□ **철 도**(Railroad, Railway)

○ 레일 또는 일정한 안내길을 따라 사람과 화물을 실어나르는 차량을 운전하는 설비

□ **고속철도**(High speed railway)

- 열차가 주요구간을 시속 200km/h 이상으로 주행하는 철도로서 국토해양부장관이 지정한 철도
- 재원조달 : 출연금 50%, 공단(채권) 50% / 2012년(51:49)

□ 일반철도(Rapid transit railway)

- 고속철도와 도시철도법에 의한 도시철도를 제외한 철도(철도건설법)
- 재원조달 : 출연금 100%

□ **광역철도**(Wide area railway)

- 2개 이상의 광역시·도 지역을 연결해서 운행되는 철도
 - * 대도시권 광역교통관리에 관한 특별법
- 재원조달 : 국가 75%, 지자체 25%

□ 도시철도(Urban railway)

- 도시교통의 원활한 소통을 위하여 도시교통권역에서 건설·운영 하는 철도·모노레일 등 궤도에 의한 교통시설 및 교통수단
- 재원조달 : 국가 60%, 지자체 40% / 서울시내(국가 40%, 서울시 60%)

□ **전용철도**(Single-purpose railway)

- 영업을 목적으로 하지 않고 특수목적을 수행하기 위해 설비한 철도
- 재원조달 : 민간 100%

□ **지하철**(Subway transit)

- 대도시에 있어서 교통의 혼잡을 완화하고, 빠른 속도로 운행하기 위하여 땅속에 터널을 파고 부설한 철도
- 통념상 도시권역의 도시·철도를 통칭으로 지하철로 지칭

□ 수도권전철

- 서울과 수도권을 운행하는 도시(지하철)·광역철도
 - * 도시철도(1~8호선), 일반철도 및 광역철도(일산선, 경인선, 과천선, 안산선, 경부선, 경의선, 중앙선 일부, 분당선 등)가 혼재해 있음

□ 전 철

- 기술적으로는 전기동력(전동차, 전기기관차)으로 운행하는 철도를 뜻하나, 사회적 통념으로는 지하철 등 여객전용 전동차를 지칭
- 건설시 주체와 재원에 따라 일반철도, 광역철도, 도시철도 등으로 구분하나, 건설 후 운영단계에서는 동력이 전기라면 "전철"로 통칭

□ **단선철도**(Single track)

- 한 개의 선로(궤도)로 상선, 하선을 동시에 운행하는 선로
 - 역과 역사이에 상행 또는 하행으로 한 개 열차만 운행할 수 있음
- 전철화 구간은 일반적으로 "단선전철"로 지칭

□ 복선철도(Double track)

- 2개의 선로가 병행 부설되어 상·하행 전용으로 각 각 운행하는 선로 (철도 : 좌측 상행, 우측 하행 / 도시철도 : 좌측 하행, 우측 상행)
 - * 철도의 주행 방향은 도로와 반대 방향으로 운행
- 전철화 구간은 일반적으로 "복선전철"로 지칭
 - * 전철화 구간 선로와 구분하기 위해 복선철도를 "복선 비전철"로도 지칭
- 동일 선구에 복선을 2개 부설하여 운행하는 구간은 복복선철도 (전철)로 지칭
 - * 복복선 : 4개 선로 부설(일반열차 상ㆍ하행 2선, 전동차 상ㆍ하행 2선)

□ **정거장**(Station)

- 여객의 승강, 화물의 적하, 열차의 조성, 차량의 입환, 열차의 교행 또는 대피를 위하여 상용하는 장소
- 정거장의 종류(운전취급규정)
 - 역 : 열차를 정차하고 여객 또는 화물을 취급하는 정거장
 - 조차장 : 열차의 조성 또는 차량의 입환을 위한 정거장
 - 신호장 : 열차의 교행 또는 대피를 위한 정거장

□ **간이역**(Simple station)

- 철도 운영자가 직원을 배치하지 않고 간단한 설비로 여객을 취급 하는 역
 - 역장을 배치하지 않고 여객 취급만 하는 역으로 직원을 배치하면 배치간이역, 직원을 배치하지 않으면 무배치간이역이라 함
 - * 일반적인 철도역은 보통역으로 지칭

□ **역 从**(Station building)

- 철도역으로 사용하는 건물로써 역무시설, 대합실, 기능실(신호, 전기) 등으로 구성됨
- 역사의 종류
 - (선상역사) 선로를 기준으로 위에 연결통로(구름다리)상에 설치
 - (선하역사) 선로를 기준으로 하부에 설치(교량 정거장 하부)
 - (지상역사) 광장부에 설치한 역사

