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Abstract

In this work, the quantum discord and tripartite entanglement in the presence of an asymptot-

ically flat static black hole are discussed. The total correlation, quantum discord, and classical

correlation are found to exhibit decreasing behavior with increasing Hawking temperature. It is

shown that the classical correlation is less than the quantum discord in the full range of Hawking

temperature. The tripartite entanglements for Greenberger-Horne-Zeilinger and W-states also ex-

hibit decreasing behavior with increasing Hawking temperature. When the Hawking temperature

approaches the infinite limit, the tripartite entanglements of the Greenberger-Horne-Zeilinger and

W-states reduce, in terms of the π-tangle, to 52% and 33% of the corresponding values in the flat

space limit, respectively.

1

Manuscript
Click here to download Manuscript: bh1.tex 

http://www.editorialmanager.com/ijqi/download.aspx?id=17299&guid=c62360de-e0d2-4128-bffe-94bcb3cad2bb&scheme=1


I. INTRODUCTION

Recently, quantum information theories in the relativistic framework have attracted con-

siderable interest[1–19]. The most remarkable fact about inertial frames is that the entan-

glement of a given multipartite quantum state is conserved even though the entanglement

between some degrees of freedom can be transferred to others[4–7]. Contrastively, in non-

inertial frames, the entanglement is, in general, degraded, which implies that the quantum

correlation between observers at rest and accelerating observers is further reduced with an

increasing acceleration[8]. The main reason for reduction in the quantum correlation is that

the accelerating observer located at one Rindler wedge loses information arising from the

other Rindler wedge because the wedges are causally disconnected from each other. This

implies that some quantum information is leaked into another causally disconnected Rindler

space, which results in a reduction in the quantum correlation. In fact, this is the main

feature of the well-known Unruh effect[20, 21]. Recently, the Unruh-type decoherence effect

occurring beyond the single-mode approximation was discussed in the context of quantum

information theories[22].

More recently, quantum entanglement in a black hole background was examined[23, 24].

In particular, in Ref.[23], the Hawking temperature-dependence of bipartite entanglement

was studied for an arbitrary, spherically symmetric and asymptotically flat black hole back-

ground.

The purpose herein is to investigate quantum discord[25, 26] and tripartite entanglement

in the presence of the same black hole. In section II, we introduce the spacetime back-

ground and the interrelation between the corresponding vacua, which was explicitly derived

in Ref. [23]. In section III, we compute the quantum discord, classical correlation, and total

correlation for the spacetime background. It is found that the classical correlation is less

than the quantum discord in the entire range of Hawking temperature. In section IV, we

discuss tripartite entanglement in the spacetime background. Degradation of the tripartite

entanglement is found to occur in the presence of the black hole. However, the entanglement

does not completely vanish, even at the infinite Hawking temperature limit. In section V, a

brief conclusion is presented.
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II. SPACETIME BACKGROUND

Throughout this paper, we use G = c = ~ = kB = 1. The metric used in this paper is

ds2 = f(r)dt2 − 1

h(r)
dr2 − R2(r)

(

dθ2 + sin2 θdϕ2
)

, (1)

where the functions f(r), h(r), and R(r) satisfy f(∞) = h(∞) = 1, R(∞) = r, and

f(rH) = h(rH) = 0, respectively. This is a general static and spherically symmetric line

element, which includes Schwarzschild, Reissner-Nordström, Garfinkle-Horowitz-Strominger

dilaton[27], and Casadio-Fabbri-Mazzacurati brane[28] black holes, as indicated in Table I.

The Hawking temperature for this metric is TH = κ/2π, where κ is the surface gravity

defined as κ =
√

f ′(rH)h′(rH)/2.

Table I: Relation of Eq. (1) with other black hole metrics.

black holes f(r) h(r) R2(r)

Schwarzschild 1− rH
r

1− rH
r

r2

Reissner-Nordström
(

1− rH
r

) (

1− r
−

r

) (

1− rH
r

) (

1− r
−

r

)

r2

(rH > r−) (rH > r−)

