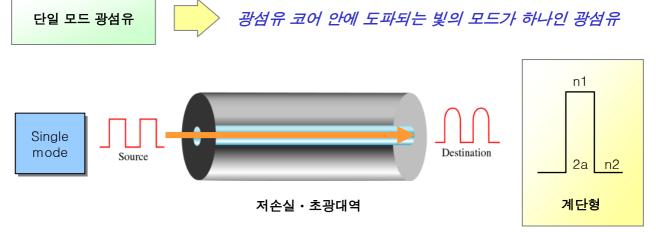
학습목표

- 광섬유의 종류를 기준에 따라 분류할 수 있다.
- 광섬유의 손실 특성을 종류별로 파악하고 원인을 설명할 수 있다.
- 광섬유의 분산 특성을 종류별로 파악하고 원인을 설명할 수 있다.

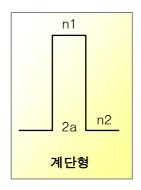

학습하기

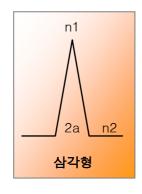
광섬유의 종류

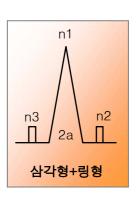
1. 광섬유의 종류

굴절률 분포	계단형 (Step Index)	
	언덕형 (Graded Index)	
	단일 모드 (Single Mode)	
전파 모드	다중 모드 (Multi Mode)	
	석영계	
재료 조정	석영코어 플라스틱 크래드	
	다 성분계	
	플라스틱	
제조법	MCVD법	
	VOD법	
	VAD법	
	2중 도가니법	

2. 단일 모드 광섬유 (Single Mode Fiber)




◆ 단일 모드 광섬유의 특징


- 코어의 직경(2a): 약 9μm 정도로 매우 작음.
- 코어의 직경을 작게 하고, 코어 크래드 비굴절률차도 줄여 하나의 모드만 도파하도록 함.
- 초광대역 전송 특성을 가지나 코어 직경이 작아 광섬유 제조 시 코어의 동심성 유지가 어려움.
- 단일모드 광섬유간의 접속에 어려움이 있음.

2. 단일 모드 광섬유 (Single Mode Fiber)

◆ 굴절률 분포

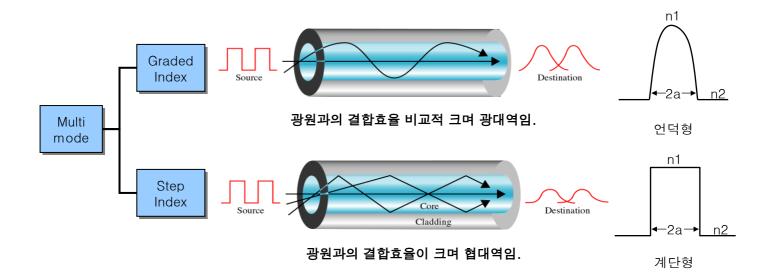
구조분산을 조정하여 특수한 분산특성을 갖도록 하는 광섬유의 굴절률 분포

분산천이 광섬유 (Dispersion Shift Fiber)

분산이 0이 되는 파장이 1.55 m 근처로 이동된 광섬유로 초고속(예: 10G이상) 전송로에 사용됨.

분산보상 광섬유 (Dispersion Compensation Fiber)

분산이 일반 단일 모드 광섬유와는 다른 부호를 갖게 하여 분산을 보상해주는 광섬유


분산 특성 광섬유: 동기식 광 전송방식으로 변화하면서 1550nm 파장대역에서 증폭용 광섬유로 사용됨.

