—but, not how any such operation is performed. An object outside a component
uses an interface without knowing which instance of a class is being invoked. All an outside
object must know about a component is that it's using the appropriate interface (so it looks
for the signature of the interface). That way the outside objects are kept in the dark about
the inner workings of the component. Providing interfaces are a way of hiding the inside

workings of a component from the outside. Components rely on the principles of

encapsulation and information hiding. See for more on these principles.
B Make the inner parts independent: You must make sure the objects internal to the

component have no knowledge of outside objects. Otherwise trying to replace the

component would break the system—there would be no guarantees that the appropriate
outside objects would be available to the replacement component.

B specify the required interfaces: Sometimes the objects inside your component must access
objects on the outside. If the object on the outside has its own interfaces declared, then the
objects on the inside use that common interface instead of accessing outside objects
directly.

You can think of a component as a subsystem with internal classes that work together to realize
the publicly stated interfaces.

Logical versus physical

The experts talk about logical data models, physical models, logical views, and physical elements. You
needn’t worry about all this babble. When the experts use the term “physical,” they are referring to
something in the real world that all of us experience. The experts use of the word “logical” simply
means conceptual.

For instance a physical table model (also known as a physical data model) describes the tables of a
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Figure 19-5: Basic component with interfaces.

shows another black-box example of a component. Notice that UML doesn’t make you use the
circles-and-half-circles-on-a-stick notation; you can replace the lollipops with operations—showing the
provided interfaces with the «provided interface» stereotype and the required interfaces with the «required
interface» stereotype. The diagrams shown in figures 19-§ and 19-6 have the same meaning.
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Figure 19-6: A component as a black box.

Your components are, in effect, black boxes. Nobody can see what goes on inside them—but
everyone can see their interfaces. The software components represented in your diagram have interfaces too,
no less than the pieces of electronic equipment that have tangible interfaces for hooking up various cables.

Describing the interfaces

You show components as black boxes when yoy i m together to make up your system. In the
example of the PersistentStore component in the previous section|, you connect the PersistentStore to another

component that provides the Rdbms interface.

But, if you're building the insides of a component for others to assemble into their system, you have to show
the interfaces’ details. If (for example) other developers want to use your PersistentStore component to retrieve
data from the database, they have to know the signature of the retrieve operation in the DBQuery interface,
which may look like this:

retrieve(type : Object, search : String): Object(idl)

When you build a component, give the users of your component a special interface specification using a
component diagram. In this type of diagram you show the component as a black box and the interfaces as
classes. Each interface has the «interface» stereotype, the name of the interface as the name of the class, and
the full operation signature for each operation with in the interface. Connect up the provided interfaces to the
component with a realizes dependency. The realizes dependency shows that the component implements the
operations specified by the interface. Connect the required interfaces to the component with a uses
dependency. The uses dependency shows that the component must use some other component that
implements that interface.

Your users of the PersistentStore component will appreciate the component diagram shown in . This
diagram shows users of the PersistentStore component that if they want to store an object instance in the
database, they must invoke the DBQuery interface with store(theObject: Object(idl)): Object(idl). Further, if they
want to perform an SQL query on the database, they would use the DBQuery interface with sqlFetch(sqlString :
String) : String. To keep the diagram simple, we haven’'t shown the detailed signature of operations in the
DBAccess, DBTest, and Rdbms interface classes.

If you refer to , you can se/vs the PersistentStore component with three provided
_ ure 19-

interfaces and one required interface. shows the same thing, only it uses dependency arrows
instead of stereotypes:
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Figure 19-7: A component with explicit interface specifications.

B The dashed line with a large, closed arrowhead is the realizes dependency. That means an
interface is realized by a component. For example the DBQuery interface is realized by the
PersistentStore component.

B A dashed line that has a regular arrowhead and the «uses» stereotype means that the
component uses the interface—in fact, that it requires the interface. For example, the
PersistentStore component uses (requires) the Rdbms interface.

Looking inside the box

But wait a minute—you want to build components, not just assemble them. You need a way of showing the
insides of your component. That's easy: just add a compartment below your component and put a class
diagram there. Classes inside the component work together to accomplish the interfaces of the component.

Because you must show how the internal classes are hooked up to the component’s interfaces, UML provides
some special terms and notation for the purpose:

B ports: A port is a point of interaction between the inside and the outside of your component.
Provided and/or required interfaces are attached to these interaction points. You show a port
as a small square on the edge of your component. By attaching interfaces to a port, you're
specifying the services that the component provides—or requires—through that port. One
way to tell which port does what is to name it, putting the name next to the small square.

Ports can be used on classes and subsystems as well as components.

B Delegation: When a request for service comes into your component through a port, you have
to show who handles that request. Do so with a link between the port and one of the internal
classes (or components) inside the larger component. Your connecting link should be a line
with an arrowhead indicating the direction of the request. The line is also stereotyped

«delegate».



B siereotypes for inner workings: UML provides you with several stereotypes that help
distinguish between the different parts inside your component. You can use the following
stereotypes on the inner workings (classes and internal components) inside your
component:

O «ocus»: A part with this stereotype executes some or all the business
logic internal to the component.

o «process»: A part with this stereotype executes a transaction. It must
make sure that an important sequence of behavior—the
transaction—completes. If the transaction fails to reach completion, this
part must undo any behavior done to make the transaction happen—in
effect, eating the evidence.

O «service»: A service part has no states; it just computes a value. Such a
part is really a function (sequential set of instructions) dressed up as an
object.

o «entity»: A part that persists. An entity’s attribute values, behavior, and
state carry on beyond the life of the application runtime environment.

O «auxiliary»:A part that assists the focus part with implementing business
logic for the component.

B Ball and socket: You can use the ball-and-socket notation to show assemblies inside your
component. If you have one class that must have a particular interface and another class
that provides that interface, then you can hook them up in the diagram: Just place the ball
end of the provided interface into the half-open end of the required interface.

Whenever you design a component, create a component diagram to show its inner workings. You use
such a diagram to help you explore, design, and document the best ways to wire your component. You should
also create a component diagram that shows the component as a black box surrounded by interface classes,
each with a detailed operation signature. Pass this second diagram out to all the developers who will be
integrating your component into their system.

provides an inner structure example of the PersistentStore component. When an object outside of
the PersistentStore invokes the DBAccess interface using the openDB or closeDB operation, the request is
delegated to an instance of the DBManager class.



AT L i 1
Persistent Skaore ;
mekgati: o T
CETesL : N e P ponnsacticiTheck
E—[0 eheckConnection ™7
1
S =components b, b
crowias Dy | Camnection 5 \\..
sffubaginas | _ DF!I.I.urr:-
COHC] .
DBAcoe= | cdslegate i _,'-;j;
’w.-'_E_ fi ~
| . sfocuss |- -
DEManager e’ ol
1
| hewndies
DBOuery | L jmiagate. 0.” stlalegitiaz
) | A O
2 Chuery
0.1 a.1
PR
Stones 0
ity
G Obje |

Figure 19-8: Component diagram showing internal classes.

Incidentally, the DBManager is the focus of PersistentStore—so it makes sure any business logic for the
component is handled properly. The DBManager creates an instance of the checkConnection class so the
component can provide the service associated with the DBTest interface. Both the DBManager and the
checkConnection must have interfaces on an internal component called Connection.

You can see the use of the ball-and-socket notation in the example. The DBManager requires the connect
interface that the Connection component provides. The Connection component, DBManager and Query all
require the Rdbms interface. The Rdbms interface is external to the component; it must be provided by some
other class or component in the system.
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Deploying Physical Pieces (Implementation)

Before your design can see the light of day, you must plan the physical appearance of your
system—describing the hardware, communication paths between devices, and the different types of files that
run on that hardware. UML provides ways to show all such aspects of implementation on a deployment
diagram.

Diagramming the physical architecture

Deployment diagrams show the physical architecture of your system—essentially a connected arrangement of
hardware—as nodes (three-dimensional boxes). You draw lines between nodes to represent communication
paths between your hardware components.

Nodes are very similar to classes. In fact, like the aggregate classes that contain parts, your nodes can
contain other nodes. You can document detailed hardware configuration information by adding attributes and
operations to your nodes. For instance we would specify that our user's Web-client hardware have the
following attributes:

memory : Kilobytes = 256

diskCapacity : Gigabytes = 20

cpuSpeed : Mhz = 1.2

screenResolution: pixelRes = 1024 x 768

Some UML tools display this information right on the diagram. If not, the configuration information is still
accessible in the definition of the node for later retrieval.

Any type of hardware that can execute software and talk to other hardware devices—for example, printers,
modems, scanners, and external disk drives—are represented as nodes on a deployment diagram. Your
communication paths represent such things as local area networks, the Internet, a USB cable, or (indeed) any
mechanism that links one node to another. Use stereotypes to indicate the nature of the communication that
goes on between your hardware components.

Communication paths between nodes are similar to associations between classes. You can show
multiplicity, roles, and even qualifiers on the paths between the nodes. We like to show multiplicity to help
developers understand how many nodes are in our design configuration.

You can use a number of stereotypes on the nodes and the communication paths of your
deployment diagram. Some of the more common stereotypes are as follows:

B Nodes: Use these stereotypes to indicate the type of hardware node you're deploying:
O «device»: Use this stereotype for a node that has processing capability.

O «application server»: A node of this type provides a remote service for an
application.

O «client workstation »: A user's computer is often designated with the client
workstation stereotype.

O «mobile device»: Laptop computers, cell phones, and other devices that
use wireless communications are considered mobile devices.

O «embedded device»: Yes, developers of real-time embedded systems
also have a stereotype.

«execution environment»: This is a stereotype of a virtual node providing
an environment for executing a program. A virtual node looks like




hardware but is not actually hardware. An operating system or a Java
virtual machine are examples of an execution environment.

O «container»: Enterprise-system development that uses Java also uses a
“container” node to hold components. Designate that piece of hardware
with the container stereotype.

B Communication paths: Use these stereotypes to specify types of communication links
between hardware nodes:

O «serial»: Use this stereotype to indicate a serial-port connection between
nodes—for example, a connection between a mouse and a computer via
the serial port.

O «parallel»: Use this path to hook up nodes via the parallel port. Many
printers and scanners are hooked up this way.

O «usb»: The Universal Serial Bus (USB) type of connection is used widely
to hook up external devices (nodes) to computers.

O dan»: Use this stereotype to indicate that two nodes are networked
together.

B nternet»: Use the internet stereotype to indicate that the two nodes are using the vast
resources of the Internet to communicate. If you have a Web application, you have an
internet connection.

A deployment diagram that shows your hardware layout helps others understand how to build the system you
have in mind. Keep it simple—show only the hardware architecture and its configuration. Such a diagram
helps you to explore the dependencies among your hardware components. In large systems, this simplicity
becomes especially important. Consider, for example, corporate data-warehouse configurations that involve
many different types of nodes, including the following

B Online transaction-processing database servers
B Operational database servers

B At least one store server that provides atomicity (requiring each transaction to execute—or
not—as a unit)

B various metadata servers
B Multiple data marts
B Online application servers, load balancers, and users’ desktop computers

All these nodes must utilize various corporate networks to communicate. We use a deployment diagram to
organize these machines into an architecture. We look for communication bottlenecks in the diagram. We get
consensus on the deployment and then publish the final version of the deployment diagram so all the
developers understand the complexity of the data warehouse structural design.

Don't try to show everything on your deployment diagram; just show the major pieces of your
architecture. You can show computers—or, for that matter, CPU chips—as nodes on a deployment diagram,
and if necessary, you can show lots of detail—disk drives, memory cards, backplane communication buses,
even specific wires. But these details are not important to most developers of software applications. Just show
what's important to get the job done.

illustrates a simple deployment diagram for the hotel-reservation system. Potential guests use a
Web Client and gain access to the reservation system through one of several hotel Web Server nodes. The Web
Server passes information and requests between the user’'s Web Client and a single Reservation Server. The



hardware sitting at the hotel’'s check-in desk as well as the manager’s office is all one nhode—the Reservation
Client node. This hardware also has access to the Reservation Server by using Java’'s remote
method-invocation protocol (rmi). The Reservation Server uses the Database Server node for saving reservations
and uses one of several available Credit Bureau nodes for credit authorizations.
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Figure 19-9: A simple deployment diagram for a reservation system.

Realizing your system as artifacts

UML 2 introduces the artifact. We're not talking relics here. Artifacts are the physical files that make up
your implemented system found running on various hardware nodes. Artifacts replace the UML 1.x definition of

component.

Your system is logically composed of components, subsystems, classes, and functions. You realize these
logical elements as physical artifacts or files. For example, a compiled file with executable code, a Java JAR
file, a dynamic link library (dll) file, and a Web script are all artifacts. These are all physical manifestations of
your work as a developer. You use deployment diagrams to show not only hardware nodes but also the

artifacts that reside on them.

You show artifacts as a rectangle with the name of the artifact inside. The name is usually the filename with its
extension, such as room.jar. You use the stereotype «artifact» and optionally a small icon that looks like a
dog-eared page. On a deployment diagram, you can show artifacts in the following ways:

B |nside the node on which they reside: Just place the artifact inside the boundary of a node.

B \With alocation property naming the node on which they reside: The location property is
shown below the name of the artifact as follows (replace node name with the actual name of

the node):
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«executable»: This artifact can be executed as a program on a computer.

«library»: You use this stereotype when you have a file that is a dynamic (or static) link library
or DLL file.