Dilaton 1− rH
r

1− rH
r

r
[

r − 2Q2e−2φ0

rH

]

brane 1− rH
r

(1− rH
r )[1−

rH
4r

(4β−1)]
1−

3rH
4r

r2

As demonstrated in Ref. [23], three different vacuum states, |0〉in, |0〉out, and |0〉K , can
be considered to exist in this background. The first two vacuum states are the Fock vacua

located inside and outside the horizon, respectively, and the last one is the Kruskal vacuum

located outside the event horizon. The interrelation between these vacua[23] is

|0〉K =
√

1− e−ω/TH

∞
∑

n=0

e−nω/2TH |n〉in ⊗ |n〉out, (2)

where |n〉in and |n〉out are, respectively, the n-particle states constructed from |0〉in and

|0〉out by operating the corresponding creation operators n times, and ω is the frequency of

the scalar field. When deriving Eq. (2), we assume that the particle detector is sensitive

to only the particles, whose energy is ~ω. This is why the right hand side of Eq. (2) is
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monochromatic. By applying the creation operator of the Kruskal spacetime in Eq. (2) and

using the Bogoliubov coefficients, one can construct |1〉K as follows:

|1〉K =
(

1− e−ω/TH
)

∞
∑

n=0

√
n+ 1e−nω/2TH |n〉in ⊗ |n+ 1〉out. (3)

III. QUANTUM DISCORD

Quantum discord[25, 26] is a measure for the quantumness of a given bipartite quantum

state. Generally, the two parties each consist of a system and corresponding apparatus. In

this paper, however, we refer to these parties as Alice and Bob. We discuss, in this section,

how quantum discord is changed in the presence of a black hole (1).

The physical situation is exactly the same with that of Ref. [23]. Let Alice and Bob

share a maximally entangled state

|ψ〉AB =
1√
2

(

|1〉A|0〉B + |0〉A|1〉B
)

(4)

at the same initial point in flat Monkowski space before the black hole formed. After sharing,

Alice remains at the asymptotically flat region, but Bob freely falls in toward the big mass

with his monochromatically sensitive detector and hovers outside of it before it collapses to

form a black hole. Now, let it collapse to form a black hole. Then, Bob’s detector registers

only thermally excited monochromatic particles due to the Hawking effect[23]. Since Bob

believes in his particle detector which shows a Kruskal particle spectrum, it is reasonable to

assume that the Bob’s state in Eq. (4) is Kruskal state.

However, since the inside region of the black hole is causally disconnected from Alice and

Bob, we need to perform a partial trace over the in-state. Then, the state between Alice

and Bob becomes a mixed state with the following density matrix

ρAB =
1

2
|0〉A〈0|⊗M00 +

1

2
|1〉A〈1|⊗M11 +

1

2
|0〉A〈1|⊗M01 +

1

2
|1〉A〈0|⊗M10, (5)
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where

M00 = (1− e−ω/TH )

∞
∑

n=0

e−nω/TH |n〉〈n|

M11 = (1− e−ω/TH )2
∞
∑

n=0

(n + 1)e−nω/TH |n+ 1〉〈n+ 1| (6)

M01 = (1− e−ω/TH )3/2
∞
∑

n=0

√
n+ 1e−nω/TH |n〉〈n+ 1|

M10 = (1− e−ω/TH )3/2
∞
∑

n=0

√
n+ 1e−nω/TH |n+ 1〉〈n|.

It is worthwhile to note that TrBM00 = TrBM11 = 1 and that TrBM01 = TrBM10 = 0.

Now, we discuss the quantum discord. We assume that Alice performs a projective

measurement with a complete set of measurement operators {ΠA
j }. The usual mutual infor-

mation between Alice and Bob is

I(A : B) = S(A) + S(B)− S(A,B), (7)

where S denotes the von Neumann entropy S(ρ) = Tr(ρ log ρ). In our paper, all logarithms

are taken to base 2. The classical analogue of Eq. (7) is Icl(A : B) = H(A) + H(B) −
H(A,B), where H denotes the Shannon entropy. In classical information theories, a different

representation for the mutual information is Icl(A : B) = H(A)−H(A|B) = H(B)−H(B|A),
where H(X|Y ) is the conditional entropy of X given Y . The quantum analogue of this

representation[25] is

J(A : B){ΠA
j } = S(B)−

∑

j

pjS(B|ΠA
j ), (8)

where1
{

ΠA
j

}

denotes a complete set of measurement operators prepared by party A and

S(B|ΠA
j ) is a von Neumann entropy of party B after party A obtains a measurement outcome

j. As obvious, pj is the probability of obtaining outcome j in the quantum measurement.