3. 다중 모드 광섬유 (Multi Mode Fiber)

다중 모드 광섬유

광섬유 코어 안에 도파되는 빛의 모드가 여러 개인 광섬유

◆ 다중 모드 광섬유의 특징

- 코어의 직경(2a): 약 50 ~ 60μm

- 계단형 굴절률 광섬유: 모드 분산 특성이 불리, 전송 대역폭이 수 10MHz.km

- 언덕형 굴절률 광섬유 : 전송 폭은 수 100MHz.km ~ 수GHz.km 정도

다중모드는 분산 특성이 불리하여 현재는 단일모드 광섬유를 주로 사용, 일부에서는 다중모드 사용 중

4. 광섬유 종류별 특성 비교

7 8	계단형 굴절률(Step Index)			언덕형 굴절률	
구 분	단일 모드	다중 모드		(Graded Index)	
코어직경	10 <i>μ</i> m/8.5 <i>μ</i> m	50 <i>μ</i> m		50 <i>μ</i> m	
클래드 직경	125 <i>μ</i> m	125 <i>μ</i> m	l	125 <i>μ</i> m	
대역폭	수십 GHz	수십 MH	Hz	수백 MHz	
모드 분산	전혀 없다.	있다.		없다.	
접속 작업	어렵다.	용이하다	÷.	용이하다.	
수광 능률	나쁘다.	좋다.		좋다.	
광파 손실	0.22dB/Km	1dB/Kr	n	0.9dB/Km	
사용 파장	1.3μm, 1.5μm	0.89μm, 1.3μm		0.89μm, 1.3μm	
코어의 비원률	-		5%	이하	
클래드의 비원률	1% 이하				
편심률	1 <i>μ</i> m 이하			5% 이하	

	흡수 손실	재료에 의한 요인	자외선 흡수 손실	
			적외선 흡수 손실	
		외부적인 요인	천이 금속에 의한 흡수 손실	
			OH-기에 의한 흡수 손실	
	산란 손실	재료의 고유 요인	레이레이 산란 손실	
내적이 유이			라만 산란 손실	
내적인 요인			브릴루인 산란 손실	
		외부적인 요인	경계면 불 균일	
			직경의 불 균일	
			기포, 이물질, 결정구조	
			굴절률 분포의 불 균일	
			미소 구부림	
외적인 요인		결합 손실	축 어긋남, 경사각, Gap, 굴절률의 불 균일	
			접속면의 불 균일	
		접속손실	광섬유의 접속점 손실	
		구부림 손실	코아와 클래드에서의 입사각의 변화	

1. 내적 손실

흡수 손실 (Absorption Loss)

원인 1: 실리카 광섬유 재질의 원자 구조의 결합

- 다른 원인들에 의한 손실에 비해 무시할 수 있는 정도임.

원인 2: 재질 속의 불순물 원자에 의한 외부적 흡수

- 가장 큰 손실 요인
- 철, 크롬, 코발트, 구리와 같은 천이금속에 의한 작용: 1~10ppb 정도에서 1~1-dB/km손실 초래
- OH-기의 수분에 의한 작용: 약 2.7μm의 파장에서 기본 진동 흡수, 1.38μm 부근에서 흡수치 피크
- 손실을 20dB/km 이하로 줄이려면 불순물이 수ppb 이하가 되어야 함.

원인 3: 광섬유 물질의 구성원자에 의한 재료 고유의 흡수

- 자외선 영역에서의 진동에 의한 것
- -0.8μ m와 1.7μ m상의 파장에서는 문제가 없음.

1. 내적 손실

산란 손실 (Scatering Loss)

현상

- 광섬유 내를 도파하는 광선이 코어 내에서 직진하지 못하고 사방으로 흩어져 버림.

원인

- 광섬유 재료의 밀도, 구성 성분의 불균일성, 광섬유 제조 시 발생하는 구조적 불균일성, 결함 등의 미세한 변화 등

종류

레일레이 산란 (Rayleigh)

유도 부릴루인 산란 (Brillouin)

유도라만 산란 (Ramman)

- 굴절률 변화가 사용하는 빛의 파장보다 작은 영역에서 존재
- 산란 정도: 파장 4승에 반비례로 1.0 ﷺ 이하 파장 영역에서 가장 큰 손실 요인이 됨.
- 광섬유를 통과하는 광전력이 임계치 이상일 때
- 산란된 빛의 파장이 원래의 파장과 다름.
- 장거리 통신을 위한 광증폭기 사용으로 문제가 됨.