«script»: Script artifacts are source code files that get interpreted at runtime by some other
program. If you have (for example) a Javascript file downloads to a Web browser, use this
stereotype.

«page»: Use the page stereotype to denote a single HTML page.

«file»: This is a generic stereotype. Use this for any old file that is important to the runtime
environment. You might use this for a profile or configuration-setup data file used by a
program to start up an application.




Chapter 20: Breaking the System into Packages/Subsystems

Overview

In This Chapter

Defining good packages

Developing subsystems from packages
Considering dependencies

Specifying required subsystem services
Realizing a subsystem

Using architectural patterns to decompose your system

Even the development wizards can get it wrong. This chapter shows you the tricks of the trade so you can
avoid or at least contain the mess that can result when designing large systems. When designing these large
systems, poor system decomposition—partitioning a system into smaller systems or subsystems—can
exacerbate the confusion, and you can end up with a maintenance headache resulting from built in
dependencies throughout the system. If this is the case, you may have a queasy feeling that the system is
brittle—which means that every time you make a change to one part of the system, you end up having to
make changes in lots of other places too. To help you head off such a scenario, this chapter shows you some
measures you can take to avoid brittle systems. We talk about moving from analysis-time packages to
design-time subsystems. You’'ll see examples of subsystem notation and architectural patterns that get you
started building solid systems that stand the test of time.




Using Packages and Subsystems

Your requirements for a system start out as simple statements from a few users—and before you know it, you
have many different types of users, lots of use cases, burgeoning domain terminology, and piles of business
rules. As you develop your design solution, you must contend with users’ machines, application servers, Web
technology, networking, security, database performance, and a host of other issues. All this results in lots of
diagrams and lots of classes to implement. To help you avoid confusion, UML provides packages and
subsystems.

A package is an all-purpose way to group things such as classes, use cases, and/or diagrams together—and
it's represented as a tabbed folder. Packages help you keep your development organized. Packages own
what'’s inside them, and the internal contents of your packages are either public (visible outside the package),
private (hidden inside the package), or protected (visible to package extensions, hidden from external
packages).

A package can import the contents of another package and then use the imported package contents as if they
were inside. You refer to an element like a class that belongs to another package with the
PackageName::ElementName notation. For example, Product::AirFilter refers to the AirFilter class owned by the
Product package.

You use packages to organize your requirements at analysis time. You use subsystems to organize your
solution at design time. You can treat subsystems just like packages. In UML 2, subsystems and packages are
not exactly the same thing, but they are close enough. (Subsystems are shown as a rectangle with a small fork
icon in the upper right-hand corner.)

We use packages and subsystems during analysis and design as follows:
1. Develop analysis packages.
During analysis, you can start grouping classes that must work together into the same

package. You can also group your use cases by creating a package for each actor and
placing the use cases initiated by that actor in the package.

2. Reorganize packages for system design.

When you start designing your system, move classes and use cases around to group
things together for your developers. Developers appreciate packages organized by
important use cases, hardware, development schedule, or department ownership of the
information. We’ll give you more details on reorganizing packages later in the chapter.

3. Convert packages to subsystems.

Change the packages into subsystems. The subsystems now hold and own, the
contents that the packages did. The value of this step comes later when you design the
details of each subsystem.

Not all analysis-time packages turn into subsystems. You might keep a package that
holds common datatype definitions during design time. Subsystems in your system
import the contents of the datatype package.

4. Consider dependencies.

Look at each subsystem and examine how it may (or may not) depend on the contents
of other subsystems.

5. Reorganize subsystems.




Rearrange the contents of your subsystems to either increase dependencies (for
performance) or decrease dependencies (for modularity) among your subsystems. At
this stage, you use architectural design patterns such as fagade or three-tier to reduce
subsystem dependencies and increase the flexibility of your system’s design. (You can
find more about fagcade and three-tier patterns in the section “Using other architectural
patterns,” later in this chapter.) Doing so can often lead to a change in how you arrange
your subsystems. If you reduce subsystem dependencies, you can have teams of
designers work independently on each subsystem.

6. Design subsystem details.

After you're satisfied with the overall organization of your subsystems, then you begin
designing their details. UML enables you to show the specification (requirements) and
the realization (implementation details) for each subsystem.

If you organize your subsystems well, then teams of developers can design each subsystem
without worrying about how the other subsystems are designed.

Creating analysis packages

The systems you analyze are probably large and complex with many different types of users, too many
classes to remember, and lots of different behavioral interactions among the classes. To keep it all straight, we
use packages during analysis. Here are some of the packages we find useful during system and software
analysis:

B Domain groups: Group your domain classes (classes that reflect the terminology of the user,
like hotel, room, or reservation) into a package. If you have lots of classes, then consider
creating subpackages to further organize these domain classes. Look for a group of classes
closely associated with each other and loosely associated with other classes in the domain.
You can also look for classes that participate in any of the following:

O classification scheme: You organize these classes into an inheritance
hierarchy. Sometimes this makes for a good grouping.

o Aggregation: If you have an aggregate class that has a lot of parts, put
the aggregate class and its parts into their own package.

O Ppersistent class group: If some (but not all) of your domain classes must
persist (live beyond the life of the running application), place them in their
own package.

B Actors and use cases: Each actor interacting with your system uses that system for its own
purposes, which is a different from the purposes of other actors. Create a package for each
actor and place the use cases for that actor in their respective package. If an actor has a lot
of use cases (more than 5-9) consider creating subpackages to group the use cases more
specifically for that actor.

B Application class groups: As you consider the classes required by your application, place
them either in an appropriate use-case package or create a separate package to hold them.
Such application classes are the control, view, and boundary classes that an application
needs so it can make a use case work properly for an actor.

B Ccommon datatypes: Often classes can represent enumerations (such as eye color), data
classification (including units of measurement such as miles for distance and pounds for
weight), and abstract datatypes (such as address, currency, or date). Place any such
common datatype in a package so you have one definition of it that everyone can reuse.

You can continue to use packages during the design phase of your project as a general-purpose way of



grouping elements from your UML diagrams together. However, we like to use subsystems during design
because they allow you to show how specific requirements are realized by a group of cooperating classes.

shows some of the packages for an air-filter product business. The order clerk and the clerk’s use
cases are owned by the Order Handling package. The Account Billing package contains the accountant actor
and use cases directly accessed by the accountant. A separate Analysis Datatype package holds several
classes stereotyped as enumerations and a couple of abstract datatypes.
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Figure 20-1: Analysis packages for actors, use cases, and datatypes.

The domain packages for the air-filter business example are shown in . To keep the diagrams
simple, we don't show all classes and associations. You can see some of the classes owned by the Customer
Accounting package, but we don’t show the contents of the Supplier Accounting, Airfilter Product, and AirEvents
packages. Call it an exercise of a handy UML feature: showing or hiding the contents of a package as needed.
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Figure 20-2: Analysis-time packages for problem domain.

Creating subsystems

If your analysis results in a lot of classes and required behavior to make the system or software conform to
what your users need, then you need to organize your design using multiple subsystems. During design, you
can create subsystems according to the following criteria:

B yse cases: You can create subsystems that focus on a group of similar use cases. The
analysis-time packages that you based on your use cases are good starting points when
you're creating these subsystems. As when creating the analysis-time packages, you should
look for use cases that have the same actor. The air-filter business example has two such
subsystems: Order Handling and Billing.

When creating subsystem, keep use cases that depend on other “included” use cases in
mind. You should ask yourself: In which subsystem should | place the “included” use case?
There are a couple ways to answer this question:

O Youcan place an included use case in the subsystem where it's most
often used—and let other subsystems import it if they need it. For the
air-filter example, we chose to put the Check Credit Card use case in the
Billing subsystem instead of the Order Handling subsystem because the
accountant uses it more frequently than the order clerk does. The Order
Handling subsystem will import the Billing subsystem. During design,
you're allowed to move things around if it meets your design priorities.

o Alternatively, you can place the included use case in its own subsystem.
Other subsystems that need the behavior of the included use case must
import the behavior. We favor this approach if several other use cases in
our system must access the included use case. If you chose this option
for the air-filter example, you would create a subsystem, call it Credit
Check, and place the Check Credit Card use case with in it. The Order
Handling and Billing subsystems would depend on the Credit Check
subsystem.

B Hardware and software: Your information system has software that runs on hardware. You
can use this as a basis for creating subsystems. Consider the following examples:



O Hardware: Create subsystems around the different kinds of hardware in
your system. The Order Handling subsystem, for example, can be broken
down into two more subsystems: Web Orders for handling orders placed
over the Internet and Clerk Orders placed on standard-issue office
equipment of the order clerks.

O software: You have three kinds of software in your system: new software
you develop, old legacy software that you have to use for a while yet,
and commercially purchased software (such as application programs,
transaction managers, database-management systems, and office
software suites). Create subsystems to contain each of these different
types of software. (The air-filter business would need a subsystem for
the commercially purchased database-management system.)

B schedule: You don't always get the chance to build and deliver the required software for
your system all at once. You have a schedule you must follow, rolling out specific pieces of
the software over time. You can create subsystems that group related use cases (and the
classes that implement those use cases) for each delivery deadline in the schedule. If you
built subsystems according to the schedule in the air-filter example, you'd need a subsystem
containing Setup New Customer, Invoice Customer, and Check Credit Card use cases for the
first scheduled rollout. The second rollout would have a subsystem containing the Generate
Product Order and the Review Accounts use cases.

B ownership: If you have developers from different departments who must take ownership for
a particular piece of the system, consider creating subsystems based on that ownership. If
we have developers with accounting expertise, then we create a subsystem and place all
accounting-oriented classes, use cases, and components in it. Similarly, the database
department is responsible for (you guessed it) the database subsystem.

B Deployment: Today your applications are spread across the user’s computer, Web servers,
application servers, and database servers. You can create subsystems based on where you
deploy the software. The air-filter business needs subsystems for the software that gets
deployed on each of these different machines.

shows a group of subsystems based on the analysis-time packages for the air-filter business
example. The two analysis-time use-case packages lead to the Order Handling and Billing subsystems. (The
Billing subsystem contains the Check Credit Card use instead of Order Handling.)
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Figure 20-3: Example of design time subsystems.

At analysis time, all the different domain packages lead to a subsystem that holds all the common objects. The
Common Objects subsystem contains several sub-subsystems—Customer, Supplier, and Product. The Persistent
Store subsystem provides an interface to a back-end relational database-management system. The Security
subsystem handles all login and user authorization tasks. The Accounting System Interface provides access to
a legacy accounting system.

The Analysis Datatypes package is now called the Domain-Datatypes package for the system
design. Not all analysis packages convert to subsystems.
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Exploring Dependencies

Unless your system is simple, no one subsystem does everything. Each subsystem must rely on services
supplied by other subsystems to get its own job accomplished. When one subsystem can’t do its work without
relying on another subsystem, you have dependency.

An example of dependency occurs in the air-filter business example: The Order Handling subsystem must rely
on the classes inside the Common Objects subsystem to generate a product order. If you were to make a
change to the operations of the AirFilter, Customer, or CustomerAccount classes, then you would have to
change classes inside the Order Handling subsystem too.

The dependencies among your subsystems come in three flavors ( illustrates these flavors):

B Dependent: If one of your subsystems depends on the contents or interfaces of another
subsystem, but not the other way around, this is the simple case of one-way dependency.
The Order Handling subsystem is dependent on the Common Object subsystem. (You hear
experts refer to client-supplier, or client-server dependency. These are just other terms for
one-way dependency.)

Show one-way dependency as a dashed line that connects two subsystems; include an
arrowhead that points from the dependent subsystem to the subsystem it depends on. You
can show dependencies among packages in the same way.

B Codependent: Two subsystems are codependent or two-way dependent when they depend
on each other. If a class in the Common Object subsystem must have access to a class in the
Order Handling subsystem and some other class in the Order Handling subsystem needed
access to yet other classes in Common Objects, then we have a two-way dependency (also
known by its fancier name, peer-to-peer dependency).

You show two-way dependency as two separate dependency lines that connect the same
two subsystems but go in opposite directions. (A more informal notation for codependency is
a single dashed line that has arrowheads at both ends.)

B |ndependent: If you have two subsystems that have no dependency between them, they are
called independent. In the air-filter example, the Persistent Store subsystem and the
Accounting Interface Subsystem have no dependencies between them.

You show that two subsystems are independent by not connecting them with dependency
lines.

If you want a maintainable system, avoid codependency among your subsystems. Dependency
means that a change in a subsystem may lead to a change in the dependent system. But, codependency is
worse. A change in one codependent subsystem may lead to a change in the other codependent subsystem,
which in turn could lead to a change in the first codependent subsystem.

After you have your subsystems, consider the dependencies among them: Build a diagram that shows your
design-time subsystems and packages, using dashed-lines-with-arrows to indicate each subsystem’s
dependency on other subsystems and packages. While you're exploring these dependencies, consider the
degree of coupling and cohesion present in each subsystem:

B Coupling: A highly coupled subsystem has many dependencies.

B Cohesion: A highly coherent subsystem has all the classes it needs to meet its assigned
responsibility.




To increase or decrease coupling and cohesion among subsystems, you move classes from one subsystem to
another until you find the right balance.

Look for codependent (two-way-dependent) subsystems—and try to make them one-way-dependent.
You can do this by moving classes from one subsystem to another or by creating a subsystem that holds only
the common classes. Architectural patterns (discussed at the end of this chapter) can also help you break the
cycle of codependency.