The general quantum mechanical postulates[31] imply that

pj = TrA,B(Π
A
j ρABΠ

A
j ), S(B|ΠA

j ) = S

(

ρ
(

B|ΠA
j

)

)

, (9)

1 Depending on the specific rules about the local operations and classical communication (LOCC) between

Alice and Bob, one can define several different generalizations of Icl(A : B)[29, 30]. Thus, several different

quantum discords can be defined. Our definition (8) corresponds to the optimal efficiency of a one-way

purification strategy[29].
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where ρ
(

B|ΠA
j

)

= TrA(Π
A
j ρABΠ

A
j )/pj. Hence, unlike I(A : B), J(A : B) is dependent on

the complete set of measurement operators. The quantum discord is defined as

D(A : B) = min [I(A : B)− J(A : B)] = min

[

S(A)− S(A,B) +
∑

j

pjS(B|ΠA
j )

]

, (10)

where the minimum is taken over all possible choice of the complete set of measurement

operators2.

Now, we compute the quantum discord in the black hole background. From Eq. (5), it

is easy to show that ρA ≡ TrBρAB is a completely mixed state and that

S(A) = 1. (11)

Further, it is easy to show that

S(A,B) = −
∞
∑

n=0

Λn log Λn (12)

Λn =
1

2
e−nω/TH

(

1− e−ω/TH
)

[

1 + (n+ 1)
(

1− e−ω/TH
)

]

.
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FIG. 1: The θ- and Hawking temperature-dependence of I(A : B)−J(A : B). The minimum value

of I(A : B)− J(A : B) occurs at θ = π/2 in the full range of Hawking temperature.

2 Although the authors in Ref. [25] consider the projective measurement, the authors in Ref. [26] consider

the general measurement including positive operator-valued measure (POVM). Thus, the quantum discord

in Ref. [26] is the lower bound of that in [25].
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Next, we introduce the complete set of projective measurement operators
{

ΠA
1 ,Π

A
2

}

,

given by

ΠA
1 =

I2 + x · σ
2

, ΠA
2 =

I2 − x · σ
2

. (13)

In Eq. (13), σ denotes the Pauli matrix, and x21 + x22 + x23 = 1. Then, it is straightforward

to show that p1 = p2 = 1/2 and that

ρ(B|ΠA
1 ) =

1

2

[

(1 + x3)M00 + (1− x3)M11 + (x1 + ix2)M01 + (x1 − ix2)M10

]

(14)

ρ(B|ΠA
2 ) =

1

2

[

(1− x3)M00 + (1 + x3)M11 − (x1 + ix2)M01 − (x1 − ix2)M10

]

.

Since it is impossible to compute the eigenvalues of ρ(B|ΠA
j ) (j = 1, 2), we need to compute

S

(

ρ
(

B|ΠA
j

)

)

numerically. One can perform this numerical calculation by parameterizing

x1 = sin θ cosφ, x2 = sin θ sinφ, and x3 = cos θ. Then, it is possible to show that the

eigenvalues of ρ(B|ΠA
j ) are independent of φ.

The (TH/ω, θ)-dependence of I(A : B) − J(A : B) is plotted in Fig. 1. As this figure

shows, the minimum value occurs at θ = π/2. Therefore, as defined, the quantum discord

D(A : B) is obtained as the value of I(A : B)− J(A : B) at θ = π/2. If we assume that the

total correlation is the mutual information I(A : B), it is possible to compute the classical

correlation C(A : B) by

C(A : B) = I(A : B)−D(A : B). (15)

In Fig. 2, we plot the Hawking temperature-dependence of the total correlation, quantum

discord, and classical correlation. As Fig. 2 shows, all correlations exhibit a decreasing

behavior with increasing TH . At the TH → 0 limit, all correlations approach the values

observed in the absence of the black hole. At the opposite limit, i.e., for TH → ∞, I(A : B),

D(A : B), and C(A : B) approach 1.0, 0.6, and 0.4, respectively. A remarkable fact in this

regard is that the classical correlation is less than the quantum discord in the full range of

Hawking temperature. Similar behavior was observed in the case of the classical correlation

and quantum discord sharing the Dirac field in the non-inertial frame[12]. In the next

section, we discuss the tripartite entanglement in the presence of a black hole (1).
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FIG. 2: The Hawking temperature-dependence of total correlation, quantum discord, and classical

correlation. All correlations show decreasing behavior with increasing temperature and reduce to

50%, 60%, and 40% of the corresponding values in the flat space limit at TH = ∞.