2. 외적 손실

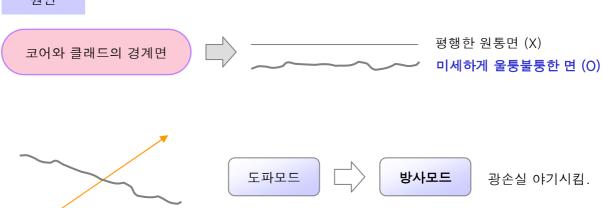
구부림 손실 (Microbending Loss)

원인

- 허용 곡율반경 이내로 무리하게 구부림으로써 광섬유 내에 도파하는 빛이 코어와 클래드의 경계면에서 입사각이 변화되어 야기됨.
- 광케이블을 포설할 경우
- 광섬유 심선을 접속할 경우
- 광점퍼 코드를 이용하는 경우
- ◆ 최근 1.55μm 파장 대역의 WDM, DWDM 등의 사용으로 밴딩 및 구부림에 의한 고장이 발생함.

2. 외적 손실

접속 손실 (Splice Loss)


원인

- 광섬유 접속 시 빛의 일부가 반사되어 발생
- 광섬유 코어 직경의 차이, 비굴절률차
- 광섬유 축의 어긋남(lateral offset), 접속되는 광섬유간의 간격(end separation)
- 접속되는 광섬유의 경사각 및 광섬유의 단면 상태(deformation of end surface)

3. 기타 손실

구조 불완전에 의한 손실

원인

◆ 제조기술의 발전으로 거의 무시할 수 있음.

3. 기타 손실

마이크로 밴딩 손실 (Microbending Loss)

원인

- 광섬유 제조 후, 광섬유 측면에서 균일한 압력이 가해져 광섬유의 축이 ݛ㎞ 단위로 구부러짐으로 발생
- 광섬유에 장력을 가하면서 보빈에 감는 경우
- 광섬유에 부적당한 프러스 체크 코팅을 할 경우
- 코팅 후 광섬유에 커다란 온도변화가 있는 경우
- 광케이블의 포설이나 접속 시 광섬유 취급 부주의

1. 광섬유 종류별 분산 특성

모드분산 (Mode Dispersion)

다중모드형 광섬유에서 발생

원인

- 각 모드의 전파 경로가 달라져 출사단까지의 도달시간이 달라짐.

예

- 계단형 굴절률 다중모드 광섬유
 - : 전반사 하는 회수가 많은 고차모드일수록 전파거리와 시간이 길어짐.
 - → 입사할 때 시간 폭이 짧은 펄스도 모드별 도달 시간의 차이로 인해 출사단 측에서는 시간적으로 퍼지는 현상 발생

영향

- 계단형 굴절률 광섬유에 많은 영향을 미쳐 전송대역폭을 제한함.

개선방안

- 굴절률 분포를 서서히 증가시키는 언덕형 굴절률 광섬유 사용
 - → 전차모드의 경우 속도를 줄여 고차모드와 전차모드의 도달 시간 줄임.

재료분산 (Material Dispersion)

색분산(Chromatics Dispersion)의 하위 종류임

원인

- 광섬유의 재료인 유리의 굴절률이 전파하는 빛의 파장에 따라 다른 값을 가지므로 파형이 퍼지기 때문

특성

- 광통신에 사용되는 레이저에서 방출되는 빛
 - : 완전 단일 파장 또는 거의 단일 파장이 될 수 없으며 어떤 폭을 가짐.
- 빛의 속도는 굴절률에 반비례하므로 파장에 따라 전파속도가 달라짐.
- 도착 시간차가 발생하여 파형이 벌어짐.