Every system you build has some amount of coupling and some degree of cohesion. But, the
desired levels of coupling and cohesion depend on your design priorities and goals. Those goals relate to
,m_ugpﬂequirements, performance, cost, and schedule. You find more information on design priorities in
Chapter 19.

Before you design your system, consider your design priorities. As you perform the design tasks, keep an eye
on coupling and cohesion. Adjust your design to obtain the right level of coupling and cohesion to meet the
design concerns.

Diagramming dependencies

illustrates a design diagram with subsystems, packages, and dependencies for the air-filter
business example. We like to put the user- oriented (use case) subsystems at the top and low-level
service-oriented subsystems at the bottom of our dependency diagrams.
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Figure 20-4: Diagram showing dependencies among subsystems.

At the top of the diagram in , you see the two subsystems that interface with the Order Clerk and
Accountant actors—Order Handling and Billing. Order Handling depends on Billing because Billing contains the

included use case Check Credit Card. Order Handling and Billing both depend on Common Objects. The Billing
subsystem must access the Accounting System Interface subsystem, so there is a dependency there too.

All classes in the Common Objects subsystem—such as Customer, AirFilter, SupplierAccount, and CreditCard (not
shown in the figure)—must be saved in a database. So, the Common Objects subsystem depends on the



Persistent Store subsystem—and on the definitions of abstract datatypes and enumerations contained in the
Domain-Datatypes package.

Notice that the Security subsystem has a property {visibility = Global}. That means that all the other subsystems
may depend on the Security subsystem because it's globally available to all parts of the system.

Considering coupling and cohesion

There are many possible design solutions for your system. Each solution has good points and bad
points. We use the concepts of coupling and cohesion to figure out how well any particular design
solution meets our design priorities. In and of themselves coupling and cohesion are neither good nor
bad—but they can tell you a lot about how your system approaches its work—and whether you want to
change that.

The concept of coupling expresses how interconnected the parts of our system are—in effect, how
interconnected such parts as classes or subsystems are. A class with six associations is more coupled
than a class with two associations. A subsystem that depends on another subsystem is more coupled
than a subsystem with no dependencies. Another way to think about coupling is to consider how much
an instance of a class must “know” about its surroundings. The more an object must know about other
objects’ methods, the higher the coupling.

Cohesion, on the other hand, expresses how well all the internal parts of a class or subsystem work
together. If a class must have every one of its attributes and operations in order to work, the class is
highly cohesive. However, if a couple of attributes are only used with one operation and another few
attributes are only in use by a different operation, the class has lower cohesion within the class. When
all classes inside a subsystem work together to accomplish the tasks required of the subsystem, then
the subsystem is highly cohesive. However if a subsystem has several groups of classes where each
group works independently of each other, then the subsystem is less cohesive.

Suppose you're designing a system to be flexible. A flexible design enables you to make changes in
one subsystem without affecting or changing other subsystems. Flexible systems call for a modular
design with high cohesion and low coupling. Subsystems with high cohesion are replaceable—and if
they have a low degree of coupling, fewer changes are needed; the result is more modularity. If your
subsystem exhibits high coupling, that means it's dependent on many other subsystems. In a highly
coupled system, chances are that a change in one subsystem leads to changes in other subsystems.

But, if you're designing a system for performance, you tend to increase the coupling and lower the
cohesion of your classes and subsystems. That way when an object must get data quickly, it goes
directly to an object that can provide that data instead of indirectly through many interfaces. For
example, you have an object that needs data from a database you have design options. You could
have the object invoke the behavior of a generic database interface object. Or, you could write the
access code right into a method in the object that needs the data. The second option ties your object
directly to the database but, it performs faster.

Instead of drawing a lot of dependency lines from just about every subsystem to just one commonly
needed subsystem, use the global-visibility property instead.

Importing what you need

As you work on a subsystem, you come to a point at which you need the services of a class that resides in

another subsystem or package. You have two choices:
|

Invoke an interface: When you call an operation on the subsystem where the needed class
resides, that operation invokes the needed class. Suppose (for example) you're using the



facade design pattern (more on facade in the section “Using other architectural patterns,” at
the end of this chapter) to make this happen: When an instance of the Customer class
changes, an update must be made to the database. You can design the Customer class to
invoke the interface operation store(this) on the Persistent Store subsystem. The internal
elements of the Persistent Store subsystem then get to work storing the data from the
Customer instance in tables in the database.

B mport the class: You import the class right into the subsystem that must use the class,
making it appear as if the imported class is inside the subsystem that needs it. The imported
class is still owned by the package or subsystem from which you imported it, but you can
use it directly. The AirFilter class needs the Pound (weight in pounds) abstract datatype that
resides in the Domain - Datatype package. By importing the Domain-Datatype package into the
Product subsystem, you can treat the Pound class definition as if it were inside the Product
subsystem.

You import elements from other subsystems so that their visibility is either public or private. You make the
contents of another package or subsystem public in another subsystem by using the «import» stereotype on a
dashed dependency line. You make the insides of another package or subsystem private in another
subsystem by using the «access» stereotype on a dashed dependency line.

illustrates what happens when you use the «import» and «access» stereotypes. On the left side of
the figure, you import the contents of Domain - Datatypes into Product and make them publicly visible to other
subsystems. So, when the Order Handling subsystem imports Product, it also imports the elements originally in
the Domain - Datatypes package.

However, the situation is quite different on the right side of . You “access” the contents of Domain -
Datatypes and make them private—hidden from other subsystems. As a result, when the Order Handling
subsystem imports Product, it does not import the elements originally in the Domain - Datatypes package and
may not use them.
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Figure 20-5: Importing subsystems into other subsystems.

Merging what you have

Suppose you realize that two subsystems are almost identical. They have about the same number of classes,
the names of the classes are similar, and relationships between the classes are almost identical. To solve this
problem, UML provides a special dependency called merge that works like inheritance. A package or
subsystem merges the contents of another package or subsystem by inheriting its contents within its own
scope. To indicate merging, attach the «merge» stereotype to the dependency line.



For example, in the air-filter business example we have similar subsystems—Customer and Supplier. Both
subsystems have an account. In the Customer subsystem it's called CustomerAccount and in the Supplier
subsystem it’s called SupplierAccount. Each type of account is backed up by a line of credit. In the Customer
subsystem, the customer’s credit card provides the line of credit. The business sends invoices to customers
and receives invoices from suppliers. In both cases, the invoice is paid through the respective
account—Customer or Supplier Account. There must be a way to simplify this situation. and 20-7
illustrate one such solution: merge.

When you see common classes and associations in different subsystems, create a subsystem that contains
their commonality. fFigure 20-g shows a new subsystem called ClientAccount. The ClientAccount holds generic
classes such as Client, Account, LineOfCredit, and Invoice. The Customer and Supplier subsystems are shown
merging the ClientAccount.
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Figure 20-6: Merging subsystem from another subsystem

shows the classes internal to the Supplier subsystem as a result of merging the ClientAccount
subsystem. The supplier contains its own
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Figure 20-7: lllustration of merged subsystem's internal classes.



Invoice, Client, Account and LineOfCredit classes. These classes play specific roles in association with each
other. The Invoice class plays the role of payable in this subsystem. In the Customer subsystem (not shown),
the Invoice plays the role of receivable.

Notice that shows some classes and associations as gray. We did that to illustrate how the merge
dependency leads to inheritance. (You would not show those gray elements in your diagram. When you
merge another subsystem or package those gray elements are implicitly there.) For example, the Invoice class
owned by the Supplier subsystem is a subclass of the Invoice class owned by the ClientAccount
subsystem—ClientAccount::Invoice.

You add attributes and operations specific to the classes in the Supplier subsystem and inherit the generic
attributes and operations from the classes defined in the ClientAccount subsystem. The associations are also
inherited. You see the bills association inherits from the gray bills association. As a consequence the bills
association inherits the multiplicities (0..1 and 0..*) and role names (Invoice and Account). We have changed the
role name from Invoice to payable. UML allows us to indicate that we're redefining the role name by showing
the new role name as payable and the old (inherited) role name as [Invoice].




Patterning the Relationships

If you build systems, you may experience déja vu—the same kinds of subsystems appear in different system
architectures. You're not losing your mind. Many systems display similar architectural patterns when you
structure their subsystems. You make use of these patterns to solve common design problems when you start
putting your system together. An architectural pattern gives you a reusable template to base your systems
design.

Utilizing the three-tier architecture pattern

Three-tier architecture is a common pattern for systems. This pattern separates your system into three distinct
areas of behavior found in almost every system (presentation to the user, business logic, and object
persistence). It also separates subsystems by technology (for example, user interface, application, database)
and machine location (user-client machine, server machine, database machine). What you get (ideally) is a
consistent user interface across multiple applications. But not all related behavior is confined to the same
subsystem. For example, handling an instance of the Order class is done in several different places.

Using the three-tier architecture pattern you decompose your system into three subsystems:

B presentation: The subsystem that plays the Presentation role is responsible for all
interactions with the user of the system.

B Business Logic: This subsystem must perform calculations and make sure the application
adheres to business rules. This is where the real work of the application takes place,
independent of any user interfaces.

B Database: The back end of the system is the subsystem that plays the role of the database.
This subsystem is responsible for storing any data or objects that must persist beyond the
runtime of the application.

Modeling architectural patterns

You use a collaboration to diagram an architectural pattern. If you're showing just the pattern, draw a dashed
oval with the name of the collaboration at the top. Draw a dashed line to separate the name of the
collaboration from the elements depicted as involved in the pattern collaboration. In the main body of the oval
show a simple diagram with the subsystems that interact to form the pattern. You name the subsystem in such
a way as to indicate the role they play in the pattern. You can also show connections tfffzf? f]jj subsystems
and any other dependencies between the subsystems that make up the pattern. (See Chapter 15 for more on
collaborations.)

illustrates the three-tier pattern. The basic idea is quite simple, three subsystems labeled
Presentation, Business Logic, and Database are contained inside a named collaboration oval. The dependencies
between the three subsystems are also show to further clarify the pattern. If you use this pattern your three
subsystem must follow the pattern of dependencies shown in the diagram.
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Figure 20-8: Three-tier architectural pattern.

When you want to show a specific “occurrence” of a pattern, you draw a collaboration occurrence—a small,
named collaboration oval—and don’t forget the dashes. To show each your specific subsystems that
participate in the pattern, use a dashed line to connect each subsystem to the collaboration oval. Then, at the
end of the dashed line next to each subsystem, show the role that subsystem plays in the pattern. Role names
come from the generic pattern description.

shows an occurrence of the three-tier pattern for the air-filter business example. A subsystem
called OrderViewClient plays the role of the Presentation subsystem. The OrderViewClient is responsible for
presenting screen views of order and customer information to the user. The OrderHandlingServer subsystem
performs all the business logic of the order-handling application. It, in turn, depends on the PersistentStore
subsystem to play the role of the Database part of the pattern. PersistentStore is responsible for all storage and
retrieval of order and customer information.
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Figure 20-9: Collaboration occurrence of a three-tier architectural pattern.

Using other architectural patterns

It can be especially helpful to use architectural patterns to get you started with decomposing your system into
subsystems. You may want to consider the following other architectural patterns:

B Facade: You provide a simple interface, the facade, to hide complex internal details, such as
the system’s subsystems, components, and/or classes. Many complex subsystems use this
pattern to hide their complexity from other subsystems.

B Adapter: You want to convert the interface of an existing system or subsystem, the adaptee,
to an interface more easily used, the adaptor. This pattern serves to “wrap” legacy systems
and hide the old interface to the legacy system.



B Master-slave: You have to have one subsystem, the master, in complete control of other
subsystems, the slaves. The master issues commands and accepts responses from the
slaves. Command and control systems tend to use this pattern.

B pipe-filter: When you want a system that must perform a step-by-step sequence based
purely on data input, you actually have two tasks:

O create a pipeline architecture with subsystems that perform each step.
O create a subsystem to hold the data.

The subsystems that perform each step can also filter the data passing
through them. Signal-processing systems and batch-oriented systems
(for example) use this pattern.
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In this part, we get to make several lists of stuff that help you model with UML while still being fun, informative,
and useful — such as common UML pitfalls and mistakes to avoid, Web sites full of additional UML
information to surf, UML tools that make pretty pictures easy to draw, and a selection of the best UML
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diagrams — complete with instructions on when to use them.
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Chapter 21: Ten Common Modeling Mistakes

Overview

In This Chapter
B Avoiding diagram pitfalls
B Checking for problems

We've been teaching modeling for the analysis and design of systems for more than a decade. During this
time, we've witnessed many of the same modeling mistakes over and over. As you learn to apply UML to meet
your needs, keep in mind these pitfalls (which we hope to help you avoid). This chapter lists ten of the most
common blunders made by modelers. Use it to check your work as you and your co-developers construct
UML diagrams.




Splitting Attributes and Operations

We see developers create some classes with attributes but no operations, and other classes that have no
attributes—only operations. (We don’t know about you, but every object-oriented class we ever met had both
attributes and operations.)

The developers making this mistake are really thinking about data structures and the functions that act on the
data. They translate that idea into the object-oriented world by using the steps much like the following:

Blunder 1: Equate data structure only with class attributes.

Blunder 2: Equate a function that manipulates data
structures only with class operations.

Blunder 3: Create one instance of the class with operations.
Blunder 4: Create one instance of the class with attributes.
Blunder 5: Use the class with the operations to change the

values of the class with attributes.