□ 노 반(Road-bed)

○ 철도 노선과 정거장 및 차량기지의 필요한 부지 위에 토공, 교량, 터널 등을 구축하는 기반시설을 노반이라 하며, 철도에서 궤도부분 이하를 노반이라 함

□ 궤 도(Track)

○ 도상(자갈, 콘크리트 구조), 침목, 레일 등으로 구성된 열차 또는 차량의 이동로

□ 도 상(Ballast)

- 레일 및 침목으로부터 전달되는 차량하중을 노반에 넓게 분산시 키고 침목을 일정한 위치에 고정시키는 기능을 하는 자갈 또는 콘크리트 등의 궤도 구조
 - 자갈도상, 콘크리트도상(직결도상)

□ 레일레벨(RL/Rail level)

- 레일 상면의 높이로써 수준높이+100m로 표기함
- 레일레벨(RL) : 철도 시설물(구조물)의 높이 기준으로 사용
- 시공기면(FL) : 노반 계획고로써 수준높이+100m표기함
 - * 수준높이가 평균해수면(수준기준) 보다 낮은 곳은 마이너스가 되므로 도면 표기상 혼선을 방지 및 계산 편의를 위해 +100m 높이로 표기함

□ **급전구분소**(Electricity sectioning post)

- 급전 구간의 구분과 연장을 위한 개폐장치(차단기, 단로기)
- 전차선로의 전압 강하에 따른 전압(전력량)을 유지하기 위하여 통상 10km 간격으로 보조구분소(SSP)를 설치
 - * 구분소(SP), 변전소는 50km 간격으로 설치
- 전차선에 전기를 공급하는 급전선은 50,000V, 한전 변전소에서 철도 변전소로 전기를 공급하는 송전선로는 154kV

□ **전차선로**(Electric car line system)

- 전기차에 전력을 공급할 수 있는 가공 전선과 급전선로, 귀선로및 이에 부속한 설비
- 전차선 전압 : 일반 교류 25,000V, 지하철 직류 1,500V
 - * 장거리 운송 수단인 일반철도는 전력 효율등을 고려하여 교류 25,000V 적용
 - * 단거리 출퇴근 위주의 도시철도는 안전 등을 고려하여 직류 1,500V 적용

□ 표정속도(Commercial speed)

- 시점에서 종점까지 전구간의 거리를 도중 정차시분을 포함해 전 소요시간으로 나눈 속도(표정속도=운행거리/실 소요시간)
- 최고속도
 - 열차운전중 최고로 되는 속도를 말하는 것으로서 일반적으로 선구별, 차량별 최고허용속도를 지칭하는 경우가 많다.
 - 선로와 차량의 조건에서 허용되는 최고의 속도
- 평균속도
 - 시점에서 종점까지 전구간의 거리를 도중 정차시분을 제외하고 소요시간으로 나눈 속도(표정속도=운행거리/소요시간)

☐ **KTX**(Korea train express)

- 대한민국에서 운영하는 고속철도 열차의 통칭
- 최대시속 300km/h, 1편성 20량(388m),
 - 관절형 대차 : 객차와 객차 사이에 1개의 대차로 구성
- KTX-산천 : 한국형 고속열차(1편성 10량 구성)
 - * 해외 고속철도 : 프랑스 TGV, 독일 ICE, 일본 신칸센 등

□ **ITX-**청춘(Inter-city train express)

- 대한민국에서 개발한 도시형 준 고속열차(경춘선 운행중)
- 최대시속 180km/h, 1편성 8량(2량은 2층 열차)
 - 새마을호(150km/h) 보다 높은 단계의 준 고속열차
 - * 고속열차 : 200km/h 이상

☐ **EMU**(Electric multiple unit)

- 동력분산방식의 전기동차로 편성된 열차의 총칭
 - 도시지하철 및 수도권전철(EMU-110km/h) 엔진 형식
- 준 고속형 EMU : 누리로(150km/h급), ITX(180km/h)
 - 중앙선 등에 고속형 EMU-250km/h급 이하의 열차를 개발하여 투입할 계획

신호시스템 용어 및 기능해설

1. ATS(Automatic Train Stop)

- 기관사가 악천후(짙은 안개, 눈보라), 또는 졸음 등의 상황에서 신호를 무시하거나 정해진 속도를 초과하여 운전할 경우 5초간 경보를 하고 자동으로 열차를 정지시키는 장치