1. 광섬유 종류별 분산 특성

구조분산 (Waveguide Dispersion)

색분산(Chromatics Dispersion)의 하위 종류임

현상

- 도파로 분산. 코어와 클래드의 굴절률 차가 적은 경우, 경계면에서 빛의 일부가 클래드 부분으로 누설되는 것처럼 일어남.
- 펄스파형이 시간적으로 퍼지는 현상.

특성

- 누설되는 빛의 양은 빛의 파장에 따라 다름 → 광의 전파 길이가 파장에 따라 다르게 됨.
- 어떤 파장 폭을 갖는 광펄스를 입사시키면 전파 경로 길이 차이로 도달 시간차가 발생하여 펄스 폭이 넓어짐.
- 굴절률 분포와 깊은 관계가 있음.

개선방안

- 굴절률 분포를 다양하게 하여 여러 가지 분산특성을 갖는 광섬유 만들 수 있음.

2. 편광모드 분산(Polarization Mode Dispersion)

PMD 개요

편광모드 분산

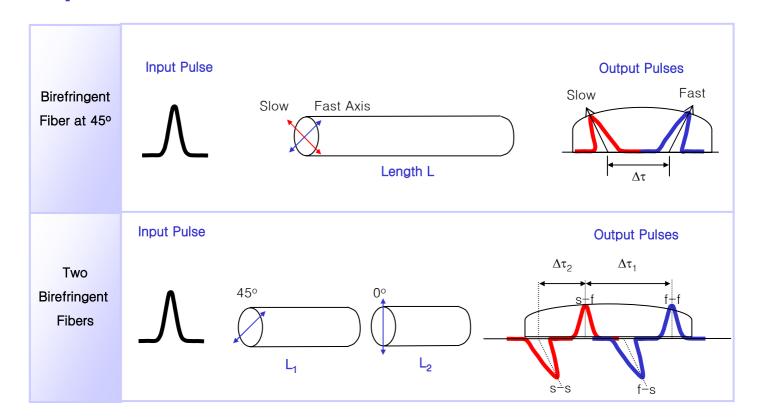
(Polarization Mode Dispersion)

PMD

원인

Birefringence

• 한 곳에 입력된 편광상태가 굴절률 차이에 의하여 다른 곳에서 속도차이를 발생시키는 현상

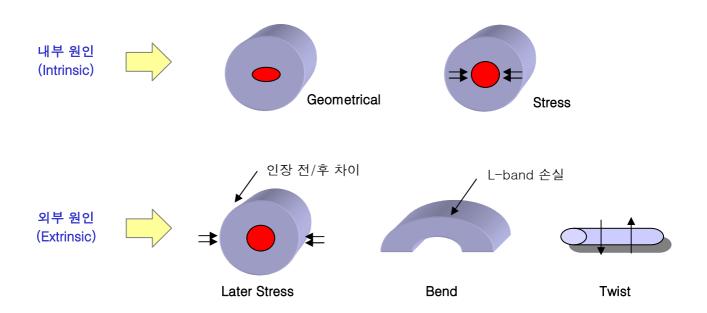

광 케이블 내에서의 광자 분산속도의 달라짐

특성

- 1) 전송속도의 증가에 따라 그 문제점이 더욱 가중됨.
- 2) 전송속도 증가에 따라 단위시간 당 Bit Error Rate가 야기되어 문제시 됨.

2. 편광모드 분산(Polarization Mode Dispersion)

PMD에 의한 펄스 퍼짐 현상



편광모드 분산 90% 이상이 광섬유 제조과정에서 발생 → 한국통신에서는 광섬유 납품규격 보완으로 큰 문제 없음.

2. 편광모드 분산(Polarization Mode Dispersion)

PMD에 의한 펄스 퍼짐 원인

Fiber Birefringence

Birefringence의 어느 부분이라도 축들에 입사하는 빛들을 편광모드로 분리할 수 있음. 광 전송속도의 차이를 가져오고, 결국에는 전송부문에 막대한 영향을 끼치게 됨.