Do not follow the five steps we've just outlined (but you knew that). They lead to splitting up
attributes and operations. Big mistake.

Make your classes whole by putting the attributes and operations that need each other together in one
class.

shows classes with attributes and classes with operations—separately (and confusingly). The
Vehicle class works with the Truck class. The Tools class is similar to the ToolKit class. The Person class is
another name for the Employee class. shows a better model, with the attributes and operations put

together.
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Figure 21-1: Example of a split-classes mistake.
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Using Too Few or Too Many Diagram Types

We've observed some developers use just one diagram for every situation. They forget that other UML
diagrams are there to help them understand, communicate, analyze, design, and implement. They build class
diagrams to capture classes (and their static relationships), but also try to represent object interactions, data
flows, and system decompositions with those same class diagrams. Unfortunately, the class diagram was
never meant to capture that other stuff very well—but use-case, sequence, state, and activity diagrams seem
foreign to these experts.

Some developers produce only class diagrams because that's what translates most easily into object-oriented
programming code. Alas, the code they produce is not dynamic enough (because the developer didn't
consider state diagrams) or even what the user wants (because the developer never thought about the use
cases for the application).

Other developers seem compelled to use every single UML diagram whether they need to or not. Some
people pride themselves on their knowledge of UML notation. They show off their abilities by using every
diagram on every project. You waste valuable time trying to decipher these extra diagrams without making any
progress toward completing the project.

Every UML diagram has a purpose and value, but not every diagram is necessary on every project. Your
project is unique; some—nbut not all—UML diagrams will help you get the job done. If your project involves
maintaining an existing system (for example), then some class diagrams, a couple of sequence diagrams, and
a deployment diagram may be all you need. However, if you build real-time embedded systems, you need
state diagrams along with sequence diagrams (because you want the team to understand timing issues), and
some class diagrams. Every project is different.

Check out , where we list ten useful diagrams to get you started. Our aim here is to avoid getting
stuck on just one diagram—~but also to spare you the confusion of trying to use all the possible UML diagrams.




Team LiB m HEXT F

Showing Too Much Detail

One team of developers we worked with proud s over one hundred sequence diagrams they had
constructed. Each diagram was like the one in Eigure 21-3—only worse. There were twenty to thirty instances

shown at the top of some of these diagrams. The team used really big pieces of paper to print out their
masterwork. We asked them a couple of questions: “Do you maintain these diagrams—as the requirements
change, do you update their details?” Their answer was a simple “No.” (Yikes.)
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Figure 21-3: Example of sequence diagram with too much detail.

Often developers start drawing UML diagrams because they want to build a program. Each event line in our
client’'s sequence diagrams (for example) might become a method call from one object instance to another.
Rather than clarify the interaction requirements for their software application, the team bogged down in
unnecessary programming details before they even knew what to program.

If you think to yourself, | could have written the program in less time than it took to create this
diagram, then you have too much detail.

You can avoid too much detail by thinking about whether a risk to the project exists if you don’t show the
detail on your diagram. Often there is none. If you do find some risk to the progress of the project, than add a
little more detail to the diagram.
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Using Vague Terminology

To keep the peace, some modelers give their classes vague names. One modeler, for example, had a
diagram with the Tuple class on it—and the developers were confused about its meaning. When we asked the
modeler about it, we found out the modeler was avoiding a political fight. You see, the developers had strong
opinions about the meaning of specific data items. Instead of clearly defining Tuple to be a grouping of either
abstract or concrete data items and named functions, used as metadata in the process of extracting data from
a source data set, the modeler choose to stay out of trouble by using vague class names. No one could
accuse the modeler of choosing sides in the “data item” battle, and the modeling work could still go forward.

Now the whole point of using UML notation is to foster communication. Often users and developers are not
precise about what they mean. For example, you may find that the same term, Tuple—as applied to
abstract-versus- concrete data elements—has different meanings to different people. Work with each person
to find out precisely what he or she is talking about. Then use UML to communicate the different meanings
accurately to each group. You become the hero because you help overcome conflict among developers by
clarifying what they mean when they use similar terminology.




Defining the Same Thing Twice

The users you talk to have their own language and UML diagrams help you understand that language. But as
you carefully build class diagrams that define the terminology of your users, the unthinkable happens (in fact,
rather frequently): Two users use different words to mean the same thing. For example, in the insurance world
hazard and peril can mean the same thing. We asked one user the meaning of hazard and were told, “When a
hazard occurs, we must pay an insurance claim if the policy handles that hazard.” Another user told me, “A
peril is a description of an incident for which we write coverage.” We used UML to model the meaning of
hazard, peril, insurance policy, claim, and coverage. As this model matured, The Hazard and Peril classes had
almost identical attributes, operations, and associations with the Policy and Coverage classes. After we
discussed the meaning of hazard and peril with both users, they agreed the two words meant the same thing.

Look through your diagrams to find classes with similar attributes, operations, and associations. If you
find a couple of similar classes, question your users and the other developers. Ask for examples of these
similar classes from your users. If they turn out to be the same, you should choose a single name for the class
and stick with it. (You might use the other name for some other purpose—say, as a role name on an
association or the name of a common superclass.)




Linking Everything Together

Developers often get used to feeding a function with all the data it needs—and (just as often) apply this same
thinking to classes. These programmers create a class and connect it (via associations) to all other classes
that have any data the first class might need in one of its operations. For instance, an AutoPolicy class is
associated with Claim, MedicalCoverage, LiabilityCoverage, ComprehensiveCoverage, Auto, Agent, Premium,
Payment, and Person classes. The developer forgets that one class (AutoPolicy) can ask another class
(Premium) for information about yet another class—the dollar value from the Payment class—without having to
associate the AutoPolicy class directly to the Payment class.

Class diagrams—where most classes connect to most other classes—can be the royal road to
maintenance nightmares. Any time you associate one class to another class, you have a dependency
between those classes. If you change one class, the other may change too. The more associations between
classes, the more dependencies you must worry about.

When you see class diagrams with every class connected to every other class, remove some of those
associations. You should find out which associations are really necessary and which associations exist simply
to get data from one class to another class.




Creating Too Many Use Cases

Some business analysts go use-case crazy. Before they know it, they have an unruly plethora of use cases.
This happens when the business analyst creates—CRUD. Yep, CRUD. For example, the user needs to
Create addresses, Read addresses, Update addresses, and Delete addresses. So the analyst creates four
use cases to handle the Address class. Then, with a flourish, the Read Address use case is included by putting
«includes» in the Create, Update and Delete Address use cases. (By the way, this analyst is just getting started.
Every class known to the user must be created, read, updated, and eventually deleted—which means dealing
with thousands of use cases.)

When you see lots of use cases, check to see if they are CRUD. Check the following to identify CRUD:
B One class: Several use cases all center around just one class.
B Not a major class: The use cases deal with a relatively minor class in your application.

B CRUD: The use-case names are similar to Create X, Read X, Update X, and Delete X, where X
is the minor class.

B Simple interaction: Each use-case description is short and simple to describe.

B |nclude Read use case: Several of the use-case descriptions include the Read X use case. In
other words several use cases have an «include» relationship to a use case named Read X.

If you recognize CRUD use cases, combine them into one use case and call it Maintain X. However, if the
CRUD use cases really represent different goals to the users, then they should be separate.

You should be careful not to fall into the opposite trap of creating a diagram with one use case that
seems to do everything. You can recognize this situation by looking at the use-case description. If it has
sprouted many complicated alternative paths, replace that overburdened use case with several simpler ones.




Completing One Diagram Before Moving On

Some modelers get stuck because they want to “complete” one diagram before they work on another diagram.
For example, a team of developers can easily get fixated on use cases. They complete the use-case diagram
and fill out every single use-case description, down to the last alternative scenario. Only then do these
developers feel ready to move on to building a class diagram that defines the terminology that crops up in
those use-case descriptions. There’s just one problem: They discover that the terms used in the use-case
descriptions are inconsistent because various users expressed the same word to mean different concepts and
different words mean the same thing. As a result, the single-minded developers must go back to every
use-case description and change them, one at a time, to make them consistent with the class diagram.

The work you perform on one diagram can help you with other diagrams. Consider developing your UML
diagrams in parallel. For example, when you start your work on use cases, at the same time start building a
class diagram as you talk with users. Defining the meaning of the users’ language as you go can help keep
your use cases in sync with your class diagram throughout the project.




Cycling Around Class Diagrams

Modelers are not always careful with the multiplicity they show on class diagrams. However, you can discover
multiplicity inconsistencies easily if there are cycles in the class diagram. You have a cycle if you find a path

that starts at a class, goes along a series of associations and connected classes, and comes back to your
starting class. illustrates a cycle from Person to Policy to Vehicle back to Person.
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Figure 21-4: Class diagram with incorrect multiplicities.

To check for inconsistencies of multiplicity, work through the following steps:

1. Select one of the classes in the cycle as the starting point.
In the example in , start at Person.
2. Follow the association from the starting class to the next class in the chain.
This takes you to Policy because Person connects to Policy through the holds association.

3. Take alook at the multiplicity at the end of the association you just followed next to the
class you found in Step 2.

4. Make a mental note of what that multiplicity means for the two classes.
A person can hold exactly one policy.

5. Now go back to the starting class and follow the chain of classes in the opposite
direction until you get to the class you found in Step 2.

In the running example using , you have Person to Vehicle to Policy.

6. Take alook at the multiplicity at the end of the last association you just followed to get
to the class you found in Step 2.

In this example, this multiplicity is also exactly 1.

7. Consider the meaning of the indirect relationship between the starting class and the
ending class via this other route.

A person can drive zero or more vehicles and each vehicle can only be insured by one
policy.

8. Check to see whether the meaning you got from the diagram in Step 4 squares with the
meaning you got in Step 7.

If it doesn't, then you have a potentjal inconsistency in multiplicity—and it must be fixed.
If you are to believe the diagram in Eigure 21-4, an instance of the Person class can only
hold one policy, and a policy insures one vehicle. But that same person can drive more
than one vehicle (where each vehicle is insured by exactly one policy).




Those two statements are inconsistent under most circumstances. How can a person
hold only one policy (if you follow the holds association) and hold more than one policy if
he or she drives several vehicles and each of those vehicles can have a different
policy?

Check all the cycles in your class diagrams for contradictions by using the eight steps given here.




Not Listening to the User

Many of the modeling mistakes we see are traceable to someone’s poor listening skills. Rather than listen to
what a user needs from a software application, some developers are too busy thinking about how they are
going to write their next program. These developers dream up terminology like QualifiedEditableAccount, Tuple,
and Xref. In the end, the software does not meet the needs of the user. That's partly because those arcane
terms aren’t much help when the original developers are no longer on the project. When users ask for a better
system, the new developers get completely confused because they can't relate what the user is saying to
anything in the program code.

Users provide you with a wealth of information for your software application. Here’s a strategy for making
the best use of it:

1. Listen to your users carefully.
2. Convert the users’ terminology into classes.

For example, in the insurance domain, define Policy, Customer, Vehicle, Coverage, and
Claim.

3. Convert the users’ required interactions with your software into use cases and
sequence diagrams.

Capture what it means to the user to “generate a policy,” “handle a claim,” and “bind a
policy.”

4. Design your system and write the code based on what the user told you.

For example, implement a Policy class that uses the same terminology as that of your
users.

5. Listen to the user after you deliver the software.

Now, when the user talks about changing something related to an insurance policy, you
know right where to go in your design the make changes. You will not be hunting down
Tuple and Xref to see whether that's where to change your code.

Recently, while serving on a “panel of experts” at a conference, one of your authors (Jim, in fact) was
asked, “How can you tell a good modeler when you see one?” His response was, “The best modelers are the
ones who really listen.”




Chapter 22: Ten Useful UML Web Sites

Overview
In This Chapter
B Finding more information on UML
B yiilizing the Web as a UML resource

We'd like to believe that after you read this book on UML 2, you'll never need to look at another UML
resource—but we know that's not true. UML is so big and vast (with new approaches to using it arising all the
time) that it's likely you'll need to find more information on UML some time in the future. We've constructed this
chapter to recommend some useful Web sites that should help you with your future UML needs.

Before you go any further, when you first find that you need something more on UML, you should go to your
friendly neighborhood bookstore, or if you prefer the Web, go to Amazon.com at and spin
through the capsule reviews of books on UML. And if you (ahem) happen to find some more of ours. . . . (Well,
okay, we know our books aren’t the only ones out there, but why break up a beautiful relationship?)



http://www.amazon.com

Weave a Tangled Web

The Web is a good source of information, but it's not a perfect source. You'll find three main problems with
using the Web as a source of information:

If it costs nothing, it may be worth nothing. The quality of the Web sites is notoriously
uneven. Examine every Web site with a challenging eye. Is the information on this site
accurate and useful? Not every one who publishes on the Web is an expert. This chapter
helps you select trustworthy sites—but never suspend your judgment while surfing.

Nothing’s where it used to be. The Web is ephemeral. Sites appear and disappear, change
their names, or quickly get out of date. You may have to be a skilled sleuth to find the latest
incarnation of a site.

You can’t surf a million waves at once. The Web is so big that you'll guickly be inundated
with information. A simple search for UML on Google, .google.com, results in over
1,390,000 hits.

With these limitations in mind, you may wonder why you should bother with the Web at all. Well, the Web’s
advantages stem from the same properties as its disadvantages:

The price is right. While the highest-quality material will be from traditional books, almost all
material on the Web is free.