2. ATC(Automatic Train Control)

- 열차안전운행에 필요한 속도정보를 레일을 통하여 연속적으로 차량의 컴퓨터에 전송하여 허용속도를 표시하며, 운행속도가 허용속도 초과시 자동으로 감속, 제어하는 장치

3. ATP(Automatic Train Protection)

- 열차운행에 필요한 각종 정보를 지상자를 통해 차량으로 전송하면 차량의 컴퓨터가 열차의 속도를 감시하다가 일정속도 이상을 초과하여 운행시 자동으로 감속, 제어하는 장치(ERTMS/ETCS Level 1)
 - ** ERTMS/ETCS(European Railway Traffic Management System / European Train Control System) 유럽 권역의 약 15개 간선철도망 및 고속철도망의 통합과 상호 연계운행 확보를 목적으로 유럽의 철도 신호시스템을 표준화한 유럽표준 열차 신호제어시스템으로 Level 1,2,3 로 구분

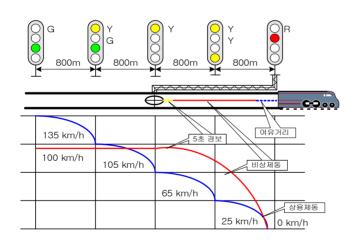
4. CBTC(Communications Based Train Control)

- 무선통신을 기반으로 지상에서 열차의 운전조건을 차상으로 전송하여 열차의 출발, 정차, 출입문 개폐 등을 자동으로 동작토록 하여 기관사 없이 운행할 수 있는 지능형 열차 신호제어시스템
 - ※ RF-CBTC(Radio Frequency-Communications Based Train Control) CBTC의 일종으로 무선 주파수를 활용한 열차 신호제어시스템

5. ATACS(Advanced Train Administration and Control System)

- JR 동일본에서 기존 궤도회로의 단점을 보완하기 위해 무선주파수와 컴퓨터 기술을 이용하여 개발한 무인 열차 신호제어시스템

1. ATS (열차자동 정지장치)


(Automatic Train Stop)

□개요

- 신호기 전방 일정구간에 유도코일을 설치하여 신호기의 허용속도를 초과하여 운행하는 경우 경고음을 울리고 5초 이내에 감속이 되지 않을 경우 비상제동을 체결하는 장치
- 기관사가 확인취급 후 정지신호를 지나서 운행할 수 있음(안전성 취약)
 - * 한국, 일본내 기존선 전 구간에서 설치되어 있으며, 안전성 향상을 위하여 한국은 ATP장치(유럽표준장치)로, 일본은 ATS-P형(일본국내기술)으로 개량 중

□ 구성도(동작원리)

- ㅇ 지상/차상간 아날로그 주파수에 의한 정보전송(점 전송)
 - * 운행 속도 150km/h(단. KTX 160km/h) 이상시 사용 불가(무 응동)
 - * 130Khz(정지), 122Khz(감속), 114Khz(주의), 106Khz(경계), 98Khz(진행), 68Khz(전차선 절연구간)

[ATS 운전곡선]

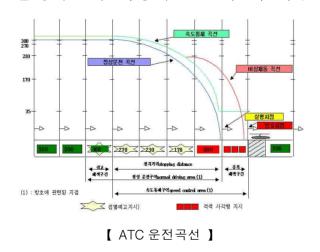
[차상램프 표시]

[지상자(유도코일)]

□ 주요기능

ㅇ 기관사 신호 오인 방지(안개 등 악천후시)

2. ATC (열차자동 제어장치)


(Automatic Train Control)

□개요

- 지상신호기의 현시상태를 확인하는데 시간적 여유가 없는 고속철도를 위하여 개발되었으며, 궤도회로를 따라 레일 또는 루프코일을 사용하여 구간별 속도정보를 AF신호로 차상장치에 전송하는 차상신호장치
- 열차운행속도가 낮고 운행패턴이 단조로운 일부 지하철구간은 ATC 장치의 열차방호기능 이외에 열차정지위치와 가속, 견인력을 자동으로 제어하는 기능을 추가하여 ATO장치 사용

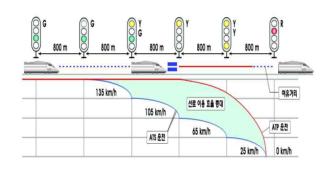
□ 구성도(동작원리)