2. 편광모드 분산(Polarization Mode Dispersion)

전송로에서의 PMD 기준

편광모드 분산이 초고속 대용량 전송장치 공급에 막대한 지장을 초래할 것으로 판단

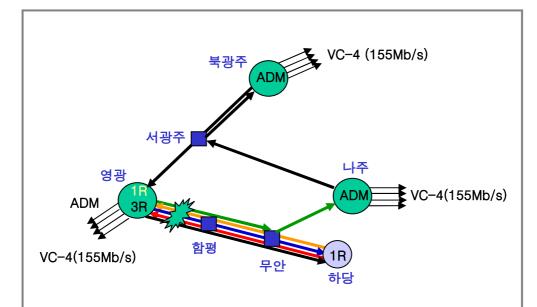
한국통신은 전송속도에 따른 편광모드 기준을 제정하였음.

Bit-rate	Cumulative PMD limit	Fiber PMD _{coeff} , should be ex) when 560km transmission
2.5Gb/s	≤ 40 ps	≤ 2.0 ps/km ^{0.5}
10Gb/s	≤ 10 ps	≤ 0.4 ps/km ^{0.5}
40Gb/s	≤ 2.5 ps	≤ 0.125 ps/km ^{0.5}
80Gb/s	≤ 1.25 ps	≤ 0.0625 ps/km ^{0.5}

◆ Total PDM must be < 0.1 x bit period (ITU-T)

현재

400Gbps 용량의 WDM 시스템 → 10Gbps의 경우 0.4ps/√km이하로 개정

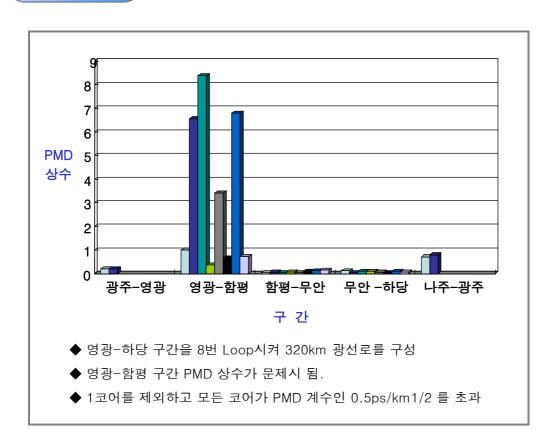

향후

종속신호 속도 40Gbps 예상, PMD 계수 규격을 0.125ps/√km 고려해야 할 것임.

2. 편광모드 분산(Polarization Mode Dispersion)

PMD가 전송에 미친 사례

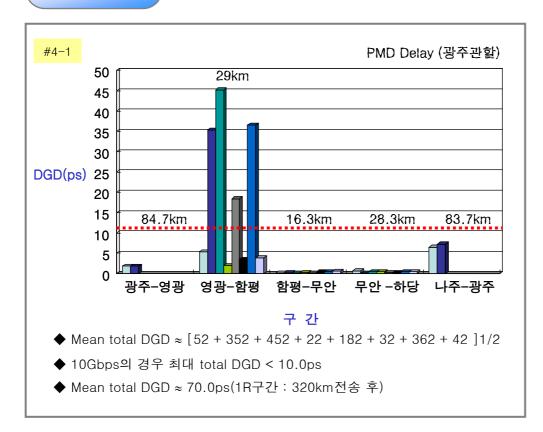
사례 개요



- ◆ KT에 처음으로 PMD에 의한 전송 문제가 발생한 사례
- ◆ 2001년 전남 광주 지역에서 10G TDM 시범 사업을 위해 구성한 망 구성도
- ◆ 광섬유 및 전송 특성을 양호하나 전송장치에 에러 발생

2. 편광모드 분산(Polarization Mode Dispersion)

PMD가 전송에 미친 사례


구간별 PMD 상수

2. 편광모드 분산(Polarization Mode Dispersion)

PMD가 전송에 미친 사례

DGD (ps)