IV. TRIPARTITE ENTANGLEMENT DEGRADATION

The most well-known measure for tripartite entanglement is a three-tangle[32]. However,

as the three-tangle is not defined in the qudit system, we cannot use it, because of Eqs.

(2) and (3). Hence, instead of the three-tangle, we use the π-tangle[33] as a measure of the

tripartite entanglement in this work.

A. Greenberger-Horne-Zeilinger state

The physical situation is exactly the same with that of the previous section. The only

difference is that Bob’s role in the previous section is changed into Charlie’s role. Let Alice,

Bob, and Charlie share the Greenberger-Horne-Zeilinger (GHZ) state

|GHZ〉ABC =
1√
2
[|000〉+ |111〉]ABC (16)

at the same initial point in flat Minkowski space before the black hole formed. Since Charlie

feels a Hawking radiation eventually, Charlie’s state should be the Kruskal state. Then using
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Eqs. (2) and (3), and by tracing over Charlie’s in-state, we obtain

|GHZ〉ABC (17)

→ ρABC =
1

2

∞
∑

n=0

e−nω/TH

[

ν|00n〉〈00n|+ν2(n + 1)|11(n+ 1)〉〈11(n+ 1)|

+ν3/2
√
n + 1

{

|00n〉〈11(n+ 1)|+|11(n+ 1)〉〈00n|
}

]

,

where ν = 1− e−ω/TH . Since Charlie’s out-state is a qudit state, it is impossible to compute

the genuine tripartite entanglement measure known as three-tangle[32]. Hence, as discussed

previously, we select the π-tangle[33] as a tripartite measure, which is defined as

π =
1

3
(πA + πB + πC), (18)

and the use of which leads to a more tractable computation. The terms πA, πB, and πC

used in Eq.(18) are defined as

πA = N 2
A(BC) −N 2

AB −N 2
AC, πB = N 2

B(AC) −N 2
AB −N 2

BC , πC = N 2
C(AB) −N 2

AC −N 2
BC ,

(19)

where Nα(βγ) = ||ρTα

ABC ||−1 andNαβ = ||(TrγρTα

ABC ||−1, with Tα being a partial transposition

over the α-state, and where ||A|| = Tr
√
AA†. It is easy to show that πGHZ = 1 in the absence

of a black hole background.

Now, we compute the one-tangle NA(BC). From Eq. (17), it is easy to show that
(

ρTA

ABC

) (

ρTA

ABC

)†
is a diagonal matrix. Therefore, the eigenvalues of

(

ρTA

ABC

) (

ρTA

ABC

)†
can

be easily computed. Since ||ρTA

ABC || is the sum of the square root of the eigenvalues, one can

derive NA(BC) as

NA(BC) = ν3/2eω/THLi−1/2

(

e−ω/TH
)

, (20)

where Lin(z) is a polylogarithm function defined as

Lin(z) ≡
∞
∑

k=1

zk

kn
=

z

1n
+
z2

2n
+
z3

3n
+ · · · . (21)

By using a property of the polylogarithm function, one can show that NA(BC) approaches
√
π/2 when TH → ∞. From the symmetry of the GHZ state, it is also easy to show that

NB(AC) = NA(BC).

Now, let us compute the last one-tangle NC(AB). It should be noted that
(

ρTC

ABC

) (

ρTC

ABC

)†

becomes
(

ρTC

ABC

) (

ρTC

ABC

)†
= D + F, (22)
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where D and F are expressed as

D =
1

4

∞
∑

n=0

e−2nω/TH

[

ν2|00n〉〈00n|+ν4(n+ 1)2|11(n+ 1)〉〈11(n+ 1)| (23)

+ν3(n+ 1)

{

|00(n+ 1)〉〈00(n+ 1)|+|11n〉〈11n|
}

]

,

F =
1

4

∞
∑

n=0

e−(2n+1)ω/TH

[

ν5/2
√
n + 1

{

|11n〉〈00(n+ 1)|+|00(n+ 1)〉〈11n|
}

+ν7/2(n+ 1)
√
n+ 2

{

|11(n+ 1)〉〈00(n+ 2)|+|00(n+ 2)〉〈11(n+ 1)|
}

]

.