Quick and up-to-date. Not only is it quicker to find a Web site than buying a book, the Web is
often the only place to get up-to-the-minute material. In a fast-moving field like system
development with UML, you'll be able to hear about something first on the Web. (Of course,
afterward you'll probably want to buy the book.)

Diversity of opinion and expression. The Web is so large that you're more likely to find
someone who has an answer for your specific question, or for your domain, or expressing a
point of view similar to yours. That’s a big help when you're doing something fairly different
or have a problem understanding the standard examples.



http://www.google.com

UML Home Page

As OMG is the owner of UML, you should first go to OMG for the official information about UML.

OMG is located at , but you'll probably want to go directly to their UML home page at.

From this site, you can find pointers to the official UML 2 and UML 1.x published specifications and official
works-in-progress. For example, the official UML 1.5 specification is found at

.omq.org!technoquy/doctiments/formallumI.htrr{.

The UML 2 official Request For Proposal (RFP) documents are also there. If you work for one of the over 800+
members of OMG, you'll also be allowed to look at ongoing works-in-progress.

This site has additional useful background information on UML and some pointers to other informative UML
sites.



http://www.omg.org
http://www.uml.org
http://www.omg.org/technology/documents/formal/uml.htm
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UML Forum

UML Forum (M.uml-forum.cogl) is a virtual community and knowledge portal containing pointers to some
official and semiofficial information.

We particularly like the set of UML tutorials written by key UML developers such as Cris Kobryn, Gunnar
( Bran Selic ), Morgan Bjérkander (morgan.bjorkander@

telelogic.se), and . You'll also find pointers to tool vendors, UML books, and conferences.
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http://www.uml-forum.com
mailto:gunnaro@morfeus.it.kth.se
mailto:karin.palmkvist@enea.se
mailto:J.Warmer@klasse.nl

UML 2 Submitters

There are several groups submitting UML 2 proposals to OMG. While the winner’s site will be the most useful,
the other submitters’ sites will have useful information on how they see UML 2 being used—and some
alternative approaches to modeling:

B UML 2.0 Partners: The leading group, called U2P (UML 2.0 Partners), has a Web site
(lNWW.UZ—EaI’tnerS.OI’ ) where you can download their latest proposals, catch the latest news,
and make comments on their Yahoo! group.

B Community UML: One of the proposing groups, the communityUML (yep, one word),
maintains a Web site of all the various proposals, including their own proposal called 3C
(Clear, Clean, Concise). See http://community-ml.org/submissions.htn.

B 2y consortium: A siecific Web site for the 2U Consortium (Unambiguous UML) can be

found at jww 2uworks.org

B ,UML: A specific Web site for the precise UML group (pUML) can be found at
pww.cs.york.ac.uk/puml/umi2_0.htm).



http://www.u2-partners.org
http://community-ml.org/submissions.htm
http://www.2uworks.org
http://www.cs.york.ac.uk/puml/uml2_0.html

[« rrevious | nescr s
OCL Center

OCL is an important part of UML whose use is increasing with the growth of Model-Driven Architecture and
model-consistent business rules. You'll also need to understand OCL if you want to understand the formal
UML 2 specifications. This Web site (vww.klasse.nl/oc|) keeps you informed about the status of OCL, OCL 2.0,
and several OCL-dedicated tools.

[« rreviovs [ exi )



http://www.klasse.nl/ocl

Magazines and Information Portals

These sites usually have copies of their latest articles from their magazine or for-fee services. They're often
controversial, but are full of insightful opinion and advice.

B Software Development Magazine: Software Development Magazine has a Web site for their
nfluential articles on UML. Always interesting. Take a look at their UML Design Center at

vww.sdmagazine.com/umij.

DevX: DevX has an excellent set of recent articles on UML in their UML Zone. Some of their
best stuff requires a paid-up membership. Take at look at what they have at

vaw.devx.com/uml.



http://www.sdmagazine.com/uml/
http://www.devx.com/uml

Search Engines

Searching for UML is a tricky business. First of all, UML doesn’t only mean Unified Modeling Language. You'll
probably find hits for User Mode Linux, University of Massachusetts Lowell, and Unified Marxist Leninist (the
Communist Party of Nepal). Together these hits may outhnumber the hits on UML sites. Use the advanced
search forms when possible to eliminate the extraneous hits.

You have several options when choosing a search engine:

B Google: The most popular Web-search engine appears to be Google ).

B Tech search engines: You'll probably be best searching with more technically focused
search engines from Northern Light (http:// niresearch.northernlight.com/research.html),
Overture (asovesecon o Teoma (anuicoma corl

B Zeal.com: Another good search engine is . In this site, users can suggest sites

and write reviews. The quality of the hits is very good, and you can be become one of their
Zealots.



http://www.google.com
http://www.overture.com
http://www.teoma.com
http://www.zeal.com

Team LiB m HEXT F

Tool Sites

Many UML tool vendors offer good UML sites in addition to their tools. Here are some of the best:

B Rational’s UML Resource Center: Lots of good material, especially some early stuff on UML

(bww.rational.com/um)).

B popkin’ : d book recommendations
( .popkin.com/customers/customer_service center

enterprise_architecture_resource_center/uml.htm).

[« rreviovs [ exi )



http://www.rational.com/uml
http://www.popkin.com/customers/customer_service_center/

Training Sites

Several companies

make a living by offering training, consulting, and mentoring in UML and other related

topics. Their Web sites offer online course catalogs and often articles and other reference material. We could

start, of course, by recommending our company, the Advanced Concepts Center, LLC, and its Web site

{ .acclearning.co

) for discussions on UML, a complete list of UML tools, great courses, and (harrumph) a

highly knowledgeable staff of instructors/mentors. But if you happen to be on another continent or planet, then
by all means look around for a nearby UML guru.



http://www.acclearning.com

Forums and Groups

Participating in a community forum is sometimes the best way to get up to speed. Members share their
questions, opinions, and experience. Often there’s a resident expert or two who helps the group. The quality of
the answers may vary, and the quantity of traffic can be large, but here are some of the best. Visit them and
you may (virtually) bump into one of us as we stop by to give some advice:

B yML-Forum: With over 1000 members, this is one of the largest groups; Cris Kobryn, the
leader of the U2P team, moderates it. (http:// groups.yahoo.com/group/uml-forum/)

B The OOAD UML group: This group is probably even more active than the UML-Forum.

(thtp://qroups.yghoo.com/group/OOAp UMLY)



http:// groups.yahoo.com/group/uml-forum/
http://groups.yahoo.com/group/OOAD_UML/
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Miscellaneous Sites

Here are some interesting specialty UML sites that might be worth visiting:

B Define a term: If you need to look up a UML term, try Kendall Scott’s UML Dictionary at

Ivvww.softdocwiz.com/UML.htEI.

B Ask a question: If you want an interactive Ivar (a chatterbox in the form of a virtual
simulacrum of Ivar Jacobson) to query about UML, try Jaczone’s Cyber Ivar at

fowny jaczone comeyberive]
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http://www.softdocwiz.com/UML.htm
http://www.jaczone.com/cyberivar

Chapter 23: Ten Useful UML Modeling Tools

Overview

In This Chapter
B Knowing which tool to use just in CASE
B Choosing a UML modeling tool

No matter how good you are at drawing, even if you're an artist, you're not going to do a lot of UML by hand
on paper or even on a whiteboard. Maybe for a few high-level diagrams, it'll work. But the more complex
diagrams are difficult and hard to draw, and the cross-diagram consistency quickly gets out of hand, even if
you're handy with a drawing tool. Many different UML tools are vying in the market for the privilege of helping
you with drawing. Most of these tools will do more than drawing, even more than modeling—they’ll do
consistency checking, generate code, write reports, reverse-engineer existing code into models, and a host of
other things. The full-featured tools are often called CASE tools, where CASE, in case you didn’t know, stands
for Computer-Aided Software (or sometimes System) Engineering. Some don't like the CASE tool moniker and
prefer Modeling tool because the CASE tools got a bad name in the early nineties when they weren'’t quite the
silver-bullet solution they were claimed to be. But whatever name you call them, reach for these tools when
you want to do UML modeling.




Picking a Tool

Pick a tool that meets the following requirements:

Up to date: Does your tool support UML 2 (or have plans to do so within your timeframe)?
Some of the smaller tools don't have the time or money behind them to stay updated. On the
other hand, sometimes the larger tools are burdened with a large user population that must
migrate to any new version. Look for the UML 2 features that you need—and consider how
soon you can get them up and running.

Affordable: Buy the best tool that you can afford, considering not only the price of the tool
but also the price of any support or maintenance that you’ll need. Look for a tool that fits
your checkbook.

Understands XMI: XMI (XML Model Interchange) enables you to get your model out of one
tool and into another tool. If your tool supports XMI, you're less likely to get stuck with the
limited modeling capability of a tool that you've outgrown. XMl is also essential for getting
the best-of-breed in tools. Many vendors specialize in enabling specific parts of the
development solution (for example, modeling, metrics, or code generation). With XMl as the
glue, you can pick one tool as the best for modeling and another as the best for generating
code. Look for a tool that speaks XMI.

Stable: The fancier the tool, the more unstable it may be. Look for a tool that foregoes too
many bells and whistles so that it won’t blow up on you.

Supported: The UML tool market is an exciting and dangerous place; companies come, and
companies go. Look for a tool from a company that you trust.

Checks consistency flexibly: Most tools have some ability to check consistency among the
models. This is good. However, you'll often find that the tool’s idea of consistency may be
too strict for your purposes. Look for a tool that enables you to control checking at the lowest
level possible.

Has an MDA approach in mind: With the growing popularity of the OMG’s Model Driven
Architecture approach, a good tool should be able to support this initiative by handling
platform independent and platform-specific modeling. Look for a tool that supports MDA.

Scalable: Many tools are great solutions for single users but won't scale up to many users as
the same time. So consider: How many of your users can be modeling at the same time?
Look at the tool’'s strategies for locking, providing concurrent updates, and managing
configurations. See whether it meets your team’s needs; look for a tool that grows with you.

Works in and for your environment: The tool has to run on your development platform as
well as generate code suitable for your target platform. Look for a tool that works where you
want it to.

Supports the diagrams that you need: It's unlikely you'll need every diagram that UML 2 has,
certainly not equally. For example, some tools make the best class diagrams, some make
the best state diagrams, and some make the best use cases. They differ in the amount of
detail that they support, and in whether they generate code from that diagram. Look for a
tool that knows how to do what you want.

At our last count, there were over 128 UML-capable tools to choose from—a tool for every user, purpose, and
price range. In fact, it's been said that any developer who acts as his or her own tool has a fool for a tool. So
take a look at some of these tools and pick what works for you.



We selected ten representatives that should simplify your choices, but if you don’t find what you need, there
are plenty more out there.
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Argo/UML
B produced by: Tigris
B web site: argouml.tigris.org

Maybe you don’t want to pay a lot—or you want to get a good tool for free. Well, with Argo/UML, you tap into
the Open Source community. Argo/UML is a fast-growing and improving tool, with support for OCL and
automated design wizards. Choose Argo/UML when you want to go open source.

[« rrevious | o
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Cittera

B produced by: CanyonBlue

B \web site: M.canyonblue.cor_rl

The Internet is supposed to change everything. Cittera uses a Web-based repository for your models and will
host your models. Their collaborative development approach enables users from all over the Internet to work
on the same model—complete with audit trail and version control. Choose Cittera if your development is
distributed, mobile, and flexible.