- 고속열차, 지하철 등 운행패턴이 동일한 차량의 제동특성에 맞게 지상의 폐색구간을 설정하고, 구간별 속도코드를 단계별 부여
 - * 동종 단일패턴 열차운행에 적합 (고속철도, 과천, 일산, 분당선 등)
- 궤도회로 AF신호 주파수 4가지(인접, 반대선 구분)를 사용 디지털 정보전송
 - * 전송 데이타: 27bit 속도정보(실행,명령,예고), 폐색길이, 구배정보
- ㅇ 운행속도가 허용속도 초과 시 자동으로 감속

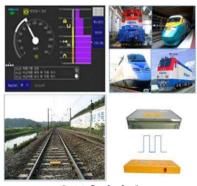
□ 주요기능

- 고속·고밀도 운행시 충돌사고 예방 (경부고속선 305km/h)
- ㅇ 궤도회로를 통한 연속적인 정보 전송

3. ATP (열차자동 방호장치)


(Automatic Train Protection)

□개요


○ 차내신호의 지시속도에 따라 운행하는 열차가 지시 속도를 초과할 경우 감속 또는 정지시키는 열차자동방호장치로서, KTX운행구간 및 운행 속도 180km/h 이상 건설구간에서 적용중인 유럽표준 차상신호시스템1)

□ 구성도(동작원리)

- 열차운행에 필요한 각종 디지털 정보(1023bit 선로제원, 신호기정보)를 발리 스를 통해 차량으로 전송하며, 복합 다종열차 운행에 적합
- 차량의 제원(길이, 종별)에 따라 운행속도(제동거리)를 계산하고, 전방선로의 지리정보(10종)를 기관사 모니터(MMI)에 표시
 - * 속도 초과시 경보, 상용, 비상제동을 순차적으로 인가(단제동 사용)

[운전곡선]

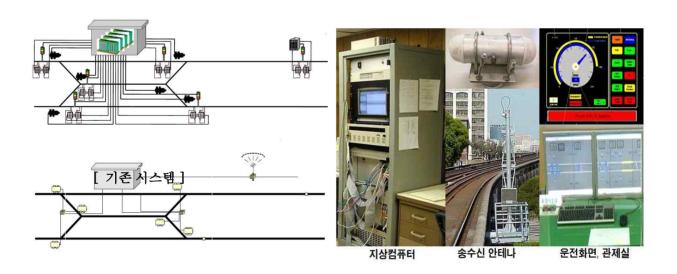
[구축사진]

□ 주요기능

- 열차 운행간격 단축 (단제동, Distance to go)
- 운행 속도 향상 (최대 500km/h 기존 ATS : 최대 160km/h)
- 안전도 향상 (지상신호→차상신호, 안전 최고수준-SIL4, 국제기준)

¹⁾ 유럽표준 차상신호시스템(ETCS, European Train Control System) - 유럽 권역의 간선철도망 및 고속철도망 통합 (Directive 96/48/EC)과 상호 연계운행 확보를 목적으로 세계철도연합(UIC)과 EU의 지원하에 유럽 국영철도, 시스템 공급사가 참여하여 표준화한 유럽표준 열차제어시스템. 열차제어의 구현 방식에 따라 3단계로 구분(ETCS레벨 1,2,3)되며, 국내에는 레벨 1 시스템이 경부, 호남, 경춘선에 설치중에 있음.

4. CBTC (통신기반 무선열차제어시스템)


(Communication Based Train Control System)

□개요

○ 궤도회로가 아닌 무선 주파수만을 사용하여 실시간으로 열차위치 검 지하고, 속도 제어가 가능한 무인 무선열차제어시스템²⁾

□ 구성도(동작원리)

- ㅇ 열차와 지상간에 고용량 양방향 데이터 무선통신기술 사용
 - * 2.4GHz ISM대역
- ㅇ 열차위치 결정, 운행속도 및 열차간격 제어
 - * 열차 최고속도 : 120Km/h 이하

□ 주요기능 CBTC 시스템]

- 기관사 없이 열차운행 (Driverless)
- ㅇ 운전시격 단축 (Moving Block System)
- 선로변 현장 시설물 감소(유지보수 경감)

²⁾ 무인 무선열차제어시스템: 원천 기술은 북미의 CBTC(통신기반 열차제어시스템) 장치가 있으나, 현재 저속 경전철에 적용중이며, 표준화 되어 있지 않음, 국내의 경우 분당선에 시범설비가 구축(2008년)되어 있으며, 지자체별로 외국기술(유럽, 일본)로 경전철을 건설 중에 있음

5. ATACS (차세대 열차제어시스템)

(Advanced Train Administration and Control System)