The off-diagonal part F makes it difficult to compute the eigenvalues of
(

ρTC

ABC

) (

ρTC

ABC

)†
.

However, one can convert
(

ρTC

ABC

) (

ρTC

ABC

)†
into a block-diagonal matrix by ordering the basis

vectors as {|000〉, |110〉, |001〉, |111〉, |002〉, |112〉, · · ·}. Thus, one can compute the eigenvalues

of
(

ρTC

ABC

) (

ρTC

ABC

)†
analytically, which are

{

ν2/4,Λ±
n

∣

∣

∣

∣

n=0,1,2,···

}

. Here, Λ±
n are the eigenvalues

of each block and are given by

Λ±
n =

ν2

8
e−2nω/TH

[

(µ2
n + 2ν)± µn

√

µ2
n + 4ν

]

, (24)

where µn = neω/THν + e−ω/TH . Therefore, NC(AB) reduces to

NC(AB) =
ν

2
+

∞
∑

n=0

(

√

Λ+
n +

√

Λ−
n

)

− 1. (25)

Finally, one can show that all two-tangles, NAB, NAC , and NBC , are identically zero.

The one-tangles and the π-tangle are plotted in Fig. 3 as a function of Hawking tempera-

ture. As this figure shows, the π-tangle decreases with increasing Hawking temperature, and

eventually reduces to π/6 ∼ 0.524 at TH → ∞. At TH = 0, the π-tangle exactly coincides

with that in the absence of the black hole. Thus, as expected, the tripartite entanglement

is degraded when Charlie moves to the near-horizon region from the asymptotic region with

his own particle detector.

B. W-state

Let Alice, Bob, and Charlie share the W-state[34]

|W 〉ABC =
1√
3
[|001〉+ |010〉+ |100〉]ABC (26)
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FIG. 3: The Hawking temperature-dependence of one tangles and πGHZ . The π-tangle decreases

with increasing TH , and eventually reduces to π/6 ∼ 0.524 at TH = ∞.

in the asymptotic flat region. It is easy to show that the π-tangle for the W-state is πW =

4(
√
5− 1)/9 ∼ 0.55 in the flat space limit.

By following a similar calculation as that used for the GHZ state, one can compute the

Hawking temperature-dependence of πW in the presence of a black hole. Instead of repeating

the computational procedure here, we present Fig. 4, which shows one-tangles, two-tangles,

and πW as a function of Hawking temperature. In Fig. 4 (a), the plot of one- and two-tangles

is shown. All tangles except NAB, which is independent of TH , exhibit decreasing behavior

with increasing Hawking temperature. At TH → ∞, NA(BC) and NB(AC) approach 0.659,

whereas NC(AB) has a vanishing limit. Remarkably, the two-tangles NAC and NBC abruptly

become zero in the region TH > 1.45ω. This resembles concurrence, which is a bipartite

entanglement measure. In Fig. 4 (b), we plot πW as a function of TH . At TH = 0, πW in

the flat space is recovered. However, it exhibits a decreasing behavior with increasing TH

and eventually reduces to 0.18 at the TH = ∞ limit.
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FIG. 4: (a) The Hawking temperature-dependence of one- and two-tangles. (b) The Hawking

temperature-dependence of πW . As in the case of the GHZ state, πW decreases with an increasing

temperature, and eventually reduces to 0.18 at TH = ∞.

V. CONCLUSION

In this paper, the quantum discord and tripartite entanglement in the presence of an

asymptotically flat static black hole are discussed. Both the quantum discord and the

tripartite entanglement exhibit decreasing behavior with increasing Hawking temperature.

This implies that the presence of a black hole reduces the quantum correlation when one

party moves from the asymptotic to the near-horizon region with their own particle detector.

Although we have not discussed this, the tripartite entanglement of Alice, Bob, and

Charlie’s in state (or AntiCharlie) does not completely vanish. This fact implies that some

quantum information processes can probably be performed partially across the black hole

horizon. To confirm this, it seems to be important to compute the teleportation fidelity

by making use of the tripartite teleportation scheme[35, 36]. If tripartite teleportation is

possible, even partially, across the horizon, what implications would this have in the context

of causality? The answer to this may be important in the context of quantum gravity. We

plan to explore this issue in the future.
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