T



http://www.canyonblue.com

Ideogramic UML

B produced by: Ideogramic

B \web site: M.ideogramic.com/groductg

So maybe you really want to use your hands and not the point-click-drag idiom. This tool is
gesture-based—specialized (but easy-to-remember) gestures enable you to draw UML diagrams that can be
saved and transferred to any XMI-capable tool. Hook it up to something like Mimio to draw diagrams on the
whiteboard. Your squiggles are straightened, and correctly formed boxes appear. Chose Ideogramic UML if
you want to draw great-looking diagrams on a whiteboard with almost no effort.



http://www.ideogramic.com/products

Objecteering

B produced by: Softeam

B web site: M.ob'ecteering.cod

Every tool has its own strengths. Objecteering is strong in many areas but is probably the most powerful UML
tool for constructing profiles. This means that if you want to use one of the UML dialects—such as SPEM
(Software Process Engineering Modeling), CWM (Common Warehouse Modeling), or EDOC (Enterprise
Distributed Object Computing)—you may want to use Objecteering. This tool is also especially handy if you
want to make modifications to support your special methodology.



http://www.objecteering.com

Rational Rose Suite

B produced by: IBM

™ web site: e rationai conf

You probably can’t go wrong with the most popular tool. It's certainly strong in many areas and has a full suite
of tools to support your development, especially in areas such as requirements management and
configuration management. Rational has other UML tools, such as Rose R/T and Rational XDE, that are also
worth looking at. With IBM owning Rational, things may change, but for now, it's the market (and marketing)
leader. Choose Rational’s tools if you're conservative or need the full software development environment.



http://www.rational.com

Team LiB m HEXT F

Rhapsody
B produced by: i-Logix
B web site: v iogicor]

If you're a real-time or embedded-systems developer, you'll need a special tool. There are several out there,
but Rhapsody is one of the most popular. Choose Rhapsody if you're embed (so to speak) with real time.
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http://www.ilogix.com

System Architect

B produced by: Popkin

B web site: M.Eogkin.com/groducts/sxstem architect.htd

This popular tool offers you something UML-and-beyond: It also supports Enterprise Frameworks such as the
Zachman Framework and the Department of Defense Architecture Framework (DoDAF, formerly C4ISR
Framework). These frameworks are gaining wide acceptance in the commercial and government sectors for
capturing information on entire businesses. (Frameworks are templates for capturing the who, what, why,
when, where, and how of the entire business at various stages of development.) UML is integrated with
support for traditional business process, as well as functional, organizational, and relational data modeling—all
of which provide great legacy-environment support. System Architect also supports system-engineering
environments. Pick System Architect if UML isn’t enough for you.



http://www.popkin.com/products/system_architect.htm
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Tau

B produced by: Telelogic
B web site:

Here’s another leader in UML and software development. Telelogic is noted for higher-end technical tools that
are attractive to large-scale aerospace, communication, and manufacturing projects (among others). Tau
offers good real-time and multiuser capabilities as well as a powerful suite of associated tools. Telelogic’s
latest version, Tau, Generation 2, was the first to claim UML 2 support. (See .) Pick Tau if you
need the power.
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http://www.telelogic.com
http://www.taug2.com

TogetherSoft

B produced by: Borland

B \web site: M.togethersoﬁ.cor_rl

Sometimes you want to be agile. TogetherSoft's powerful tool attracts the eXtreme Programming developers
and is probably the tool with the fastest-growing market share. When you change the diagram, the code
changes before your eyes—and vice versa. Borland has a whole bunch of other great UML tools, and it is
assembling a powerful suite, but it has an integration challenge ahead. Choose TogetherSoft if you want to be
streamlined and agile, or if you like a powerful underdog.



http://www.togethersoft.com
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Visio

B produced by: Microsoft

B web site: M.microsoft.com/oﬁice/visid

Not just a drawing tool, Visio includes code generation, reverse engineering, and good notation coverage.
Microsoft has been quietly building up Visio to be a complete tool tailored for its .NET environment. We expect
to see more from Microsoft as the competition in the tool market heats up. Choose Visio if you buy the
complete Microsoft line or like the flexibility of having a good drawing tool.
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http://www.microsoft.com/office/visio

Chapter 24: Ten Diagrams for Quick Development

Overview

In This Chapter
B Choosing when to use a specific UML diagram
B Recognizing what each diagram is good for during development
B yUnderstanding what each diagram shows

This book provides you with a basic reference to the Unified Modeling Language—but you also have to know
why particular diagrams are important, when to use them, and what each diagram can do for you. This chapter
gives you a tour of our ten favorite ways of using the basic UML diagrams—as well as a few tips along the
way. You will find more detailed examples of the basic UML diagrams and how we use them throughout the
rest of the book.




Context Diagram

The first diagram that you need on any project is a context diagram. UML does not have a context diagram per
se. We use the use-case diagram of UML to show the context of the system or software that we are
developing. So, we give this special use-case diagram a solution-oriented name: context diagram. If you
already have one, that's great. But in our experience, most software- or systems-development projects start
out without a context diagram, blissfully unaware that they need one.

For your system or software development to be successful, you have to know the answers to the following
guestions:

B \Who uses your system?
B \What data must go into your system?

B \What information and objects must your system produce as output to users and other
systems?

A context diagram answers these questions because it shows your system in a setting (context) defined by its
interactions. The diagram helps define the boundaries of your system or software application by showing all
the users and systems that your application must interact with.

A context diagram provides a good starting point for your work on use cases. In fact, you build a context
diagram based on the use-case diagram provided by UML. Use the following steps to construct such a
diagram:

1. Place alarge rectangle in the center of the diagram.
This represents your system or software application.
2. Place the name of the system at top-center, just inside the rectangle.
3. Identify and name each of the actors that you expect to interact with your system.
Actors can be human users, other systems, hardware, or the clock.
4. Place the actors around the outside of the rectangle representing your system.

Use “stick figures” (including the name of each actor) for human users. If the actor is not
a human, use class notation that uses the name of the actor as the class name and
give the class the «actor» stereotype.

5. Draw aline between the actor and the system rectangle.
This shows that the actor interacts with your system.

6. Show the information, data, and/or objects that flow into your system from an actor
above the line connecting that actor to the system.

You show this as text with a small arrow pointing from the text toward the system
rectangle.

7. Show the information, data, and/or objects that flow out of your system to an actor
below the line connecting that actor to the system.

Again, you show this as text with a small arrow pointing from the text toward the actor
receiving the system output.

Repeat Steps 6 and 7 for each actor that sends data into the system or receives data




from the system.

The context diagram helps you set boundaries for the scope of your project. You know from the

context whom your system must satisfy, what data your system must accept, and what data your system must
generate.




Use-Case Diagram

To understand your system’s requirements from the users’ perspective, build a use-case diagram. A quick way
to create one is to start with the context diagram. If you remove the data input and output from the context
diagram and simply add a use case for each of your actors, you have a use-case diagram.

The use-case diagram helps you understand the major functionality that your system must provide for each
type of user. That's vital information when you want to organize the requirements imposed on each group of
users (that is, on each actor). Each use case tells the requirements story from the user’s perspective.

Don't try to complete your use-case diagram with all the use-case descriptions (textual description
of the details of the user’s use of the system) at once; instead, follow these steps:

1. Develop a basic use-case diagram and just supply the name, summary, and actor in
each use-case description.

2. Model the user’s domain in a domain class diagram for your use cases.

For more information, read the section }?Domain Class Diaqramhater in this chapter.

3. Return to your use-case descriptions and fill in the pre- and postconditions.
You might also want to provide a (simple) example of a user interaction.

4. Add details that you found while discussing user interaction (in Step 3) to your domain
class diagram (in Step 2).

5. Consider adding alternative and error scenarios to your use-case descriptions.

Creating careful, thorough use-case diagrams, and use-case descriptions can help you achieve the following
goals:

B Easier communication: Use cases are written in the language of the user. Your users and
project stakeholders understand what you're talking about because you use their words. You
understand what the users are saying because you focus on their needs.

B Better-educated users: Users often don’'t know exactly what they want in a new software
application. You will educate your users because you understand their goals, develop use
cases to meet those goals, and describe back to the users (in a language that they
understand) what the use cases does to help them. As you help users to focus on their job
goals, they in turn tell you what they need from your system to meet those goals.

B Closer focus on requirements: Developers find it hard to focus on requirements. All too often
they think about how to make a program work. Developers focus on technology and
implementation details because that is their training. Use cases help you stay focused on
users’ needs (requirements).

B Natural stages for incremental development: Each use of the system is geared toward one
group of users. You don’t have to build an entire application; all you need is one that does
just a few use cases. Then, incrementally, design and build a few more use cases—and
deliver them in the next increment to your system. You can get away with this incremental
approach because use cases don’t depend on each other. What one group of users may
need is different from what another group needs. In our experience, each use case has its
own classes. If the user requirements (for example) change for one particular use case, they
don't cause changes in other use cases.
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Domain Class Diagram

Your users work with objects all the time. They talk about the objects and their relationships in their domain,
which is a fancy term for the group of objects that your users deal with. The insurance domain has objects
such as policy, policyholder, claim, coverage, covered item, and hazard. Finance has its own domain
language, including items such as equity, fund, portfolio, account, and trade. To build a system or a software
application that your users understand, we recommend that you capture the language of the user in a class
diagram that we like to call the domain class diagram.

If you take a look at the applications that you build, you find some of the same classes in each application. If
you work in the insurance domain (for example), you need a policy class for applications such as policy
generation, underwriter review, claims handling, and premium billing. You can also use the domain class
diagram to define specialized terms and other user jargon. That's because there’s one thing that computers
can’'t handle—vagueness. Every term, class, attribute, operation, and association must be nailed
down—precisely.

A domain class diagram must accomplish the following:
B precisely define user terminology
B provide common classes that are useful in many different applications
B Allow you to work with users to understand how they structure the world

So take the time to build a class diagram that accurately reflects what your users mean when they talk about
their “domain.”

Start building a domain class diagram early in your project. We begin our own domain diagrams at the
same time that we’re working with users to develop use cases.




Sequence Diagram

We use sequence diagrams to show interactions between objects related to our system or software
application. You can use these diagrams to detail the scenarios for each use case. The sequence diagram
shows a small group of objects and the events (important moments in time) being passed between the objects.
As time passes, you show each event in sequence, moving down the page of the diagram.

Don't try to show how your objects collaborate by using a sequence diagram during analysis. Some
developers use the sequence diagram to show how their programs work before they clearly understand the
requirements. You can avoid this mistake by showing when an object must notify another object that an
important moment has arrived.

Don't try to show thirty-object instances across the top of a sequence diagram. We've seen this done—it isn't
pretty. You should have between two and eight objects on a single sequence diagram—no more. That way,
the diagram doesn't get too cluttered.

We like to build two levels of sequence diagrams during analysis:

B High-level sequence: To focus on a use case, we show a sequence diagram with just the
actor objects and an object representing the system. These diagrams, each showing no
more than two or three objects, are a graphical way of relating the text of a use-case
description. This type of sequence diagram gives a high-level view of events and of the
order in which they come into and go out of our system.

B Application-level sequence: For each use case, we build application-level sequence
diagrams. For each high-level sequence diagram, we substitute the actor objects with
application objects such as view, boundary, and device objects. These are the objects that
the users will actually interact with. We replace the system object with some kind of
controller or manager object.

If you want to show object collaboration during design, use a communication diagram and not a
sequence diagram.




State Diagram

State diagrams show the internal workings and life cycles of your objects. For instance, each software object
is born into the runtime environment, lives a life interacting with other objects, and then dies out. State
diagrams capture these important moments in time, including the event transitions for your objects. The states
themselves capture what your objects are supposed to do after an important event.

We build state diagrams for objects that are dynamic. In other words, they change a lot during their life. In
general, you can build a state diagram for the following kinds of objects:

B Controllers: Those objects that control the timing and behavior of other objects are called
controllers—the objects that know when to get things done to meet the goals of your
system. This type includes objects that make each use case work properly as well as objects
that must start up and shut down your system. Each of these objects exhibits complex
behavior that must be done in the right order at the right time.

B Event handlers: If an object must receive events and then (as a result of the events) ask
another object to actually perform the needed work, the object that has this job deserves a
state diagram. Use the state diagram to show the allowable sequence of events and the
resulting behavior.

B Aggregations: When you have an aggregate with many parts, the object that represents the
aggregate has an interesting life. At first, the aggregate must create instances of its parts. It
then must receive requests from the outside and pass them off to the appropriate part(s).
When the aggregate is deleted, it must first delete its internal parts in the right order and
then (and only then) delete U should capture the complex life cycle of an aggregate
with a state diagram. (See Ehagter 5 for more on aggregates.)

B Dynamic domain: Every user domain has at least two or three dynamic objects. For
instance, an insurance policy goes through many states in its life—open, established, claim
processing, canceling, archived, and closed (to name a few). Look at each of your domain
classes and think about their life cycles. If those look interesting, build a state diagram that
describes them.




Application Class Diagram

There comes a point in your project when you have to understand requirements imposed by your application.
To gain that insight, we build an application class diagram for each use case. The application class diagram is
simply a UML class diagram that shows the classes that work together to accomplish all the scenarios of a
particular use case.

A domain class diagram defines the requirements imposed on you by the user’s language. The
application class diagram defines the requirements imposed on you by the very application that you're
building.

If your users interact with a graphic user interface (GUI), you need classes that know how to paint the
GUI in a way that offers a view of some domain classes. For example, if a user wants to see a policy object,
you need a view class that extracts the data out of an instance of the policy class and shows that data in a GUI
window—complete with text boxes, radio buttons, and drop-down lists.

If any use cases require your application to do things in a specific order, create a controller class. This class is
responsible for remembering what the user has done and what comes next. For example, in the insurance
scenario, when a user generates a policy, he or she must create the policy first—and then assign coverage to
it, assign covered items, and indicate who owns the policy. When the user has done these tasks, all this
information must be complete and correct before the policy goes to the underwriter for review. In this case, we
create a policy manager class that controls the other objects at runtime, making sure that the use case works

properly.
Other than a controller class and view classes, you may have to create the following application classes:

B Boundary class: This is a class that hides the details of one part of a system from another
part. We use a separate class that knows how to access the database as a boundary
between our domain objects and the database.

B Device class: A device class usually represents a physical device (such as a barcode
scanner) or the software driver for a physical device. Working much like a boundary class, a
device class isolates a physical device for our domain objects.

B surrogate class: We use surrogate classes to stand in for our use-case actors. Actors are
those things outside our system that interact with the system. Surrogates are classes inside
our system that stand in for the actor outside the system. If our application must store and
track information about users (for example), we create surrogate classes inside our system
to hold that data.

You may find that other developers use different terminology for these classes. Instead of using controller,
they use control. Instead of the word boundary, they use the word view or interface. Instead of calling the
diagram an application class diagram, they call it a robustness diagram. (“You say tomayto, | say tomahto. . .
.") No wonder people get confused.

Don't try to give your domain classes all the knowledge of the following:
B How to display themselves in a GUI window
B How to display themselves over the Net in a Web browser
B \When to display different attribute values
B How to store and retrieve data from a database

Let your domain classes know how to be themselves. Let other classes have the responsibility of showing




your domain classes as pictures in a GUI or of handling their interactions with a database.
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Package Diagram

Your systems or software applications start out as one big design problem. Like all good engineers, you take
that problem and break it up into smaller problems. If you can solve each of the little problems, you solve the
big problem. You can use the package diagram to help break a big problem into smaller problems—and show
that decomposition.