□개요

- JR동일본에서 기존 궤도회로의 단점을 보완하기 위해 무선주파수와 컴퓨터기술을 이용하여 '95년부터 개발중인 무인 열차제어시스템
 - * 개발목적 : 비용(건설,유지,개량) 감소, 안전성 향상, 수송효율 향상(양방향, 건널목 등)
 - * 현재 전동차를 이용하여 시험, 시운전중 (센다이 인근 센세키선 7km, 2편성 Max 95km/h)

□ 구성도(동작원리)

- 무선기지국 간격 : 3Km (기지국 당 12개 열차 제어)
 - 열차위치 검지 주파수 : 400Mhz (대역폭 : 6.25Khz)
 - 통신방식: TDMA(지상 3W, 차상 1W, 정보전송율 576bits/초당)
- Hand-Over(경계) 구간의 통신 제어기능 보완

구 분	이동통신(휴대폰)	ATACS
통신시간 지연(통신두절)	발생 (우선순위 없음)	불가 (우선순위 설정)
경계구간 이동(스위칭)	기지국 전자장의 세기	선로상의 위치

□ 주요기능

- 1단계(개발완료) : 열차간격제어, 구배·곡선 속도제어, ATP기능
- 2단계(개발중): 건널목 제어, 고장시 열차보호, 임시속도제한, DB 전송기능 등

- 1. 국가철도망 구축계획: 국토해양부(철도건설법)
- 2. 예비타당성 조사 : 기획재정부
 - 사업추진 : 정책적 분석(AHP) 0.5이상, 경제성(B/C) 1.0이상
- 3. 타당성조사 및 기본계획: 국토해양부
 - o 철도건설기본계획 고시 (철도건설법 제7조)

4. 기본설계

- ㅇ 노선선정 및 정거장 배선 승인
- 교통영향평가(도시교통정비촉진법), 환경영향평가 (환경영향평가법)
- ㅇ 문화재지표조사 (문화재보호법)

5. 실시설계

- 사업실시계획 고시 (철도건설법)
 - 철도건설사업 및 노선계획(신설 또는 개량역 포함) 확정
 - ※ 사업용철도노선의 지정, 고시: 사업실시계획 고시후 1개월 이내 (철도사업법 시행규칙 제2조)
- ㅇ 지형도면고시 (국토의계획및이용에관한법률)

6. 시 공

○ 용지매수 (공익사업을위한토지등의취득및보상에관한법률)

7. 개 통

- 시설물검증 및 영업시운전 (철도종합시험운행 시행지침)
 - 영업고시 변경 고시 (철도거리표 개정) : 철도사업법 제4조
 - 사업계획의 변경 (국토해양부장관 인가) : 철도사업법 제12조

○ 궤 간 : 표준궤간 1.435m

○ 최소곡선반경 : 통상 R = 600m(속도와 조건에 따라 결정)

350V(자갈 R=6,100m), 200V(자갈 R=1,900m)

○ 완화곡선 : 통상 R = 2,000m / 길이 C × 1,000배

○ 곡선과 곡선 : 직선 60m 이상 확보

○ 최급구배 : 통상 12.5‰(120<V≤150), 고속철도 25‰

○ 캔트 : C = [(11.8 V²) / R] - C' 최대 160(부족 100)

/ 200<V≤350 : 최대 160(부족 80)

○ 시공기면

- (120<V≤200) 기면 4.0m + 간격 4.3m + 기면 4.0m = **12.3m**

- (200<V≤350) 기면 4.5m + 간격 4.8m + 기면 4.5m = **13.8m**

○ 승강장 높이 : 저상홈 500mm, 고상홈 1,135mm, 적하장 1,100mm

○ 승강장 여유 : 지상일반 20m, 지상전철 10m, 지하전철 5m

* (전동차 10량 기준) 지상 210m, 지하 205m

○ 승강장 끝단 : 선로 중심에서 1.675m

* 전기동차 : 직결도상 1.610m, 자갈도상 1.700m

○ 승강장 폭 : 최소 8m [2.0m+계단 4.0(벽체포함) + 2.0m]

* 계단 3.0m, 벽체 끝단+2.0m (기둥류 1.5m)

○ 건축한계 : 선로 중심에서 2.1m, 전차선 RL+5.0m, 상부 6.450m

선로 상부 횡단시설 有 7.010m 이상 (FL + 7.66m)

* FL+RL 통상 650mm, 침목하면 도상두께 300mm

/ (200<V \le 350) 350mm

○ 역간거리 : 도시철도건설규칙 제30조 제3항 1.0km

철도건설규칙 제20조 적정위치, 광역전철 업무지침 1.5km