We use the UML package notation to show our application as a large package. Inside the large package, we
show smaller packages—one for each subsystem. After our subsystems are set, we convert the packages into

subsystems. Then we draw dependency lines to indicate which subsystems must rely on othe
subsystem(s)—and which ones they rely on. (For more details on this process, see .)

At the start of your systems design phase, draw a simple package diagram showing the decomposition of
your system into subsystems. Then consider all your system design issues such as layering, subsystem
interfaces, database access, and networking. As you make your strategic design decisions, modify the
package diagram to reflect those decisions. Finally, give a copy of this big picture system diagram to each of

the subsystem design teams. By using the package diagram, they can understand how their subsystem fits
into the overall system.




Deployment Diagram

Your system or application has two crucial structures that exist in the real world—hardware deployment and
software artifacts. Too often developers get lost in the details of their code without ever understanding how
their work fits into the deployed application. We use a deployment diagram to document our
hardware-and-software layout.

During system design, show the hardware architecture of your application with a deployment diagram. Then,
as you develop your software for each subsystem, show the software as artifacts on your deployment
diagram. That way, you gain an understanding of where each piece of software runs and on which piece of
hardware. Finally, show the reliance of one artifact on another by means of dependency lines.

Use deployment diagrams to look for places in your design where there may be too much
interdependence among the pieces of hardware and software.




Communication Diagram

In your object-oriented system or software application, objects working together make the application work.
Use communication diagrams to show this all-important object collaboration; they should show the following
aspects of that cooperation, all at the same time:

B |nstances of parts linked together for a specific collaboration
B Flow of control by showing the numbered sequencing of messages being sent to each part

B Flow of data by showing the parameters being passed along with the messages and the
return data assigned to the results of a message

Use communication diagrams at design time to explore exactly how your objects work together—and
then document your design for programmers to implement.

We use communication diagrams both at systems design time and detailed design time. The system
communication diagrams show how the subsystems cooperate to accomplish the system’s use cases.
Communication diagrams showing subsystems as objects help us understand the interfaces that each
subsystem must provide. At detailed design time, we build communication diagrams to show how the objects
inside a subsystem will work together to accomplish the major operations required of the subsystem.




Activity Diagram

When you want to focus on the flow of control across objects and the flow of data from object to object—but
not on the relationships between objects—use the activity diagram. This diagram allows you to show
sequences of behavior over time among objects—but (unlike the communication diagram) it doesn’t show
linkages between objects. This diagram is especially useful when you’re showing workflow among people in a
business process.

Instead of building lots of sequence diagrams to show all the possible ways that events happen in
parallel for a single use case, you can use one activity diagram.
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of qualifiers, H

data-validation rules, in use case scenarios, @

DDL (Data-Description Language), UML modeling tools supporting, B
decision node,

decomposition of system

creating subsyste| 3217323
definition of, B1 20732
process for, 22?232

deep history pseudostate, @

default values, attril
definition of, |
inheritance and, ﬁ




/defer, for deferred events,

deferred event,

«delegate» stereotype,

delegates, for components,

delegation connector, @

Department of Defense’s Architecture Framework. See

dependencies
dashed line for ,,
with diagrams,
with interfaces, 29?733
with merged subs@r 3522354

with subsystems, m

deployment, subsystems based on,

deployment diagram

artifacts in, m
constructi m
uses of, [14], ﬁ M 390?39
derived attributes
definition of, b g
inheritance and, m
design class diagram, 28?7232
design pattern. See

design phase
package diagram for,
sequence diagrams for, ﬁ
subsystems for,

designers, B
design-time boundary objects, @

«destroy» stereotype, @

destructor operation, Q 5

developers. See

development. See |software and system developmenl
device class,

«device» stereotype,

devices as actors,

DevX Web site,

diagrams. See also Ishapes and symbols jn UML diaqrams]; specific diagrams
abstract classes repreE-emed in,
actors represented in, [L372138, 139214
aggregation represented jn, B3?78 @
alternative categories of,

architectural patterns re@ented in, B55?354

artifacts represented in,

association classes represe i

associations represented in,ﬁ @ a Ia Ia
choosing using modeling fra e,mdsf] 5?14

classes represented in, 52256, £9?76

collaborations represented in, @ B55?35




completing in parallel,
components represented in, |
composition represented in, B6281,
converting to code,e@

dependencies represented in, Ia ,
diagram of,

events represented in, @ ﬁ M

generalizations represented in, P 6

generalized use cases represented in, [L67?168§
interfaces repres,au_mj_i,n‘3
level of detail in, 6423

lifelines represented E.l%?lgé

links r nted in,
list of,E
multiple inheritance represented i
multiple, wrapping into packages,
multiplicity representedLi
nodes represented in,
number of elements in,
objects represented in,
point of view for,ﬁ
preconditions and po itions represented in,
roles represented in, [/1?7
specialization represented in, m
spelling and grammar checking for,
states represented in,
subsystems represented in, 32
transitions represented in, 90229
use caseﬁeﬁted in, [L39?7141], h67?1ed
13714,

uses of, |

using too many or too few, 363?364

diamond
for decision and merge n
filled in, for composition
hollow, for aggregation,

=

B4

direction of argument, 5

discriminator. See beneralization setg

do/, for activity in a state, @

DODAF (Department of Defense’s Architecture Framework), E
do-forever state, @

definitio
uses of, , B86?238
domain classes. See also M

analysis packages for, B 2
definition of, [121?12
dynamic, B89

responsibilities o @
subsystems for, &
domain groups, 341?342




domain language,

dot
for initial nodes ﬂ
for initial state, E
dot operator (.), OCL,

double angle brackets (<<>>), for stereotype, E

double colon (::), between class and operation, 5

do-until state, @

dynamic diagrams, E
dynamic domain classes,
dynamic modeling. See leventsl; Istate diaqranl; lstatesl
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EJB (Enterprise Java Beans), @

elide. See

«embedded device» stereotype,

embedded systems, UML modeling tools for, Q

encapsulation, E

Enterprise Java Beans. See
«enterprise» stereotype,

«entity» stereotype,
entry/, for entry actions,
entry action,
entry event,
enumeration datatype, @
«enumeration» stereotype, ,
error handling, for aggregation, @
event handlers, state diagram for,
event hierarchy
creating, 812283
paramete
event protocols,
event transition, @ h67?26é, Ig78?27é

events. See also
actions performed during,

completion,

definition of, 5

generalizing,

guard checking condition durin
handling ith one operation, E

icons for,
identifying, 63-263

inheriting,_in substates, E98?30d
internal,, &

occurring during object’s stat
operations corresponding to, R78?
organizing into an event hieral ,
passing information to object,@
time taken

«executable» stereotype,




«execution environment» stereotype,

exit/, for exit actions,

exit action,

exit event,

«extend» stereotype,
extension use cases,
external context diagram,

eXtreme Modeling methodology, @
eXtreme Programming methodology, @

[« rrevious | o
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fagade architectural pattern,

«file» stereotype,

files. See

final state, @ @

final-activity node,

final-flow node,

flexibility, system design requirement, ,
focus class. See

«focus» stereotype,

fork icon, for system or subsystem, ,
fork node,

fork pseudostate,

framework

definition of, 5
developing, 2258
diagrams for,

pattern compared to, a

friend class, @

functional diagrams, E

functional modeling. lactivitv diaqranl; l:ollaboratiorl; l)atternsl; Isequence diaqranl
algorithms in,
class diagrams for, |
list of diagrams used for,
preconditions and postconditions for, @g
text-based behavioral specification for, [L83?718

use-case diagrams for, [L80218
use-case specification for, [L83718

functional programming
comparing to object-oriented technique
splitting attributes and operations, 61?363
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generalization. also Llasses]; Inheritancel
of actors,E
association o, @
definition of,
diagramming, 429
of events, 8172283

identifying_superclass and subclasses with,
of states, p947230

of use cases, h66?16d
generalization sets,

GET operation. See laccessor operationsl
global visibility, 49?350
Golden Ratio (F), for class box size, a

Google Web site,

grammar-checking diagrams, @

guard conditions, for events, @

guillemets («»), for stereotype, E
[« rrevious | nexi o)



Index

H

H*, for deep history pseudostate, @

H, for shallow history pseudostate, @

Happy Path of use case,

hardware. See also thsical architecturd, Inodelin(J
hiding information. See
high-level sequence diagram,

Hillside Group Web site,

history pseudostates,
hotspots,

hybrid class/object diagram,

hyphen (-)
for irrelevant mess argument, @

for private visihility,
for role name,
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IBM, Rational Rose Suite tool,

icons in UML diagrams. See lshapes and symbols in UML diaqramsl
icons used in this book,

Ideogramic tool UML Web site,

i-Logix, Rhapsody tool,

implementation datatypes, @

implementors (developers), @ E See also Isoftware and system developmen|

«import» stereotype, B512352
«include» stereotype, [L61?163

included use cases

definition of, [L61?163
delivering with base use case,
documenting, [L63?16

generalizing actors in, [L6
subsystems for,
independency,

indexing, with qualifiers, E

information hiding, @ @

information systems, UML modeling tools for, @

informative messages,
inheritance. See also Eer lizatl ﬂ

in class diagrams, [L1 |16

code reuse with, 109211
definition ofﬁ b7, b, |
enforcing with abstract
of events in substates
list of items inherited, [LO

multiple, [L08?109
overriding attributes of, @

inheritance hierar,;hyj
for events, p8122
for generalization, 52
for specialization, 7?29

initial node,

initial state, @ @

initializing attributes. See , attribute
input devices as actors,

instance. See




«InstanceOf» stereotype, E
integer datatype, @

interaction diagram
constructing,
definiti
list of, [L4215
multiple or repeating paths in, M
referencing from ot)@diagrams,

sd abbreviation fo
timing di
uses of, @

interaction occurrences, @ ,
interaction-overview_di . See also pctivity diagra

constructing, 2
definition of, 20?22

dependency on activity diagram, E
uses of, @

0 l:ommunication diaqranl; Interaction-overview diaqranl; Eeguence diagragl

interactions. See also kcenarios of use case]
definition of, I;&

multiple or repeating paths in, 06?221

parameters for, R04?2204§

referencing from other w,ns, 037204
0?7192

sequence diagram for, [L9

«interface» stereotype,

interfaces
for compone
definition of,

diagramming

inheriting, , :
invoking from sub ems, b51?35d
specification for, ‘

for subsystems, ﬂ

internal context diagram, [L20?121]. See also
internal event, , @

internal transition, @
«internet» stereotype,
interrogative messages,
«interrupt» stereotype, @
intrinsic datatypes, @

invariants,

italics, for abstract classes or operations, @

iterative development life cycle, @

Ivar Web site,
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Jacobson, Ivar
original developer of UML, @
Web site with virtual simulacrum of,

join node,
join pseudostate,
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knowledge responsibilities for objects, @
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«lan» stereotype,

language development, UML modeling tools supporting, @

language of the user. See lomain languagq

left angle bracket (<), for right-to-left association, @

«library» stereotype,

life cycle

of aggregatiog@

definition of,

methodo mpared to, @
types of, 34?3§

lifeline of object
definition of, [l
diagramming, [L
references for,

line

dashed
with arrow, from object to ¢ ,
for dependencies,t@, @
dividing concurrent sub
for included use cases, [L62?16
for lifelines,

solid
for assocj 'ons,@
for links, g

thick

for fork or join nodes,
for fork or join pseudostates, 06?30

links, a . See also
logical models,

lollipop icon,

loop operator, , ,

Team LiB




Team LiB |

Index

M

machines. See Igehavioral state diagragl
main course of use case,

master-slave architectural pattern,

MDA (model-driven_grchitecture)
definition of,

UML tool support for,
member variables. See
membership notation for subsystems,
merge dependencies,
merge node,
«merge» stereotype,

messages
arguments in, M
asynchronous, M

button names in, [L98?199

in communication diagram, h35?24;|

definition of, 2196
informative,

interrogative,
literal, quoting, [L99
methods used to send, [L99720

methodology
basic step %
choosing, 35234
definition
history of,
life cycle ared to, @

types of, B5?2
UML not as, [L7]

methods. See also pyentd;

definition 0
inheriting, [LO]], [L04?10
operations compared to, Q

Microsoft COM. See @
Microsoft Visio tool, 381?382
«mobile device» stereotype,

model-driven architecture. See

modelers, H




modeling. See specific types of modeling
modeling frameworks,
modeling tools. See lools for UML modelincJ

multiple inheritance, [L082109

multiplicity
of aggregation_association, @
of arguments,
of associatio , @
of attributes, §7249
of composition parts, @
for concurrency in use cases, M
diagram of, co ing to code, 5
diagramming, 82
inconsistencies in, B682
reduced by qualifiers, [/Z2
time period relevant to, [L1

multithreaded systemiee also foncurrency
152

invariants and,

threads in communication diagram, R437244
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name-direction arrow, E

naming
actors,

aggregation,

associatio
attributes, 524
=

classes, §2?4
communication diagram,

identical nay he same class,
messag 219
objects, §3?.

operations, b0?5
use cases, [L4 4
vague names, 36

navigation arrow, in association, E B

neg operator,

no cycles constraint, E

nodes,

Northern Light Web site,

nouns, using to define objects and classes,

null values, for attributes, @

[« rrevious | o
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object diagram. See also lwbrid class/object diaqranl
class diagram_compared to, [/227.

definition_of, 211
uses of, Q

object flow,

Object Management Group. See

Object Management Group, CORBA.

See

object modeling. See Essociationé; IM; beneralizatiogl; Inheritancd; M

object node,

object-constraint language. See

Objecteering tool Web site,

object-oriented development, @ @ . See also Isoftware and system developmenl
object-oriented principles used in UML, ,

Objectory methodology, @

objects. See e
active, p41?724
aggregation and, Q mﬁ
creating during interaction, .193?195, @
definition of, EE

destroying durjng interaction, , @

diagramming, 2258
encapsulation of, %j;"?
generalization and, R1f, 52
identifying for a busines 24
information hidin d |23724
inheritance and, EB , 1012102
knowledge responsibilities for,

life of, 612263
lifeline of, JL8d,
links between, (24, 3?6

messages sent and received by, [195220

name of, underlining in diagram, 3?5

naming,‘

persistence of,

polymorphism and,

public, breaking encapsulation and information hiding, 5

singling out importa of (abstraction), , ,
, 852249

specialization g

> 1A10)]
as a variable, M




OCL (object-constraint language)
for behavioral preconditions and postconditions,
for pseudocode,

UML modeling tools supporting, Q
for use case @onditions and postconditions,

Web site for,

OMG (Object Management Group)
original develgpment of UML, @
owns UML,

Web site for,

OMT methodology, @
one-way dependency,

ongoing-process state, @
OOAD_UML group Web site,

operation call, @
operations. Seeo ;
104

abstract,

accessors (GET/SETE
activity diagrams_for,

for aggregatio
arguments
cascading,
constructor, BY, a

converting use cases tq, 1812182

defining (si@a e of), 19251, m

destructor,

diagramming, ,

events corresponding to,
extending,

inheritance of, 10 ,
naming, 0?2
optimizing, {104
private

static, p8?6!
visibility of, 726

without attributes,
operators in interaction diagrams,
opt operator, ,
ordered constraint, B
output class, for use case,
output devices as actors,

ovals

dashed, for cons, , ESZ?ZSQ, b55?35d
144, [L44

for use cases,



Overture Web site,

overview diagram. See Interaction—overview diaqranl

ownership, subsystems based on,

[« rrevious | o
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package diagram

definitio ,_
uses of, [L4], B24, M
packages

definition of, 125?12

subsystems compared to, BA(
for system desjgn
for use cas

visibility of,

«page» stereotype,

par operator,

«parallel» stereotype,
parameters. See

parentheses (()), enclosing operation arguments, a

partition names, in activity diagram, ,

patterns
applying to a specific application, M
composite structure diagrams for, P %

defining, R49225
definition of,&
developing, R47224

framework compared to, B,
showing object interaction in,

for systems, B542357
Web site about, @

people. See lactorJ; I:ustomersl; Istakeholdersl; Lsers]

performance
high degree of coupling for, @@
as system design requirement,
persistence

analysis packages ba@i on,

of objects, choosing,

Petri net, activity diagrams compared to,

physical architecture, modeling, B33?339
physical models,

PIM (Platform-Independent Model), MDA and, @

pipe-filter architectural pattern,
Platform-Independent Model. See @

Platform-Specific Model. See




plus sign (+), for public visibility, 5

point of view for diagrams, a

polymorphism,
Popkin, System Architect tool, 380738

Popkin’s UML Resource Center Web site,

ports,

postconditions

for activities,
for text-based behavioral specification, [L84?718

for transitions in protocol st@machines diagram,

for use-case specification,
pound sign (#), for protected visibility, 5
precise UML group Web site,

preconditions

for activities,
for text-based behavioral specification, [L84718

for transitions in protocol sﬂ@machines diagram,

for use-case specification,

presentation subsystem, ,
primary actors, , @

Principle of Least Surprise, Q
private operations,

private visibility, , ,
procedural messages,

process modeling, activity diagrams for,

«process» stereotype,

programs. See lsoftware and system developmen'; lools for UML modelinol
project-oriented class diagrams,

property. See

protected visibility, a

protocol state machines diagram
constructing,

definition of, B082310

uses of,
«provided interface» stereotype, B282329
proxy actors, [L34?2134,

pseudocode, for algorithms,

pseudostates
with concurrent substates, B052308
definition of, B00?302

PSM (Platform-Specific Model), MDA and, @

public operations,
public visibility, , ,



pUML Web site,
[« rrevious | mexr o)
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qualifiers

on associations, E , ﬁ

diagram of, copverting to code, 5
indexing with, %

reducing multiplicity,

quotes (*), for literal message,

[« rreviovs [ exi )
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Rational Rose Suite tool Web site,

Rational Software, UML development and, B @
Rational Unified Methodology, @

Rational's UML Resource Center Web site,
realizes dependency,

real-time systems, UML modeling tools for, @

ReceiveEvent event, @

rectangle. See also
action sequence@w, @

for components,
for interaction-overview diagram,
rounded

for activities,
for events ng states,

for states, p64
with triangular notch, signal receipt icon, M
with triangular point, signal sending icon, R9(

ref operator,

reflexive associations,

region operator,

reification, of events,

reliability, system design requirement,
«required interface» stereotype,
return call,

return type of operation, @
Rhapsody tool Web site,
right angle bracket (>), for left-to-right association, @

robustness diagram. See Egplication class diagrarli

roles

of actors, 2
of classes, [71273
diagram onverting to code, @

inheriting, [LOZ

RTF. See lJML Revision Task Force of OMd

Rumbaugh, Jim (original developer of UML), @
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S
scalability, system design requirement,

also peqguence diagra

scenarios of use ca
definition of, |
list of diagrams for,

schedule

subsystems based on,

system design requirement,
«script» stereotype,
sd abbreviation, @
search engines,
secondary actors, ,

semaphore message, @
«semaphore» stereotype, @

SendEvent, @

sequence diagram

application-le ence,
constructing, 1907192

constructing state diagram from, M
creating and destraying objects in,
for design phas
for frameworks,

high-level sequence,

multiple, summarizing in activity diagrarﬁ

for object interaction ollaboration,

sd abbreviation for, [L9 M

sending es in,

uses of, @S@ ,
«serial» stereotype,

«service» stereotype,
SET operation. See Eccessor operationg

shallow history pseudostate, @

®))

shapes and symbols in UML diagrams

ball and socket, for assemblies in a component, ,

box
for actors, [L39
for classes and objects, 5 ,

with parallel vertical bars, for active object,
for qualifiers,
three-dimensional, for nodes,



box icon, with two small rectangles, for companents,
boxes, stack of, in communicatio gram n
bull’'s eye, for final-activity nodesrﬁ
circle
filled in (large dot), for initial nodes
filled in (large dot), for initial state, P
labeled, for connectors,
with plus sign inside, for bership,
on a stick, for interfaces, @1
with X inside, for final-flow nodes .
diamond
for decision and merge n&dﬁ;'@
filled in, for composition, B628
hollow, for aggregation, B4, B7289
folder, tabbed, for packages, , [L44, ﬁ

fork
for fork or join nodes,
for fork or join pseudostates, ?

fork icon, for system or subsystem,
half circle, on a stick, interfaces,
history of choices for,%
line, dashed
with arrow, from o class,
for dependencies, t@ @
dividing concurrent sub
for included use cases,
for lifelines,
line, solid

for assoc@ons, a

for links,
ovals

dashed, for co ns |252’>254 1355935d

for use cases, l
rectangle

action sequence@w @

for components

for interaction-overwewgram .

rounded, for activities,

rounded, for events durjng states,
rounded, for states, P
with triangular notch, signal receipt icon, M

with triangular point, signal sending icon, R9d
small square, for camponent ports,
socket, in pattern, R51?252
shell generation, UML modeling tools supporting, Q
signal receipt icon, @
signal sending icon, @
«signal» stereotype,

signature of operation, @

slash (/)
for an action or activj
for derived attribu
for event actions, |




socket

ball and socket, for assemblies in a component, ,
in patterns, 51?252
on a stick, for interfaces,

Softeam, Objecteering tool, B79?38(Q

software. See also lools for UML modelin(J

software and system development. S Bystem desi
automating from UML models, @ , BY
component-based, R9?31]

converting diagrams to code, |29?8;|
design phase ,,

diagrams fg !!I
functional,
life cycles for, M
methodologies for, ,
object-oriented

benefits of, [L77?7178

encapsulation and information hiding used with,
history of UML and,ﬁ

patterns in, g

reusing code
with domain class
with frameworks,
with inheritan
with patterns,

terminology used for,

types of systems being developed,
il ‘ 4

UML tools improving productivity of

Software Development Magazine Web site,
source of association,

specialization

definition of, a

identifying superclass and subclasses with,
spell-checking diagrams, @
«spin-lock» stereotype, @
spiral life cycle, @

square. See

square brackets ([])

for multiplicity, @ Q

for preconditions or postconditions,

stakeholders,
state attributes,

state diagram
avoiding data-flow dia , @
complex, simplifying, 2
concurrent states in, B03?30




constructing, h63?26d, b72?27d
creating operations from events in, R78728

definition of, 62?72

63

events as icons in,
order of execution deflned in, R89?2

protocol agra 308?312
uses of, ﬂ ﬂ iﬁ

state transition, @

90’7292{

state-machine diagram. See

states. See also

activities or acti ithin, @

attributes of, p69?

concurrency wi 230

definition of, 62226
diagramming, P6
do-forev 0
do-until, BO
generalizing m
initial,
pseudostates, connecti
submachines fg

transitions _betwe
types of, 66226

) transitions with, 00?302

static attributes,

static diagrams, @

static operations,

stereotypes

for actors in use cases, [L37?7138

for artifacts, B37?233

for communicatiogaths, b34?33ﬂ

for components

for constructor operatlon @

for creating and d | Q objects
for enumerations,

for events treated as cIa
for extended use cases,

for importing subsystem

for included use cases

2174

61716

for instance of object

for interfaces, 3287233

for internal parts of compgnents,

for merging subsystems,

for messac_@ mechanism, M

for nodes,

for subsyst,ﬁ
syntax for, p4?25

for use-case control

for use-case levels,
for use-case packages,

M



stick figure. See

string datatype, @
structural diagrams, . See also specific diagrams

structure of class. See pttributes

subclasses
basis for discrimination betwee,
identifying with generalization,
identifying with specialization,

submachines,

substates
concurrent, pseudostates and, B052309
definition of, 942294
inheriting events in, 8’730

«subsystem> stereotype, . .
subsystems. See also M

aggregation and &
application, &
cohesion in, B44

as components, B25

converting to, 1340?3411, l343?345|
coupling in, B a@
creating duriﬁecomposition, ,

definition of

dependencies in :
diagramming, B

for domain classes, g
importing clas: into,
interfaces for, E

invoking interfaces from, M

membership notafi

responsik@ ,
types of,

for use cases,

superclasses
abstract operations for,
identifying with generalization, M"
identifying with specialization, P g

superstates, @
surrogate class,
swim lanes, in activity diagram, p24?225

symbols in UML diagrams. See Ishapes and symbols in UML diaqramsl

symmetric association, Q

System Architect tool Web site, B80?38



system architecture modeling. See lsubsvstemsl; lsvstem desiqA

; Eubsystemé

system design. See also poftware and system developmen

architecture, physical m
architecture, sy , ﬂ
brittle systems,

categories of sy S
components for, ,

ks

, B207325
interfaces for, B19 , B512352

object persist
packages far
patterns in, |

subsystem interfaces fi

users’ terminology for,
system development. See Eoftware and system develogmen]
«system» stereotype, .

systems modeled by UML,
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T
tabbed folder, for packages,

target of association,

Tau tool Web site,

Telelogic, Tau tool,

Teoma Web site,

text-based behavioral specification, ,

thick line

for fork or join nodes,
for fork or join pseudostates, 06?30

threads. See lnultithreaded systemsl

Three Amigos, E @

3C (Clear, Clean, Concise) proposal, Web site for,

three-tier architecture pattern,
Tigris, Argo/UML tool,

tilde (~), for package visibility, 5

time period for class diagram,
timed call, @

timing diagram, @
TogetherSoft tool Web site,
tokens, in activity diagrams,

tools for UML modeling

b9

definition of

features of, , B772374

systemsgdeled by,

uses of,

Web sites about, , 3797382
transitions

commﬁ,ﬁﬁl

event, R6 67’72"9,578?27a
icons for, 290?292
internal, [L95

in protocol state machine diagram ,
pseud 300?302

ostates connecting,
state, ﬁ

transitive association, @

transparent actors,

2U Consortium Web site,
two-way dependency,
types. See
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UML (Unified Modeling Language). S@ @ lools for UML modellnol LJML z| new features in

automating deve ent with
definition , P21

history of,

level of detail to describe with E
methodologies for, E -ﬁN 234
misconceptions about, [L7?18
object-oriented principles used in, M I39_’>41I
people usmg,ﬁ

Principle of st Surprise for, Q

trainingf
uses of, P

Web 5|tes about, B722373 .

UML Dictionary Web site,

UML Forum Web site, B72?373

UML Revision Task Force (RTF) of OMG, @

UML E new features in. also

Action Semantics,

activity di ms,
artifacts,@a

association end name, replacjng role, B
behavioral state diagram, M
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